
Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.009 
Journal of Research of the National Institute of Standards and Technology 

196 

Propagation of Error from Registration 
Parameters to Transformed Data 

Mili Shah1, Marek Franaszek2, and Geraldine Cheok2 
1Loyola University Maryland, 

Baltimore, MD, 21210 
2National Institute of Standards and Technology, 

Gaithersburg, MD 20899 

mishah@loyola.edu 
marek@nist.gov 
cheok@nist.gov 

Methods to register two sets of data have existed for quite some time. However, these sets of data are rarely error-free. Consequently, 
any registration based on this data will be affected by the error. Moreover, if the corresponding registration matrix is then used to 
transform data from one coordinate system to another, any error from the registration will also get propagated to the transformed data. 
In this paper, we will characterize this propagation of random error, or noise, through a mathematical perspective and will illustrate its 
use with data obtained from physical experiments and with quasi-simulated sets of data. In addition, we will discuss the limitations of 
this propagation of error when systematic bias is present in the data. 
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1. Introduction

Registering data from two systems, or coordinate frames, is a classic problem in many fields such as
metrology, photogrammetry, robotics, and computer vision. The problem consists of finding an optimal 
orientation and translation to transform the data collected from one system to another. For perfect data, this 
problem is easy to solve. However, as is typically the case, difficulties arise once errors are introduced into 
the problem. Specifically, errors in the data, most notably from noise in the data collection systems, affect 
the accuracy of the registration. Moreover, these errors propagate onto any data transformed by the matrix 
formulated from the registration. Here, we will mathematically characterize the propagation of random 
error from data, to registration, to newly transformed data from the corresponding registration matrix. To 
gain some insight into the problem, consider two data collection systems X and X' that simultaneously track 
an object. From this tracking, data can be obtained from which a registration matrix Ψ can be built which 
optimally transforms data from system X to X'. This setup is useful in many metrology and manufacturing 
applications. For instance, consider two cameras tracking an object. Using common features on the object, 
visible to each camera, a registration matrix Ψ can be formulated which represents the transformation 
between the two cameras. This matrix can then be used to transform features on the object into a coordinate 
system of the camera that does not see the features. As a result, a full reconstruction of the geometry of the 
object can then be formulated. However, care must be taken with this process as noise will influence the 
results. For instance, if there are errors in the registration obtained from noisy data, those errors will 
propagate onto any data transformed using the corresponding registration matrix Ψ. The goal of this paper 
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is to describe how errors in the registration will influence data transformed by Ψ by creating uncertainty 
measures as shown in Fig. 1. In addition, a method to approximate errors in the registration will be given if 
these errors are not known. 
 

 
 
Fig. 1. Two datasets obtained by two systems are registered using the data in the overlapping region on the object. Once registered, all 
data from one system is transformed to the other system via a registration matrix Ψ. The inset shows the position of a measured point 
by one system (white circle), the point transformed to the other system (black x), and the uncertainty of the transformed point (black 
dashed oval). For simplicity, only the uncertainty in the x and y directions are shown. 
 
 
      For this paper, we assume that each system gathers and stores data in matrices 
 
      ( )1 2= N⇒ X X X XX     (1) 
 
     ( )1 2= N′ ′ ′ ′ ′⇒ X X X XX     (2) 
 
where nX  and n′X  describe the n th pose of an object in the corresponding coordinate system as 

homogeneous matrices of the form ( )0 1
.R p  Here the rotation matrix 

 
            = ( , , ) = cos( ) sin( )[ ] (1 cos( )) T

St f r r r r+ + −R R I u uu    (3) 
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represents the orientation of the object in the corresponding coordinate system where r is the angle of 
rotation for R , = ( , , ) = (cos( ) cos( ),cos( )sin( ),sin( ))T T

x y zu u u t f t f tu  is the (unit) axis of rotation of R  
parametrized by the angles t and f, and 
 

    
0

[ ] = 0
0

z y

S z x

y x

u u
u u
u u

 −
 

− 
 − 

u      (4) 

 
is the skew-symmetric matrix representation of the unit vector u . The vector = ( , , )T

x y zp p pp  represents 
the three degrees of freedom (3DOF) position of the object in the corresponding coordinate system. In 
addition, I  denotes the identity matrix. As a result, each ,n n'X X  can be described using six degrees of 
freedom (6DOF) representing the pose ( , , , , ,x y zt f r p p p ) of the object. It should be noted that many 
systems may only be able to collect 3DOF position data of the object. In this situation, the techniques 
appearing in this paper may be simplified since the 3DOF data is included in the 6DOF data. 

      The registration matrix Ψ ( )0 1
= τΩ  can be derived by looking at the relationship between X  and 'X  

using existing methods [1-7] or by using the technique for 6DOF data outlined in Sec. 3. For this paper, we 
will assume that the optimal orientation Ω is represented as a rotation matrix using the angle-axis 
representation via three parameters { , , }θ φ ρ  such that 
 
          = ( , , ) = cos sin [ ] (1 cos ) T

Sθ φ ρ ρ ρ µ ρ µµ+ + −IΩ Ω    (5) 
 
where = (cos cos ,cos sin ,sin )Tθ φ θ φ θµ  is the axis of rotation of Ω , ρ  is the angle of rotation of Ω , and 
[ ]Sµ  is the skew-symmetric matrix representation of the vector µ . In addition, the optimal translation τ  is 
represented using the three parameters { , , }x y zτ τ τ  that represent the typical Cartesian coordinates. In total, 

six registration parameters = { , , , , , }x y zψ θ φ ρ τ τ τ  obtained from the registration matrix Ψ ( )0 1
= τΩ  will be 

analyzed in this paper. For simplicity, a table of the most common variables used in this paper is shown in 
Table 1. 
 
 
Table 1. Common variables used in this paper. Note that subscripts and superscripts can be used to differentiate coordinate frames and 
poses. 
 

  Symbol   Description 
 = ( , , )T

x y zp p pp    Given positional data 

 = ( , , )t f rR R   Given rotation matrix from angles , ,t f r  

 = ( , , )T
x y zτ τ τ τ    Unknown translational vector 

 = ( , , )θ φ ρΩ Ω   Unknown orientation matrix from angles , ,θ φ ρ  

 = { , , , , , }x y zψ θ φ ρ τ τ τ   Unknown registration parameters from Ω and τ  

  Ψ ( )0 1
= τΩ   Unknown registration matrix from Ω and τ  

 x∆    Uncertainty in x  approximated by the standard deviation  
 ∆xΣ    Uncertainty in x  approximated by the covariance matrix 
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      It should be noted that the formulation presented in this paper can be generalized to any representation 
of Ω that is parametrized by three independent parameters including Euler angles. Regardless of the 
technique used, the registration parameters ψ  derived from the registration matrix Ψ are influenced by 
errors inherent in the data obtained from systems X  and 'X . As a result, the reliability of the registration 
parameters will depend on the quality of data. If there are systematic biases inherent in the data and they 
violate the rigid body conditions upon which the process of registration is based, then the resulting 
registration parameters may not be valid. In this paper, we will assume that any systematic biases in the 
data are smaller than the random errors occurring in the data from issues such as instrument noise. In such a 
case, the errors in the registration parameters can be approximated by acquiring, in the same experimental 
conditions, K  repeats of the data. Specifically, for = 1,2, ,k K  datasets kX  and k′X  can be constructed 
and the corresponding registration parameters kψ  calculated. The mean and standard deviations of the six 
individual elements of kψ  can then be determined and used to characterize the errors in the registration 
parameters. However, such a procedure is expensive, in both time and labor, and therefore rarely performed 
in practical applications. A more realistic approach is to characterize the noise from a given system and 
then to plug this information into a random error propagation formula to derive an estimate for the errors 
in the registration parameters corresponding to a single pair of acquired data from system X  and 'X . In 
this paper, we will derive such a propagation formula for the registration parameters determined from 
6DOF data. Moreover, we will verify that such determined errors agree with brute force calculations based 
on many repeated measurements and registrations. 
      It should be noted that our method of propagating error is an extension of the work done by Haralick [8] 
on 3DOF data. However, even earlier formulations of error propagation for 3DOF data do exist. Most 
notably, Sibson [9, 10] was one of the first to mathematically study how errors in the data affect the 
registration of 3DOF data by using perturbation theory. Since then, modern mathematical formulations 
have been constructed [8, 11-14]. Most recently, Dorst [11] created a first order error propagation based on 
the Polar Decomposition and characterized the error in 3DOF data using an “error axis vector.” This vector 
represents the axis of rotation needed to achieve a perturbed rotation. Though his end formulation has a 
very nice intuitive description related to the point clouds of the original data, the actual results are in terms 
of an error axis that may be difficult to interpret. In contrast, Haralick [8] took a more foundational look to 
calculate how noise in the positional 3DOF data affects the actual registration parameters ψ . In the case 
that 6DOF data are used, we will extend Haralick’s work to show how random errors in the full 6DOF data 
affects the registration parameters ψ . In addition, once the errors in the registration parameters are known 
(regardless of the technique), we will show how to propagate the error onto any data transformed by the 
corresponding registration matrix Ψ. 
      This paper will be organized in the following way. Section 2 will define a method for propagating 
errors in the registration parameters ψ  onto any data transformed by the corresponding registration matrix 
Ψ. If the registration parameters are unknown, Sec. 3 will define a novel method for calculating them for 
6DOF data, while Sec. 4 will define a method for approximating their error. Experiments illustrating the 
use of these methods on physically obtained data will be shown in Sec. 5 and concluding remarks will be 
given in Sec. 6. 
      For this work, known scalars will be presented as non-bold letters ( ,a A ), known vectors as lower-case 
bold letters ( a ), and known matrices as upper-case bold letters ( A ). Similarly, unknown scalars will be 
presented as lower-case Greek letters (ψ ), unknown vectors as lower-case bold Greek letters (ψ ), and 
unknown matrices as upper-case bold Greek letters (Ψ). The j th column of A  will be denoted as (:, )jA , 
and the Frobenius norm will be denoted using ⋅ ; i.e., 
 

    ( ) ( )= =T Ttr trA AA A A      (6) 

 
where ( )tr  denotes the matrix trace operation and T  denotes the transpose operation. A description of the 
most common variables used in this paper is shown in Table 1. 
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2.  Propagation of Error to Transformed Data 
 
      If we assume the errors of each of the registration parameters are known and approximated by 
 

    ( )= , , , , , ,
T

x y zψ θ φ ρ τ τ τ∆ ∆ ∆ ∆ ∆ ∆ ∆    (7) 
 
this section derives a method to propagate these errors onto any data transformed by the registration matrix 
Ψ corresponding to the registration parameters = { , , , , , }x y zψ θ φ ρ τ τ τ . We split up this section into Sec. 2.1 
which describes how ψ∆  affects the positional components of the transformed data and Sec. 2.2 which 
describes how ψ∆  affects the orientational components of the transformed data. If the registration 
parameters or the errors in the registration parameters are unknown, Sec. 3 and Sec. 4, respectively, will 
outline methods to determine them. 
 
2.1  Propagation of Error onto the Positional Component 
 

      Consider new positional data ( )= , ,
T

x y zp p pp  with the error approximated by the vector 

( )= , ,
T

x y zp p p∆ ∆ ∆ ∆p . Here we assume that the data are new in the sense that they are not used in the 
registration process. We are interested in calculating the error in 
 

         ( )ˆ ˆ ˆ ˆ= , , = ;
T

x y zp p p τ+p pΩ     (8) 
 

i.e., data obtained from registering p  with the registration matrix Ψ ( )0 1
= τΩ  where = ( , , )θ φ ρΩ Ω  and 

= ( , , )x y zτ τ ττ τ . Each element of p  can then be calculated as 
 
            1ˆ = ( , , , , , , , , )x x y z x y zp p p pθ φ ρ τ τ τ  
 
   2 2= ( (1 cos ) cos )cos cos xpθ φ ρ ρ− +  
 
   2( cos sin (1 cos ) sin sin )cos ypθ φ φ ρ θ ρ+ − −  
 
   (cos cos sin (1 cos ) cos sin sin ) zpθ φ θ ρ θ φ ρ+ − +  
 
   xτ+         (9) 
 
            2ˆ = ( , , , , , , , , )y x y z x y zp p p pθ φ ρ τ τ τ  
 
   2= ( cos sin (1 cos ) sin sin )cos xpθ φ φ ρ θ ρ− +  
 
   2 2( (1 cos ) cos )cos sin ypθ φ ρ ρ+ − +  
 
   (cos sin sin (1 cos ) cos cos sin ) zpθ φ θ ρ θ φ ρ+ − −  
 
   yτ+         (10) 
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            3ˆ = ( , , , , , , , , )z x y z x y zp p p pθ φ ρ τ τ τ  
 
   = (cos cos sin (1 cos ) cos sin sin ) xpθ φ θ ρ θ φ ρ− −  
 
   (cos sin sin (1 cos ) cos cos sin ) ypθ φ θ ρ θ φ ρ+ − +  
 
   2( (1 cos ) cos )sin z zpθ ρ ρ τ+ − + +      (11) 
 
As a result, the uncertainty in ˆ∆p  can be approximated by the covariance matrix 
 
                ˆ = T

∆ ∆p p k pp
J JΣ Σ      (12) 

 
where the Jacobian matrix is 
 

                 

1 1 1

1 2 9

2 2 2

1 2 9

3 3 3

1 2 9

=

η η η

η η η

η η η

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

 ∂ ∂ ∂  ∂ ∂ ∂ 

pJ







  

  

  

    (13) 

 
for iη  the i -th element of { , , , , , , , , }x y z x y zp p pθ φ ρ τ τ τ  and the covariance matrix 
 

             
0

= ,
0
ψ∆

∆
∆

 
 
 

kp
p

Σ
Σ

Σ
    (14) 

 

where the errors in the known variables are approximated as ( )= ψ∆
∆

∆ p p
k . Here the block structure of ∆kp

Σ  

is due to the registration error ψ∆  being independent of the positional error ∆p  of the positional data p . 
Note that the errors in each of the components of p̂  can then be approximated by taking the square root of 
the corresponding diagonal of ˆ∆pΣ . 
 
2.2  Propagation of Error onto the Orientational Component 
 
      Consider new orientational data = ( , , )t f rQ Q  with error approximated by the three-dimensional 
vector 
 
     = ( , , ) .Tt f r∆ ∆ ∆ ∆q     (15) 
 
Again, we assume that the data are new in the sense that they are not used in the registration process. We 
are interested in calculating the error of the three terms ˆˆ ˆ, ,t f r  that parameterize 
 
               ˆˆ ˆ ˆ ˆ= ( , , ) =t f rQ Q QΩ     (16) 
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where = ( , , )θ φ ρΩ Ω  with error 
 
                = ( , , ) .Tλ θ φ ρ∆ ∆ ∆ ∆     (17) 
 
Note that the error of ˆˆ ˆ ˆ ˆ= ( , , )t f rQ Q  can be expressed in terms of 
 

                ( )ˆˆˆ ˆ= , , .
T

t f r∆ ∆ ∆ ∆q     (18) 

 
In order to compute the individual uncertainties of ˆˆ, ,t f r , the quaternion representation of rotation will be 
used. Since 

            

cos( /2)
sin( /2)cos cos

= = ,
sin( /2)cos sin

sin( /2)sin

w

x

y

z

ω ρ
ω ρ θ φ

ω
ω ρ θ φ
ω ρ θ

   
   
   ⇒
   
     

  

Ω    (19) 

 
then the transformed data ˆ =Q QΩ  can be represented as the quaternion 
 

  

ˆcos( /2) ˆ
ˆˆ ˆˆsin( /2)cos cos

ˆ = = = ,
ˆˆˆˆsin( /2)cos sin
ˆˆˆsin( /2)sin

w w x x y y z zw

w x x w y z z yx

w y x z y w z xy

w z x y y x z wz

r

r t f

r t f
r t

ω ω ω ω
ω ω ω ω
ω ω ω ω
ω ω ω ω

  − − −  
     + + −    
     − + +
         + − +    

q q q qq
q q q qq

q
q q q qq
q q q qq

  (20) 

 
where = ( , , , )T

w x y zq q q q q  is the quaternion representation of Q . As a result, 
 

         1
1

ˆˆ = ( , , , , , ) = sin
ˆ1

z

w

t t f rθ φ ρ −
 
  − 

q
q

     (21) 

 

         1
2

ˆˆ = ( , , , , , ) = tan
ˆ

y

x

f t f rθ φ ρ −  
 
 

q
q

     (22) 

 
         ( )1

3 ˆˆ = ( , , , , , ) = 2cos wr t f rθ φ ρ − q     (23) 
 
Moreover, the error of the three terms ˆˆ ˆ, ,t f r  that parametrize the rotation ˆˆ ˆ ˆ ˆ= ( , , )t f rQ Q  can be 
approximated by the covariance matrix 
 
     ˆ = T

∆ ∆q q k qq
J JΣ Σ      (24) 

 
where the Jacobian matrix is 
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1 1 1

1 2 6

2 2 2

1 2 6

3 3 3

1 2 6

=

η η η

η η η

η η η

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

 ∂ ∂ ∂  ∂ ∂ ∂ 

qJ







  

  

  

    (25) 

 
such that iη  is the i -th element of { , , , , , }t f rθ φ ρ  and the covariance matrix 
 

            
0

=
0
λ∆

∆
∆

 
 
 

kq
q

Σ
Σ

Σ
     (26) 

 

where the errors in the known variables are approximated by ( )= λ∆
∆

∆ q q
k . Here the block structure of ∆kq

Σ  

is due to the error in the rotational registration parameters λ∆  being independent of the orientational error 
∆q . Note that the error of each component of ˆˆ ˆ( , , )t f r  can then be approximated by taking the square root 
of the corresponding diagonal of ˆ∆qΣ . 
 
2.3  Summary of Propagation of Error 
 
      For this section we assume that the registration parameters = { , , , , , }x y zψ θ φ ρ τ τ τ  and corresponding 
registration matrix Ψ are known along with the error ψ∆  in the registration parameters. The propagation 

of errors from the uncertainty ψ∆  onto a pose ˆˆ ˆ ˆ ˆ ˆ( , , , , , )x y zt f r p p p  obtained by transforming the pose 
( , , , , , )x y zt f r p p p  with the registration matrix Ψ can be split up into two cases: propagation onto the 

positional component ˆ ˆ ˆ( , , )T
x y zp p p  and propagation onto the orientational component ˆˆ ˆ( , , )Tt f r . Note the 

error ( , , , , , )x y zt f r p p p∆ ∆ ∆ ∆ ∆ ∆  is assumed to be known. 

      To describe the propagation onto the positional component ˆ ˆ ˆ( , , )T
x y zp p p , 

1. Build the Jacobian matrix pJ  as outlined in Eq. (13). 
2. Build the covariance matrix ∆kp

Σ  as outlined in Eq. (14). 

3. Combine to create the covariance matrix ˆ = .T
∆ ∆p p k pp

J JΣ Σ  

The error of each element in the positional component ˆ ˆ ˆ( , , )T
x y zp p p  can then be described by calculating 

the square root of the corresponding diagonal of ˆ∆pΣ . 

      Similarly, to describe the propagation onto the orientational component ˆˆ ˆ( , , )Tt f r , 
1. Build the Jacobian matrix qJ  as outlined in Eq. (25). 
2. Build the covariance matrix ∆kq

Σ  as outlined in Eq. (26). 

3. Combine to create the covariance matrix ˆ = .T
∆ ∆q q k qq

J JΣ Σ  

The error of each element in the orientational component ˆˆ ˆ( , , )Tt f r  can then be described by calculating the 
square root of the corresponding diagonal of ˆ∆qΣ . 
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3.  Calculating Ω and τ 
 
      A method for calculating the optimal orientation Ω and translation τ for 6DOF data is outlined in this 
section. To begin, note that for error-free data, registering 6DOF data is equivalent to finding a 

homogeneous matrix Ψ ( )0 1
= Ω τ  such that 

 
               =n n'X XΨ       (27) 
 

   = =
0 1 0 1 0 1 0 1

n n n n n n+′ ′      
      
      

R p R p R pΩ Ω Ω ττ
   (28) 

 
for all = 1,2, ,n N . This formulation can be split into the orientational component 
 
     =n n′R RΩ      (29) 
 
and the positional component 
 
     = .n n τ′ +p pΩ      (30) 
 
In the presence of noise, Ω and τ may not be the same for all = 1,2, ,n N . Thus, an optimization routine 
has to be formulated to compute the optimal transformations. In earlier work [5], the authors suggested 
computing the optimal Ω and τ by simultaneously solving the orientational and positional components as 
 

         2 2

, =1 =1
min

N N

n n n n
n nτΩ

′ ′− + + −∑ ∑R R p p Ω Ω τ    (31) 

 
However, the solutions will be different depending on the scale of the positional components. In addition, 
the units for the orientational and positional components are different. These problems can be eliminated by 
reformulating the orientational component. 
      To begin notice that in the ideal case 
 

 
=1 =1

1 1= = = ( ) ( ) = ( ) =
N N

n n n j n j n n
j j

'
N N

′ ′ ′ ′− − + − + −∑ ∑p p p p p p p p p pΩ Ω Ω Ωτ τ   (32) 

 
where , ′p p  are the centroids of np  and n′p  respectively, , nn 'p p  are the mean-adjusted points of np  and 

n′p  respectively. In addition, for = 1,2,3j  
 
                (:, ) = (:, ).n nj j′R RΩ     (33) 
 
As a result, 
 

  ( )(:, ) (:, ) = (:, ) (:, ) = (:, ) (:, ) = (:, ) (:, ) .
TT T T T

n n n n n n n n nn n nj j j j j j j j '′ ′ ′ ′ ′ ′R R p R R p R R p R R pΩ Ω Ω  (34) 
 
Thus, Eq. (31) can be reformulated as 
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3

2 2
, ,

, =1 =1
min

N

n j n j n n
n jτΩ

′ ′− + + −∑∑ y y p p   Ω Ω τ    (35) 

 
where 
 
         , = (:, ) (:, )T

n j n n nj jy R R p     (36) 
 
        , = (:, ) (:, ) .T

n j n n nj j '′ ′ ′y R R p     (37) 
 
Concentrating on the second sum or the positional component of Eq. (35): 
 

       2

=1

N

n n
n

′+ −∑ p p Ω τ       (38) 

 

   2

=1
=

N

n n
n

′ ′ ′− − + + + −∑ p p p p p p Ω Ω Ωτ     (39) 

 

   2

=1
=

N

nn
n

'− +∑ p p T Ω       (40) 

 

   2 2

=1 =1
= 2 ( )

N N
T

n nn n
n n

' ' n− + − +∑ ∑p p T p p T   Ω Ω    (41) 

 
where 
 
                = .′+ −T p pΩτ      (42) 
 
Since T  can arbitrarily be set to 0 for a given Ω by setting 
 
                   = ′ −p pΩτ      (43) 
 
then 
 

            2 2

=1 =1
=

N N

n n nn
n n

'′+ − −∑ ∑p p p p   Ω Ωτ     (44) 

 
as is typical with general absolute orientation problems [1]. Thus, Eq. (35) can be restructured using only 
one unknown Ω  
 

        
3

2 2
, ,

=1 =1 =1
,min

N N

n j n j nn
n j n

'
Ω

′− + −∑∑ ∑y y p p   Ω Ω    (45) 

 
which can be reformulated as a general Procrustes problem 
 
                2min '

Ω
− X XΩ      (46) 

 
where 
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            ( )1,1 1,2 1,3 ,1 ,2 ,31= N N N Ny y y p y y y pX    (47) 

 
            ( )1,1 1,2 1,3 1 ,1 ,2 ,3= N N N N' ' '′ ′ ′ ′ ′ ′y y y p y y y pX    (48) 

 
whose solution 
 
         = TVDUΩ      (49) 
 
where the singular value decomposition (SVD) of 
 
      =T T′ USVXX      (50) 
 
and D  is a diagonal matrix with diagonal entries {1,1, ( )}Tdet VU . 
 
3.1  Summary of 6DOF Registration 
 
      To optimally register two sets of 6DOF data 
 

      1 1 2 2= , , ,
0 1 0 1 0 1

N N      
      
      

R p R p R p
X     (51) 

 

      1 1 2 2= , , ,
0 1 0 1 0 1

N N′ ′ ′ ′ ′ ′      ′       
      

R p R p R p
X     (52) 

 
       1.    Define the mean-centroid points 
 

            
=1

1= , =
N

n nn
nN

− ∑p p p p p     (53) 

 

            
=1

1= , =
N

n n n
n

'
N

′ ′ ′ ′− ∑p p p p p     (54) 

 
             and define 
 
            , = (:, ) (:, )T

n j n n nj jy R R p     (55) 
 
            , = (:, ) (:, )T

n j n n nj j '′ ′ ′y R R p     (56) 
 
       2.    Calculate the SVD of 
 
         =T T′ USVXX      (57) 
 
             where 
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               ( )1,1 1,2 1,3 1= Ny y y p pX     (58) 

 
              ( )1,1 1,2 1,3 1= N' '′ ′ ′ ′y y y p pX     (59) 

 
       3.    Define the optimal orientation 
 
          = TVDUΩ      (60) 
 
             where D  is a diagonal matrix with diagonal entries {1,1, ( )}Tdet VU . 
 
       4.    Define the optimal translation 
 
         = .′ −p pΩτ      (61) 
 
 
4.  Errors in the Registration Parameters 
 
      The previous section outlined a method for obtaining the optimal orientation Ω and translation τ for 
noisy 6DOF data. Assuming we can approximate the error in the given 6DOF data as the covariance matrix 

∆xΣ , where the standard deviations are represented as the vector 
 

          
1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,
= ,

, , , , , ,

T
x y z

x y z

t f r p p p

t f r p p p

∆ ∆ ∆ ∆ ∆ ∆ 
 ∆
 ′ ′ ′ ′ ′ ′∆ ∆ ∆ ∆ ∆ ∆ 

x




   (62) 

 
this section derives a methodology for obtaining the errors in the registration parameters 
 
             = ( , , , , , )T

x y zψ θ φ ρ τ τ τ∆ ∆ ∆ ∆ ∆ ∆ ∆     (63) 
 

from the registration matrix ( )0 1
= τΩΨ . Note, that this section is an extension of Haralick’s 3DOF work 

shown in [8]. 
      For 6DOF data, we assume that the objective function can be defined as 
 

  
3

2 2
, ,

=1 =1
= ( , ) =

N

n j n j n n
n j

ψ τ′ ′− + + −∑∑x y y p p     Ω Ω    (64) 

 

  
1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,
=

, , , , , ,
x y z

x y z

t f r p p p

t f r p p p

 
 
 ′ ′ ′ ′ ′ ′ 

x




      (65) 

 
  = ( , , , , , )x y zψ θ φ ρ τ τ τ        (66) 
 
where the given rotations are 
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            = ( , , ) = cos sin [ ] (1 cos ) T
j j j j j j j j S j j jt f r r r r+ + −R R I u u u   (67) 

 
            = ( , , ) = cos sin [ ] (1 cos ) T

j j j j j j j j S j j jt f r r r r′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −R R I u u u   (68) 
 
for angles of rotation jr  and jr′ , respectively and axes of rotation 
 
            = (cos cos ,cos sin ,sin )T

j j j j j jt f t f tu     (69) 
 
           = (cos cos ,cos sin ,sin ) ,T

j j j j j jt f t f t′ ′ ′ ′ ′ ′u     (70) 
 
the given positions are 
 
            = ( , , )T

j x y zj j j
p p pp      (71) 

 
           = ( , , ) .T

j x y zj j j
p p p′ ′ ′ ′p      (72) 

 
and the projected mean-centered positions are 
 
           , = (:, ) (:, )T

j k j j jk ky R R p     (73) 
 
          , = (:, ) (:, ) .T

j k j j jk k '′ ′ ′y R R p     (74) 
 
Moreover, the unknown orientation Ω is defined as 
 
   = ( , , ) = cos sin [ ] (1 cos ) T

Sθ φ ρ ρ ρ ρ+ + −IΩ Ω µ µµ    (75) 
 
where = (cos cos ,cos sin ,sin )Tθ φ θ φ θµ  is the axis of rotation of Ω, ρ  is the angle of rotation of Ω, and 
the unknown translation 
 
     = ( , , ) .T

x y zτ τ ττ      (76) 
 
      Using this formulation, the gradient   of the function   can be decomposed as the partials 
 

       ( )( , ) = , , , , ,
T

x y zθ φ ρ τ τ τψx          (77) 

 
Taking the Taylor’s series expansion of g  around the calculated points ˆˆ( , ) = ( , )ψ ψ ψ+ ∆ + ∆x x x , we 
obtain a first order approximation: 
 
      ˆˆ( , ) = ( , )ψ ψ ψ−∆ −∆x x x       (78) 
 

                  ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , )ψ ψ ψ ψ
ψ

∂ ∂
≈ − ∆ − ∆

∂ ∂
x x x x

x
 

    (79) 
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Since ψ̂  extremizes ˆˆ( , )ψx , ˆˆ( , ) = 0.ψx  Similarly, ψ  extremizes ( , )ψx , so ( , ) = 0ψx . Therefore, 
 

    ˆ ˆˆ ˆ0 = ( , ) ( , )ψ ψ ψ
ψ

∂ ∂
− ∆ − ∆
∂ ∂

x x x
x
      (80) 

 
Since the relative extremum of F  is a relative minimum, 
 

           
2

2
ˆ ˆˆ ˆ( , ) = ( , )ψ ψ

ψ ψ
∂ ∂
∂ ∂

x x      (81) 

 
must be positive-semidefinite. Typically, this matrix will be positive definite and thus invertible. Therefore, 
 

             
1

ˆ ˆˆ ˆ= ( , ) ( , )ψ ψ ψ
ψ

−
 ∂ ∂

∆ − ∆ ∂ ∂ 
x x x

x
 

    (82) 

 
up to a first order approximation. Moreover, the error in each element of ψ  can approximated by looking 
at the square root of the corresponding diagonal of the covariance matrix 
 

            
1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= ( , ) ( , ) ( , ) ( , ).
T T

ψ ψ ψ ψ ψ
ψ ψ

− −

∆ ∆

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂xx x x x

x x
   

Σ Σ    (83) 

 

Note that Eq. (119) and Eq. (120) detail the partials ˆˆ( , )ψ∂
∂

x
x
  and ˆˆ( , )ψ

ψ
∂
∂

x , respectively, in Appendix 

A. 
 
4.1  Summary of Calculating Errors in the Registration Parameters 
 
      Given data x  with errors approximated with the standards deviation vector 
 

      
1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,
= ,

, , , , , ,

T
x y z

x y z

t f r p p p

t f r p p p

∆ ∆ ∆ ∆ ∆ ∆ 
 ∆
 ′ ′ ′ ′ ′ ′∆ ∆ ∆ ∆ ∆ ∆ 

x




    (84) 

 
the errors in the optimal orientation Ω and translation τ  can be approximated by 

1. Build the covariance matrix ∆xΣ  corresponding to ∆x . 

2. Build the partial ˆˆ( , )ψ∂
∂

x
x
  as defined in Eq. (119) of Appendix A. 

3. Build the partial ˆˆ( , )ψ
ψ
∂
∂

x  as defined in Eq. (120) of Appendix A. 

4. Combine to create the covariance matrix 
 

  
1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= ( , ) ( , ) ( , ) ( , ).
T T

ψ ψ ψ ψ ψ
ψ ψ

− −

∆ ∆

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂xx x x x

x x
   

Σ Σ    (85) 

 
The error in each element of = { , , , , , }x y zψ θ φ ρ τ τ τ  can then be calculated by taking the square root of the 
corresponding diagonal of ψ∆Σ . 
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5.  Experimental Results 
 
      To illustrate the formulations presented in the previous sections, 6DOF data of the object appearing in 
Fig. 2 at N  poses with K  repeats are acquired from two systems X  and 'X . Specifically, the positional 
component of each pose was obtained by measuring the same point (point O  in Fig. 2) by each system X  
and 'X , while the orientational component was obtained for system X  by creating a coordinate frame 
using data acquired from vector bars attached to the object and the orientational component was obtained 
for system 'X  by creating a coordinate frame using data acquired from markers attached to the object (see 
Fig. 2). This 6DOF data representing pose = 1,2, ,n N , repeat = 1,2, ,k K  was then stored as 
 
    , , , , , , ,

= ( , , , , , )   for   n k n k n k n k x y zn k n k n k
t f r p p px X    (86) 

 
   , , , , , , ,

= ( , , , , , )   for   n k n k n k n k x y zn k n k n k
t f r p p p '′ ′ ′ ′ ′ ′ ′x X    (87) 

 
Here the first three components describe the orientation of pose n , repeat k  and the last three components 
describe the position of pose n , repeat k . We then assume that the actual n th pose can be approximated as 
the average of the K  repeats 
 

               , , , , , ,
=1

1= ( , , , , , ) = ( , , , , , )
K

n n n n x y z n k n k n k x y zn n n n k n k n k
k

t f r p p p t f r p p p
K ∑x   (88) 

 

               , , , , , ,
=1

1= ( , , , , , ) = ( , , , , , )
K

n n n n x y z n k n k n k x y zn n n n k n k n k
k

t f r p p p t f r p p p
K

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∑x   (89) 

 
 

 
 

http://dx.doi.org/10.6028/jres.121.009
http://dx.doi.org/10.6028/jres.121.009


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.009 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 211 http://dx.doi.org/10.6028/jres.121.009 

 

Fig. 2. The object used to collect data from systems X  and 'X . The position data is obtained from each system by locating point O . 
The orientation data is obtained from system X  by using the vector bars and from system 'X  by using the markers. 
and the corresponding errors n∆x  and n′∆x  can be approximated as the standard deviation of the K  
repeats, respectively. For the analysis performed in this section = 14N  and = 200K . Similar results are 
obtained for other experiments with varying N  values. For simplicity, commonly used variables in this 
section are shown in Table 2. 
 

Table 2. Representation of pose at position n in different systems. 
 

 Symbol   Description 

nx    6DOF representation of pose n  in system X  

nX    Homogeneous matrix representation of pose n  in system X  

n'x    6DOF representation of pose n  in system 'X  

n′X    Homogeneous matrix representation of pose n  in system 'X  

ˆ nx    Registered 6DOF representation of pose n  in system X  to system 'X  
ˆ

nX    Registered homogeneous representation of pose n  in system X  to system 'X  

 
5.1  Data Processing 
 
      To check that the data collected from system X  are consistent with the data collected from system 'X , 
the following tests are performed. Rotation matrices 
 
   = ( , , ) = cos sin [ ] (1 cos ) T

n n n n n n n n S n n nt f r r r r+ + −R R I u u u    (90) 
 
  = ( , , ) = cos sin [ ] (1 cos ) T

n n n n n n n n S n n nt f r r r ' r′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −R R I u u u    (91) 
 
are calculated from the average orientational components of the n th poses nx  and n′x , respectively. 
Similarly, the positional vectors 
 
           = ( , , )T

n x y zn n n
p p pp      (92) 

 
          = ( , , )T

n x y zn n n
p p p′ ′ ′ ′p      (93) 

 
are calculated from the average positional components of the n th poses nx  and n′x , respectively. Since 
both systems are tracking the same object at the same pose, we would assume that the relative rotational 
change ,i j′R  is given by 
 
              , ,= ( ) ( ) ( ) ( ) = = .T T T

i j i j i j i j i j′ ′ ′ ≈ ΩR R R R R R R RW    (94) 
 
As a result, the angle of rotation ,i jr  of ,i jR  should be approximately equal to the angle of rotation ,i jr′  of 

,i j′R  or 
 
     , ,| | 0.i j i jr r′− ≈      (95) 
 
Similarly, the relative positional change is given by 
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     ( ) ( ) = .i j i j i jτ τ′ ′− ≈ + − + −p p p p p pΩ Ω Ω Ω    (96) 
 
As a result, 
 
    , ,= = =i j i j i j i j i jp p′ ′ ′− ≈ − −p p p p p p     Ω Ω    (97) 
 
or 
 
     , ,| | 0.i j i jp p′− ≈      (98) 
 
If the quantity given by either Eq. (95) or Eq. (98) is not close to 0, then this would suggest that systematic 
biases are influencing the data and caution is advised for any registration based on this data. 
      To determine if systematic biases are influencing the data collected from systems X  and 'X , the 
relative rotational changes and relative positional changes are calculated for each of the ( 1)/2N N −  unique 
pairings ( , )i j  for , = 1,2 ,i j N  such that i j≠ . From these calculations, the average systematic bias for 
the rotational data is defined as 
 

    
1

rot , ,
=2 =1

2= | |
( 1)

jN

i j i j
j i

r r
N N

−

′−
− ∑∑avg     (99) 

 
while the average systematic bias for the positional data is defined as 
 

               
1

pos , ,
=2 =1

2= | | .
( 1)

jN

i j i j
j i

p p
N N

−

′−
− ∑∑avg    (100) 

 
Note that these values would be 0 if systematic biases are not influencing the data. Results from our data 
are displayed in Table 3. 
 
Table 3. Average systematic biases in the rotational and positional data of X  and 'X  versus the random variability in the data 
represented as X  and 'X  and the registered data represented as X̂ . For these systems, the average systematic biases are larger than 
the random variability in the data resulting in the average distance between X̂  and 'X  to be larger than the variability in the data. 
 

 
t [mrad] f [mrad] r [mrad] px [mm] py [mm] pz [mm] 

 Systematic Bias avgrot = 12.79 avgpos = 3.14 

 Variability in X   0.48 3.39 0.45 0.03 0.03 0.03 

 Variability in 'X  0.26 0.69 0.45 0.05 0.03 0.11 

 Variability in X̂  0.35 0.45 0.58 0.15 0.27 0.17 

 Average ˆ '−X X  15.20 18.01 26.93 4.02 4.54 5.17 

 
      Another factor affecting registration is random variability in the data due to factors such as the level of 
instrument noise. The random variability is computed by first calculating the variances of the K  repeats 
for each of the N  poses. Then the mean of the variances is computed from all N  poses from which the 
corresponding mean standard deviation can be calculated for each system. Note that these mean standard 
deviations gauge the variability of the data measured in the same experimental conditions and that these 
values are independent from the previously calculated parameters which gauge systematic biases. 
Therefore, it is possible to observe in an experiment different scenarios when the systematic biases are 
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larger than the variability, comparable to the variability, or less than the variability. From the data, we can 
see that the average systematic biases are larger than the random variability in the data. As a result, caution 
is advised for any registration based on this data. 
5.2  Registration Results 
 
      The analytical formulations for propagation of error derived in the previous sections are compared with 
a brute force method based on the leave-one-out method on experimentally obtained data. Specifically, 
analytical solutions are obtained for each = 1,2, ,n N  by withholding nx  and n′x  and the associated n∆x  
and n′∆x  from the pool of N  datasets. The remaining 1N −  datasets are used to calculate the analytical 
registration parameters nψ  from the corresponding registration matrix nΨ  as outlined in Sec. 3. In 
addition, the corresponding uncertainty 

nψ∆Σ  is calculated as outlined in Sec. 4. The registration 

parameters nψ  and the corresponding uncertainty 
nψ∆Σ  are then used to study how the errors in each of the 

6DOF values of nx , represented as the standard deviation n∆x , propagate onto the registered point ˆ nx . 

Here, the registered point ˆ nx  is the 6DOF representation of the homogeneous matrix ˆ =n n nX XΨ  where 

nX  is the homogeneous matrix formulation of nx . The resulting errors of each of the 6DOF elements of 
ˆ nx , represented as ˆ n∆x , can then be approximated by looking at the square root of the corresponding 

diagonal of ˆ n∆pΣ  for the positional data and ˆ n∆qΣ  for the orientational data as outlined in Sec. 2. 

      The brute force solutions are obtained for each = 1,2, ,n N , by obtaining the K  registration 
parameters ,n kψ  formulated from registering ,i kx  with ,i k′x  for all i n≠  and = 1,2, ,k K . The covariance 

matrix ˆ
nψ∆Σ  is then calculated from the ,n kψ  and compared with the analytically derived 

nψ∆Σ  calculated 

from above. Comparing the i th diagonal element iσ  of 
nψ∆Σ  with the i th diagonal element ˆiσ  of ˆ

nψ∆Σ , 

we found 
 

         1 0.03 1 0.03.
ˆ

i

i

σ
σ

− ≤ ≤ +     (101) 

 
Note that if ˆ=i iσ σ , then ˆ/ = 1i iσ σ . As a result, we see that our analytical solutions do match up with the 
brute force methods. 
      The transformed poses , , ,

ˆ =n k n k n kX XΨ  are also computed for = 1,2, ,k K  where ,n kΨ  is the 
registration matrix associated with ,n kψ  and ,n kX  is the homogeneous matrix representation of ,n kx . Using 

the 6DOF representation ,ˆ n kx  of ,
ˆ

n kX , the covariance matrix ˆ
ˆ

n∆pΣ  is computed for the positional data and 

the covariance matrix ˆ
ˆ

n∆qΣ  is computed for the orientational data. Comparing the i th diagonal element ˆiσ  

from these covariance matrices with the i th diagonal element iσ  from ˆ n∆pΣ  and ˆ n∆qΣ , we found 

 

        1 0.05 1 0.05
ˆ

i

i

σ
σ

− ≤ ≤ +      (102) 

 
as illustrated in Fig. 3. Note that if ˆ=i iσ σ , then ˆ/ = 1i iσ σ . As a result, we see that our analytical solutions 
do match up with the brute force methods. 
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Fig. 3. The standard deviation of the propagated test point ,

ˆ
n kX  obtained from the experimental (E) brute force method and the 

theoretical (T) analytical method presented in this paper. 
 
      The variability of the registered data ,ˆ n kx  are comparable with the variability of the original data ,n kx  
and ,n k′x  as shown in Table 3. However, the average distance between the registered data ˆ nx  and n′x  is 
larger than the average uncertainty ˆ n∆x  This is the result of the systematic biases affecting the systems X  
and 'X  as cautioned in Sec. 5.1. As a result, n'x  does not lie in the uncertainty region ˆ n∆x  as shown in left 
example of Fig. 4. The next section will further elaborate on the effects of systematic biases on registration. 
 
5.3  Effects of Systematic Bias 
 
      In order to investigate the effects of systematic biases on the data, quasi-simulated data are generated 
from the experimentally acquired data by first determining the deviation of the k th repeated measurement 
from the mean value as 
 
     , ,= .n k n k n′ ′−e x x      (103) 
 
Then the registration matrix Ψ is computed from all pairs ( , )n n'x x . The quasi-simulated data is then 
determined by setting 
 
       ( ) = ( )n n n ns s′ ′ − +x x x xΨ Ψ     (104) 
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Fig. 4. Possible outcomes from the registration of data from systems X  and 'X  with fixed positional bias. The black dots are the 
averaged (over K repeats) registered data ˆ nx , while the white dots are the averaged n'x  data. The light gray circles illustrate the 
uncertainty of the registered data ˆ n∆x , while the dark gray circles illustrate the uncertainty of n'∆x  from system 'X . Pose n'x  lies in 
the uncertainty of the registered data ˆ n∆x  only in the case where the positional bias is less than the uncertainty. For ease of 
understanding, only the x and y directions are shown and the uncertainties in these directions are the same which generally is not the 
case. 
 
where 0 1s≤ ≤  is a scale factor. Note that when = 0s  the average systematic biases are 0 and the 
assumption of a rigid body registration is perfectly fulfilled. As s  increases, the average systematic biases 
increase linearly until = 1s  and ( ) = (1) =n n ns′ ′ ′x x x . For an illustration, see Fig. 5. The noisy k th repeated 
quasi-simulated data can then be generated as 
 
              , ,( ) = ( ) .n k n n ks s′ ′ +x x e     (105) 
 
Note that the standard deviation of the simulated data , ( )n k s′x  is exactly the same as the standard deviation 
of the original experimental data ,n k′x  – the only thing that changes is the location of the average ( )n s′x . 
Through this process, data for a new quasi-simulated system ( )' sX  is created that depends on s . 
 

 
 
Fig. 5. Schematic diagram explaining how the simulated data ( )n s′x  are generated from experimental data. The black dots depict 
registered data ˆ nx  which corresponds to zero systematic biases ( = 0s ), while the white circles correspond to the original data 
obtained from system 'X  with large systematic biases ( = 1s ).  
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      The analytical formulations for propagation of error on the simulated data from systems X  and ( )' sX  
are compared with the brute force methods outlined in Sec. 5.2 for multiple s  values. Specifically, results 
comparing the covariance of the registration parameters derived from the analytical and brute force 
methods are similar to the results shown in Eq. (101) regardless of the s  value. In addition, results 
comparing the propagation of error through the covariances of the registered poses derived from the 
analytical and brute force methods are similar to the results shown in Eq. (102) regardless of the s  value. 
However, s  does affect the likelihood that a given pose in system ( )' sX  lies in the uncertainty region 
of the corresponding registered pose. Let the n th registered pose for repeat k  be defined as 

, , ,
ˆ ( ) = ( )n k n k n ks sX XΨ  where , ( )n k sΨ  is the registration between , ( )i k sX  and , ( )i k s′X  for i n≠  where ,i kX  

is the homogeneous matrix representation of ,i kx . From these poses, the average pose 
 

           ,
=1

1ˆ ˆ( ) = ( )
K

n n k
k

s s
K ∑x x      (106) 

 
can be defined where ,ˆ n kx  is the 6DOF representation of ,

ˆ ( )n k sX  and the corresponding errors in ˆ ( )n sx  
can be approximated with ˆ ( )n s∆x  – the standard deviation of each of the 6DOF elements of ,ˆ ( )n k sx . Then 
the goodness of fit ratio between ˆ ( )n sx  and ( )n s′x  can be represented by the vector 
 
    ( ) = ( , , , , , )T

t f r p p px y z
s g g g g g gg     (107) 

 

where 
=1

ˆ| |1( ) =
ˆ

N i i
i n

i

s
N

η η
η

′−
∆∑g  for ˆ ,i iη η′  being the i th vector elements of ˆ ( ), ( )n ns s′x x  respectively and 

ˆiη∆  is the standard deviation of the i th elements of ,ˆ ( )n k sx . Note that if for all i  
 
        ˆ( ) < 1 ( ) is within ( )i n ns s s′⇒ ∆g x x     (108) 
 
        ˆ( ) 1 ( ) is on the border of ( )i n ns s s′≈ ⇒ ∆g x x    (109) 
 
        ˆ( ) > 1 ( ) is outside ( )i n ns s s′⇒ ∆g x x     (110) 
 
Results for our data are shown in Fig. 6. If the systematic bias represented by < 0.022s , then ( )n s′x  is in 
the region ˆ ( )n s∆x  centered at ˆ ( )n sx  and the analytical formulations presented in this work accurately 
represent the actual propagation of error. 
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Fig. 6. The goodness of fit ratio ( )sg  calculated from the original experimental 6DOF data from system X  registered to the 
simulated data from system ( )' sX  for varying scale s values. 
 
 
6.  Conclusions 
 
      This paper focuses on methods to understand how errors in collected data from two systems can be 
propagated to parameters obtained from the registration of the two systems. These, often error-prone, 
registration parameters are then used to build a homogeneous matrix to transform data collected in only one 
system to the other. As a result, any errors in the original collected data that get propagated to the 
registration parameters will also be propagated onto any transformed data through the corresponding 
registration matrix. In this paper, mathematical formulas are derived and tested on experimentally obtained 
data to show how this propagation of error occurs. We found that the original errors in the data can be 
attributed to systematic biases in the data as well as random variations occurring in the data from sources 
such as instrument noise. If systematic biases found in the data are larger than the random variations in the 
data, then the practitioner should be cautious as the approximation of the registered pose unseen by a given 
system may not accurately represent the actual pose in the system. However, if the systematic biases are 
less than the random variation appearing in the data, then the methods outlined in this paper are adequate to 
model the propagation of error from noisy data to registration parameters to transformed data. The 
relationship between the systematic biases and the random variations in the data can be approximated 
before registration occurs by simple tests on the data. Therefore, it is recommended that a practitioner 
performs these tests to validate the accuracy of any resulting registration. However, regardless of the 
relationship between systematic biases and random variations, it should be noted that the efficient 
analytical formulations presented in this paper match with the tedious and often time consuming brute force 
methods. 
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7.  Appendix A. 
 
      Let the objective function be defined as 

             
3

2 2
, ,

=1 =1
= ( , ) =

N

n j n j i i
n j

ψ τ′ ′− + + −∑∑x Ωy y Ωp p        (111) 

 

             
1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,
=

, , , , , ,
x y z

x y z

t f r p p p

t f r p p p

 
 
 ′ ′ ′ ′ ′ ′ 

x




     (112) 

 
             = ( , , , , , ).x y zψ θ φ ρ τ τ τ       (113) 
 
Note that each component of   can be decomposed as 
 
            2

, , , , , , , ,= 2T T T
n j n j n j n j n j n j n j n j′ ′ ′ ′− − +Ωy y y y y Ωy y y      (114) 

 
           2 = ( ) ( )T

n n n n n nτ τ τ′ ′ ′+ − + − + −Ωp p Ωp p Ωp p   
 
                        = 2 2 2 .T T T T T T

n n n n n n n nτ τ τ τ′ ′ ′ ′+ − − + +p p Ωp p Ωp p p p   (115) 
 
Using this formulation, the gradient   of   can be decomposed as the partials 
 

     

=1

( )
( )
( )

( , ) = = .

2 2 2

.

x
N

n ny
n

z

θθ

φφ

ρρ

τ

τ

τ

ψ

τ

  
  
  
  
  
  
  

′ − + 
         

∑

x

Ωp p

W

W

W





 





    (116) 

 
where 
 

           
3

, ,
=1 =1

1( ) = 2 2( ) ( )
2

N
T T

n j n j n n
n jN

τ
 

′ ′− + − 
 

∑ ∑Z y Zy Zp p    (117) 

 
and 
 

   = sin (1 cos )
T

T

S
θ

µ µ µρ ρ µ µ
θ θ θ

 ∂ ∂ ∂  + − +    ∂ ∂ ∂   
Ω  

 

   = sin (1 cos )
T

T

S
φ

µ µ µρ ρ µ µ
φ φ φ

  ∂ ∂ ∂
+ − +    ∂ ∂ ∂   

Ω  

 
   = sin cos [ ] sin T

Sρ ρ ρ µ ρ µµ− + +Ω I     (118) 
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Moreover, the partials 
 

    ( )1 2 1 2= n n
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∂

H H H H H H
x
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for { , , }m m m ma t f r∈  and { , , }m m m ma t f r′ ′ ′ ′∈ . The partials (:, )m
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method similar to Eq. (118). And, 
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	      Registering data from two systems, or coordinate frames, is a classic problem in many fields such as metrology, photogrammetry, robotics, and computer vision. The problem consists of finding an optimal orientation and translation to transform the data collected from one system to another. For perfect data, this problem is easy to solve. However, as is typically the case, difficulties arise once errors are introduced into the problem. Specifically, errors in the data, most notably from noise in the dat
	is to describe how errors in the registration will influence data transformed by Ψ by creating uncertainty measures as shown in Fig. 1. In addition, a method to approximate errors in the registration will be given if these errors are not known. 
	 
	 
	Figure
	 
	Fig. 1. Two datasets obtained by two systems are registered using the data in the overlapping region on the object. Once registered, all data from one system is transformed to the other system via a registration matrix Ψ. The inset shows the position of a measured point by one system (white circle), the point transformed to the other system (black x), and the uncertainty of the transformed point (black dashed oval). For simplicity, only the uncertainty in the x and y directions are shown. 
	 
	 
	      For this paper, we assume that each system gathers and stores data in matrices 
	 
	          (1) 
	()12=N⇒XXXXX

	 
	         (2) 
	()12=N′′′′′⇒XXXXX

	 
	where  and  describe the th pose of an object in the corresponding coordinate system as homogeneous matrices of the form  Here the rotation matrix 
	nX
	n′X
	n
	()01.Rp

	 
	               (3) 
	=(,,)=cos()sin()[](1cos())TStfrrrr++−RRIuuu

	represents the orientation of the object in the corresponding coordinate system where r is the angle of rotation for ,  is the (unit) axis of rotation of  parametrized by the angles t and f, and 
	R
	=(,,)=(cos()cos(),cos()sin(),sin())TTxyzuuutftftu
	R

	 
	         (4) 
	0[]=00zySzxyxuuuuuu−−−u

	 
	is the skew-symmetric matrix representation of the unit vector . The vector  represents the three degrees of freedom (3DOF) position of the object in the corresponding coordinate system. In addition,  denotes the identity matrix. As a result, each  can be described using six degrees of freedom (6DOF) representing the pose () of the object. It should be noted that many systems may only be able to collect 3DOF position data of the object. In this situation, the techniques appearing in this paper may be simpli
	u
	=(,,)Txyzpppp
	I
	,nn'XX
	,,,,,xyztfrppp

	      The registration matrix Ψ can be derived by looking at the relationship between  and  using existing methods [1-7] or by using the technique for 6DOF data outlined in Sec. 3. For this paper, we will assume that the optimal orientation Ω is represented as a rotation matrix using the angle-axis representation via three parameters  such that 
	()01=τΩ
	X
	'X
	{,,}θφρ

	 
	             (5) 
	=(,,)=cossin[](1cos)TSθφρρρµρµµ++−IΩΩ

	 
	where  is the axis of rotation of ,  is the angle of rotation of , and  is the skew-symmetric matrix representation of the vector . In addition, the optimal translation  is represented using the three parameters  that represent the typical Cartesian coordinates. In total, six registration parameters  obtained from the registration matrix Ψ will be analyzed in this paper. For simplicity, a table of the most common variables used in this paper is shown in Table 1. 
	=(coscos,cossin,sin)Tθφθφθµ
	Ω
	ρ
	Ω
	[]Sµ
	µ
	τ
	{,,}xyzτττ
	={,,,,,}xyzψθφρτττ
	()01=τΩ

	 
	 
	Table 1. Common variables used in this paper. Note that subscripts and superscripts can be used to differentiate coordinate frames and poses. 
	 
	  Symbol  
	  Symbol  
	  Symbol  
	  Symbol  

	 Description 
	 Description 


	   
	   
	   
	=(,,)Txyzpppp


	 Given positional data 
	 Given positional data 


	  
	  
	  
	=(,,)tfrRR


	 Given rotation matrix from angles  
	 Given rotation matrix from angles  
	,,tfr



	   
	   
	   
	=(,,)Txyzττττ


	 Unknown translational vector 
	 Unknown translational vector 


	  
	  
	  
	=(,,)θφρΩΩ


	 Unknown orientation matrix from angles  
	 Unknown orientation matrix from angles  
	,,θφρ



	  
	  
	  
	={,,,,,}xyzψθφρτττ


	 Unknown registration parameters from Ω and  
	 Unknown registration parameters from Ω and  
	τ



	  Ψ 
	  Ψ 
	  Ψ 
	()01=τΩ


	 Unknown registration matrix from Ω and  
	 Unknown registration matrix from Ω and  
	τ



	   
	   
	   
	x∆


	 Uncertainty in  approximated by the standard deviation  
	 Uncertainty in  approximated by the standard deviation  
	x



	   
	   
	   
	∆xΣ


	 Uncertainty in  approximated by the covariance matrix 
	 Uncertainty in  approximated by the covariance matrix 
	x




	 
	 
	 
	      It should be noted that the formulation presented in this paper can be generalized to any representation of Ω that is parametrized by three independent parameters including Euler angles. Regardless of the technique used, the registration parameters  derived from the registration matrix Ψ are influenced by errors inherent in the data obtained from systems  and . As a result, the reliability of the registration parameters will depend on the quality of data. If there are systematic biases inherent in the
	ψ
	X
	'X
	K
	=1,2,,kK
	kX
	k′X
	kψ
	kψ
	X
	'X

	      It should be noted that our method of propagating error is an extension of the work done by Haralick [8] on 3DOF data. However, even earlier formulations of error propagation for 3DOF data do exist. Most notably, Sibson [9, 10] was one of the first to mathematically study how errors in the data affect the registration of 3DOF data by using perturbation theory. Since then, modern mathematical formulations have been constructed [8, 11-14]. Most recently, Dorst [11] created a first order error propagatio
	ψ
	ψ

	      This paper will be organized in the following way. Section 2 will define a method for propagating errors in the registration parameters  onto any data transformed by the corresponding registration matrix Ψ. If the registration parameters are unknown, Sec. 3 will define a novel method for calculating them for 6DOF data, while Sec. 4 will define a method for approximating their error. Experiments illustrating the use of these methods on physically obtained data will be shown in Sec. 5 and concluding rem
	ψ

	      For this work, known scalars will be presented as non-bold letters (), known vectors as lower-case bold letters (), and known matrices as upper-case bold letters (). Similarly, unknown scalars will be presented as lower-case Greek letters (), unknown vectors as lower-case bold Greek letters (), and unknown matrices as upper-case bold Greek letters (Ψ). The th column of  will be denoted as , and the Frobenius norm will be denoted using ; i.e., 
	,aA
	a
	A
	ψ
	ψ
	j
	A
	(:,)jA
	⋅

	 
	        (6) 
	()()==TTtrtrAAAAA

	 
	where  denotes the matrix trace operation and  denotes the transpose operation. A description of the most common variables used in this paper is shown in Table 1. 
	()tr
	T

	2.  Propagation of Error to Transformed Data 
	 
	      If we assume the errors of each of the registration parameters are known and approximated by 
	 
	       (7) 
	()=,,,,,,Txyzψθφρτττ∆∆∆∆∆∆∆

	 
	this section derives a method to propagate these errors onto any data transformed by the registration matrix Ψ corresponding to the registration parameters . We split up this section into Sec. 2.1 which describes how  affects the positional components of the transformed data and Sec. 2.2 which describes how  affects the orientational components of the transformed data. If the registration parameters or the errors in the registration parameters are unknown, Sec. 3 and Sec. 4, respectively, will outline metho
	={,,,,,}xyzψθφρτττ
	ψ∆
	ψ∆

	 
	2.1  Propagation of Error onto the Positional Component 
	 
	      Consider new positional data  with the error approximated by the vector . Here we assume that the data are new in the sense that they are not used in the registration process. We are interested in calculating the error in 
	()=,,Txyzpppp
	()=,,Txyzppp∆∆∆∆p

	 
	             (8) 
	()ˆˆˆˆ=,,=;Txyzpppτ+ppΩ

	 
	i.e., data obtained from registering  with the registration matrix Ψ where  and . Each element of  can then be calculated as 
	p
	()01=τΩ
	=(,,)θφρΩΩ
	=(,,)xyzτττττ
	p

	 
	             
	1ˆ=(,,,,,,,,)xxyzxyzppppθφρτττ

	 
	    
	22=((1cos)cos)coscosxpθφρρ−+

	 
	    
	2(cossin(1cos)sinsin)cosypθφφρθρ+−−

	 
	    
	(coscossin(1cos)cossinsin)zpθφθρθφρ+−+

	 
	           (9) 
	xτ+

	 
	             
	2ˆ=(,,,,,,,,)yxyzxyzppppθφρτττ

	 
	    
	2=(cossin(1cos)sinsin)cosxpθφφρθρ−+

	 
	    
	22((1cos)cos)cossinypθφρρ+−+

	 
	    
	(cossinsin(1cos)coscossin)zpθφθρθφρ+−−

	 
	           (10) 
	yτ+

	             
	3ˆ=(,,,,,,,,)zxyzxyzppppθφρτττ

	 
	    
	=(coscossin(1cos)cossinsin)xpθφθρθφρ−−

	 
	    
	(cossinsin(1cos)coscossin)ypθφθρθφρ+−+

	 
	        (11) 
	2((1cos)cos)sinzzpθρρτ+−++

	 
	As a result, the uncertainty in  can be approximated by the covariance matrix 
	ˆ∆p

	 
	                     (12) 
	ˆ=T∆∆ppkppJJΣΣ

	 
	where the Jacobian matrix is 
	 
	                     (13) 
	111129222129333129=ηηηηηηηηη∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂pJ

	 
	for  the -th element of  and the covariance matrix 
	iη
	i
	{,,,,,,,,}xyzxyzpppθφρτττ

	 
	                 (14) 
	0=,0ψ∆∆∆kppΣΣΣ

	 
	where the errors in the known variables are approximated as . Here the block structure of  is due to the registration error  being independent of the positional error  of the positional data . Note that the errors in each of the components of  can then be approximated by taking the square root of the corresponding diagonal of . 
	()=ψ∆∆∆ppk
	∆kpΣ
	ψ∆
	∆p
	p
	ˆp
	ˆ∆pΣ

	 
	2.2  Propagation of Error onto the Orientational Component 
	 
	      Consider new orientational data  with error approximated by the three-dimensional vector 
	=(,,)tfrQQ

	 
	         (15) 
	=(,,).Ttfr∆∆∆∆q

	 
	Again, we assume that the data are new in the sense that they are not used in the registration process. We are interested in calculating the error of the three terms  that parameterize 
	ˆˆˆ,,tfr

	 
	                   (16) 
	ˆˆˆˆˆ=(,,)=tfrQQQΩ

	 
	where  with error 
	=(,,)θφρΩΩ

	 
	                    (17) 
	=(,,).Tλθφρ∆∆∆∆

	 
	Note that the error of  can be expressed in terms of 
	ˆˆˆˆˆ=(,,)tfrQQ

	 
	                    (18) 
	()ˆˆˆˆ=,,.Ttfr∆∆∆∆q

	 
	In order to compute the individual uncertainties of , the quaternion representation of rotation will be used. Since 
	ˆˆ,,tfr

	               (19) 
	cos(/2)sin(/2)coscos==,sin(/2)cossinsin(/2)sinwxyzωρωρθφωωρθφωρθ⇒Ω

	 
	then the transformed data  can be represented as the quaternion 
	ˆ=QQΩ

	 
	    (20) 
	ˆcos(/2)ˆˆˆˆˆsin(/2)coscosˆ===,ˆˆˆˆsin(/2)cossinˆˆˆsin(/2)sinwwxxyyzzwwxxwyzzyxwyxzywzxywzxyyxzwzrrtfrtfrtωωωωωωωωωωωωωωωω−−−++−−+++−+qqqqqqqqqqqqqqqqqqqqq

	 
	where  is the quaternion representation of . As a result, 
	=(,,,)Twxyzqqqqq
	Q

	 
	             (21) 
	11ˆˆ=(,,,,,)=sinˆ1zwttfrθφρ−−qq

	 
	             (22) 
	12ˆˆ=(,,,,,)=tanˆyxftfrθφρ−qq

	 
	             (23) 
	()13ˆˆ=(,,,,,)=2coswrtfrθφρ−q

	 
	Moreover, the error of the three terms  that parametrize the rotation  can be approximated by the covariance matrix 
	ˆˆˆ,,tfr
	ˆˆˆˆˆ=(,,)tfrQQ

	 
	          (24) 
	ˆ=T∆∆qqkqqJJΣΣ

	 
	where the Jacobian matrix is 
	        (25) 
	111126222126333126=ηηηηηηηηη∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂qJ

	 
	such that  is the -th element of  and the covariance matrix 
	iη
	i
	{,,,,,}tfrθφρ

	 
	                 (26) 
	0=0λ∆∆∆kqqΣΣΣ

	 
	where the errors in the known variables are approximated by . Here the block structure of  is due to the error in the rotational registration parameters  being independent of the orientational error . Note that the error of each component of  can then be approximated by taking the square root of the corresponding diagonal of . 
	()=λ∆∆∆qqk
	∆kqΣ
	λ∆
	∆q
	ˆˆˆ(,,)tfr
	ˆ∆qΣ

	 
	2.3  Summary of Propagation of Error 
	 
	      For this section we assume that the registration parameters  and corresponding registration matrix Ψ are known along with the error  in the registration parameters. The propagation of errors from the uncertainty  onto a pose  obtained by transforming the pose  with the registration matrix Ψ can be split up into two cases: propagation onto the positional component  and propagation onto the orientational component . Note the error  is assumed to be known. 
	={,,,,,}xyzψθφρτττ
	ψ∆
	ψ∆
	ˆˆˆˆˆˆ(,,,,,)xyztfrppp
	(,,,,,)xyztfrppp
	ˆˆˆ(,,)Txyzppp
	ˆˆˆ(,,)Ttfr
	(,,,,,)xyztfrppp∆∆∆∆∆∆

	      To describe the propagation onto the positional component , 
	ˆˆˆ(,,)Txyzppp

	1. Build the Jacobian matrix  as outlined in Eq. (13). 
	1. Build the Jacobian matrix  as outlined in Eq. (13). 
	1. Build the Jacobian matrix  as outlined in Eq. (13). 
	pJ


	2. Build the covariance matrix  as outlined in Eq. (14). 
	2. Build the covariance matrix  as outlined in Eq. (14). 
	∆kpΣ


	3. Combine to create the covariance matrix  
	3. Combine to create the covariance matrix  
	ˆ=.T∆∆ppkppJJΣΣ



	The error of each element in the positional component  can then be described by calculating the square root of the corresponding diagonal of . 
	ˆˆˆ(,,)Txyzppp
	ˆ∆pΣ

	      Similarly, to describe the propagation onto the orientational component , 
	ˆˆˆ(,,)Ttfr

	1. Build the Jacobian matrix  as outlined in Eq. (25). 
	1. Build the Jacobian matrix  as outlined in Eq. (25). 
	1. Build the Jacobian matrix  as outlined in Eq. (25). 
	qJ


	2. Build the covariance matrix  as outlined in Eq. (26). 
	2. Build the covariance matrix  as outlined in Eq. (26). 
	∆kqΣ


	3. Combine to create the covariance matrix  
	3. Combine to create the covariance matrix  
	ˆ=.T∆∆qqkqqJJΣΣ



	The error of each element in the orientational component  can then be described by calculating the square root of the corresponding diagonal of . 
	ˆˆˆ(,,)Ttfr
	ˆ∆qΣ

	 
	 
	3.  Calculating Ω and τ 
	 
	      A method for calculating the optimal orientation Ω and translation τ for 6DOF data is outlined in this section. To begin, note that for error-free data, registering 6DOF data is equivalent to finding a homogeneous matrix Ψ such that 
	()01=Ωτ

	 
	                     (27) 
	=nn'XXΨ

	 
	      (28) 
	==01010101nnnnnn+′′RpRpRpΩΩΩττ

	 
	for all . This formulation can be split into the orientational component 
	=1,2,,nN

	 
	          (29) 
	=nn′RRΩ

	 
	and the positional component 
	 
	          (30) 
	=.nnτ′+ppΩ

	 
	In the presence of noise, Ω and τ may not be the same for all . Thus, an optimization routine has to be formulated to compute the optimal transformations. In earlier work [5], the authors suggested computing the optimal Ω and τ by simultaneously solving the orientational and positional components as 
	=1,2,,nN

	 
	            (31) 
	22,=1=1minNNnnnnnnτΩ′′−++−∑∑RRppΩΩτ

	 
	However, the solutions will be different depending on the scale of the positional components. In addition, the units for the orientational and positional components are different. These problems can be eliminated by reformulating the orientational component. 
	      To begin notice that in the ideal case 
	 
	   (32) 
	=1=111===()()=()=NNnnnjnjnnjj'NN′′′′−−+−+−∑∑ppppppppppΩΩΩΩττ

	 
	where  are the centroids of  and  respectively,  are the mean-adjusted points of  and  respectively. In addition, for  
	,′pp
	np
	n′p
	,nn'pp
	np
	n′p
	=1,2,3j

	 
	                    (33) 
	(:,)=(:,).nnjj′RRΩ

	 
	As a result, 
	 
	   (34) 
	()(:,)(:,)=(:,)(:,)=(:,)(:,)=(:,)(:,).TTTTTnnnnnnnnnnnnjjjjjjjj'′′′′′′RRpRRpRRpRRpΩΩΩ

	 
	Thus, Eq. (31) can be reformulated as 
	 
	           (35) 
	322,,,=1=1minNnjnjnnnjτΩ′′−++−∑∑yyppΩΩτ

	 
	where 
	 
	             (36) 
	,=(:,)(:,)TnjnnnjjyRRp

	 
	            (37) 
	,=(:,)(:,).Tnjnnnjj'′′′yRRp

	 
	Concentrating on the second sum or the positional component of Eq. (35): 
	 
	             (38) 
	2=1Nnnn′+−∑ppΩτ

	 
	       (39) 
	2=1=Nnnn′′′−−+++−∑ppppppΩΩΩτ

	 
	         (40) 
	2=1=Nnnn'−+∑ppTΩ

	 
	      (41) 
	22=1=1=2()NNTnnnnnn''n−+−+∑∑ppTppTΩΩ

	 
	where 
	 
	                     (42) 
	=.′+−TppΩτ

	 
	Since  can arbitrarily be set to 0 for a given Ω by setting 
	T

	 
	                        (43) 
	=′−ppΩτ

	 
	then 
	 
	                (44) 
	22=1=1=NNnnnnnn'′+−−∑∑ppppΩΩτ

	 
	as is typical with general absolute orientation problems [1]. Thus, Eq. (35) can be restructured using only one unknown Ω  
	 
	           (45) 
	322,,=1=1=1,minNNnjnjnnnjn'Ω′−+−∑∑∑yyppΩΩ

	 
	which can be reformulated as a general Procrustes problem 
	 
	                     (46) 
	2min'Ω−XXΩ

	 
	where 
	               (47) 
	()1,11,21,3,1,2,31=NNNNyyypyyypX

	 
	               (48) 
	()1,11,21,31,1,2,3=NNNN'''′′′′′′yyypyyypX

	 
	whose solution 
	 
	              (49) 
	=TVDUΩ

	 
	where the singular value decomposition (SVD) of 
	 
	           (50) 
	=TT′USVXX

	 
	and  is a diagonal matrix with diagonal entries . 
	D
	{1,1,()}TdetVU

	 
	3.1  Summary of 6DOF Registration 
	 
	      To optimally register two sets of 6DOF data 
	 
	         (51) 
	1122=,,,010101NNRpRpRpX

	 
	         (52) 
	1122=,,,010101NN′′′′′′′RpRpRpX

	 
	       1.    Define the mean-centroid points 
	 
	                (53) 
	=11=,=NnnnnN−∑ppppp

	 
	                (54) 
	=11=,=Nnnnn'N′′′′−∑ppppp

	 
	             and define 
	 
	                (55) 
	,=(:,)(:,)TnjnnnjjyRRp

	 
	                (56) 
	,=(:,)(:,)Tnjnnnjj'′′′yRRp

	 
	       2.    Calculate the SVD of 
	 
	              (57) 
	=TT′USVXX

	 
	             where 
	 
	 
	 
	                   (58) 
	()1,11,21,31=NyyyppX

	 
	                  (59) 
	()1,11,21,31=N''′′′′yyyppX

	 
	       3.    Define the optimal orientation 
	 
	               (60) 
	=TVDUΩ

	 
	             where  is a diagonal matrix with diagonal entries . 
	D
	{1,1,()}TdetVU

	 
	       4.    Define the optimal translation 
	 
	              (61) 
	=.′−ppΩτ

	 
	 
	4.  Errors in the Registration Parameters 
	 
	      The previous section outlined a method for obtaining the optimal orientation Ω and translation τ for noisy 6DOF data. Assuming we can approximate the error in the given 6DOF data as the covariance matrix , where the standard deviations are represented as the vector 
	∆xΣ

	 
	             (62) 
	111111111111,,,,,,=,,,,,,,Txyzxyztfrppptfrppp∆∆∆∆∆∆∆′′′′′′∆∆∆∆∆∆x

	 
	this section derives a methodology for obtaining the errors in the registration parameters 
	 
	                 (63) 
	=(,,,,,)Txyzψθφρτττ∆∆∆∆∆∆∆

	 
	from the registration matrix . Note, that this section is an extension of Haralick’s 3DOF work shown in [8]. 
	()01=τΩΨ

	      For 6DOF data, we assume that the objective function can be defined as 
	 
	     (64) 
	322,,=1=1=(,)=Nnjnjnnnjψτ′′−++−∑∑xyyppΩΩ

	 
	        (65) 
	111111111111,,,,,,=,,,,,,xyzxyztfrppptfrppp′′′′′′x

	 
	         (66) 
	=(,,,,,)xyzψθφρτττ

	 
	where the given rotations are 
	 
	 
	 
	              (67) 
	=(,,)=cossin[](1cos)TjjjjjjjjSjjjtfrrrr++−RRIuuu

	 
	              (68) 
	=(,,)=cossin[](1cos)TjjjjjjjjSjjjtfrrrr′′′′′′′′′′′++−RRIuuu

	 
	for angles of rotation  and , respectively and axes of rotation 
	jr
	jr′

	 
	                (69) 
	=(coscos,cossin,sin)Tjjjjjjtftftu

	 
	               (70) 
	=(coscos,cossin,sin),Tjjjjjjtftft′′′′′′u

	 
	the given positions are 
	 
	                 (71) 
	=(,,)Tjxyzjjjpppp

	 
	                (72) 
	=(,,).Tjxyzjjjppp′′′′p

	 
	and the projected mean-centered positions are 
	 
	               (73) 
	,=(:,)(:,)TjkjjjkkyRRp

	 
	              (74) 
	,=(:,)(:,).Tjkjjjkk'′′′yRRp

	 
	Moreover, the unknown orientation Ω is defined as 
	 
	      (75) 
	=(,,)=cossin[](1cos)TSθφρρρρ++−IΩΩµµµ

	 
	where  is the axis of rotation of Ω,  is the angle of rotation of Ω, and the unknown translation 
	=(coscos,cossin,sin)Tθφθφθµ
	ρ

	 
	          (76) 
	=(,,).Txyzττττ

	 
	      Using this formulation, the gradient  of the function  can be decomposed as the partials 
	
	

	 
	          (77) 
	()(,)=,,,,,Txyzθφρτττψx

	 
	Taking the Taylor’s series expansion of  around the calculated points , we obtain a first order approximation: 
	g
	ˆˆ(,)=(,)ψψψ+∆+∆xxx

	 
	           (78) 
	ˆˆ(,)=(,)ψψψ−∆−∆xxx

	 
	                     (79) 
	ˆˆˆˆˆˆ(,)(,)(,)ψψψψψ∂∂≈−∆−∆∂∂xxxxx

	 
	 
	Since  extremizes ,  Similarly,  extremizes , so . Therefore, 
	ˆψ
	ˆˆ(,)ψx
	ˆˆ(,)=0.ψx
	ψ
	(,)ψx
	(,)=0ψx

	 
	        (80) 
	ˆˆˆˆ0=(,)(,)ψψψψ∂∂−∆−∆∂∂xxxx

	 
	Since the relative extremum of  is a relative minimum, 
	F

	 
	               (81) 
	22ˆˆˆˆ(,)=(,)ψψψψ∂∂∂∂xx

	 
	must be positive-semidefinite. Typically, this matrix will be positive definite and thus invertible. Therefore, 
	 
	                 (82) 
	1ˆˆˆˆ=(,)(,)ψψψψ−∂∂∆−∆∂∂xxxx

	 
	up to a first order approximation. Moreover, the error in each element of  can approximated by looking at the square root of the corresponding diagonal of the covariance matrix 
	ψ

	 
	               (83) 
	1ˆˆˆˆˆˆˆˆ=(,)(,)(,)(,).TTψψψψψψψ−−∆∆∂∂∂∂∂∂∂∂xxxxxxxΣΣ

	 
	Note that Eq. (119) and Eq. (120) detail the partials  and , respectively, in Appendix A. 
	ˆˆ(,)ψ∂∂xx
	ˆˆ(,)ψψ∂∂x

	 
	4.1  Summary of Calculating Errors in the Registration Parameters 
	 
	      Given data  with errors approximated with the standards deviation vector 
	x

	 
	          (84) 
	111111111111,,,,,,=,,,,,,,Txyzxyztfrppptfrppp∆∆∆∆∆∆∆′′′′′′∆∆∆∆∆∆x

	 
	the errors in the optimal orientation Ω and translation  can be approximated by 
	τ

	1. Build the covariance matrix  corresponding to . 
	1. Build the covariance matrix  corresponding to . 
	1. Build the covariance matrix  corresponding to . 
	∆xΣ
	∆x


	2. Build the partial  as defined in Eq. (119) of Appendix A. 
	2. Build the partial  as defined in Eq. (119) of Appendix A. 
	ˆˆ(,)ψ∂∂xx


	3. Build the partial  as defined in Eq. (120) of Appendix A. 
	3. Build the partial  as defined in Eq. (120) of Appendix A. 
	ˆˆ(,)ψψ∂∂x


	4. Combine to create the covariance matrix 
	4. Combine to create the covariance matrix 


	 
	     (85) 
	1ˆˆˆˆˆˆˆˆ=(,)(,)(,)(,).TTψψψψψψψ−−∆∆∂∂∂∂∂∂∂∂xxxxxxxΣΣ

	 
	The error in each element of  can then be calculated by taking the square root of the corresponding diagonal of . 
	={,,,,,}xyzψθφρτττ
	ψ∆Σ

	 
	5.  Experimental Results 
	 
	      To illustrate the formulations presented in the previous sections, 6DOF data of the object appearing in Fig. 2 at  poses with  repeats are acquired from two systems  and . Specifically, the positional component of each pose was obtained by measuring the same point (point  in Fig. 2) by each system  and , while the orientational component was obtained for system  by creating a coordinate frame using data acquired from vector bars attached to the object and the orientational component was obtained for s
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	       (86) 
	,,,,,,,=(,,,,,)   for   nknknknkxyznknknktfrpppxX

	 
	      (87) 
	,,,,,,,=(,,,,,)   for   nknknknkxyznknknktfrppp'′′′′′′′xX

	 
	Here the first three components describe the orientation of pose , repeat  and the last three components describe the position of pose , repeat . We then assume that the actual th pose can be approximated as the average of the  repeats 
	n
	k
	n
	k
	n
	K

	 
	                 (88) 
	,,,,,,=11=(,,,,,)=(,,,,,)KnnnnxyznknknkxyznnnnknknkktfrppptfrpppK∑x

	 
	                 (89) 
	,,,,,,=11=(,,,,,)=(,,,,,)KnnnnxyznknknkxyznnnnknknkktfrppptfrpppK′′′′′′′′′′′′′∑x

	 
	 
	 
	Figure
	 
	Fig. 2. The object used to collect data from systems  and . The position data is obtained from each system by locating point . The orientation data is obtained from system  by using the vector bars and from system  by using the markers. 
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	'X
	O
	X
	'X

	and the corresponding errors  and  can be approximated as the standard deviation of the  repeats, respectively. For the analysis performed in this section  and . Similar results are obtained for other experiments with varying  values. For simplicity, commonly used variables in this section are shown in Table 2. 
	n∆x
	n′∆x
	K
	=14N
	=200K
	N

	 
	Table 2. Representation of pose at position n in different systems. 
	 
	 Symbol  
	 Symbol  
	 Symbol  
	 Symbol  

	 Description 
	 Description 


	  
	  
	  
	nx


	 6DOF representation of pose  in system  
	 6DOF representation of pose  in system  
	n
	X



	  
	  
	  
	nX


	 Homogeneous matrix representation of pose  in system  
	 Homogeneous matrix representation of pose  in system  
	n
	X



	  
	  
	  
	n'x


	 6DOF representation of pose  in system  
	 6DOF representation of pose  in system  
	n
	'X



	  
	  
	  
	n′X


	 Homogeneous matrix representation of pose  in system  
	 Homogeneous matrix representation of pose  in system  
	n
	'X



	  
	  
	  
	ˆnx


	 Registered 6DOF representation of pose  in system  to system  
	 Registered 6DOF representation of pose  in system  to system  
	n
	X
	'X



	  
	  
	  
	ˆnX


	 Registered homogeneous representation of pose  in system  to system  
	 Registered homogeneous representation of pose  in system  to system  
	n
	X
	'X




	 
	5.1  Data Processing 
	 
	      To check that the data collected from system  are consistent with the data collected from system , the following tests are performed. Rotation matrices 
	X
	'X

	 
	      (90) 
	=(,,)=cossin[](1cos)TnnnnnnnnSnnntfrrrr++−RRIuuu

	 
	     (91) 
	=(,,)=cossin[](1cos)TnnnnnnnnSnnntfrrr'r′′′′′′′′′′++−RRIuuu

	 
	are calculated from the average orientational components of the th poses  and , respectively. Similarly, the positional vectors 
	n
	nx
	n′x

	 
	                (92) 
	=(,,)Tnxyznnnpppp

	 
	               (93) 
	=(,,)Tnxyznnnppp′′′′p

	 
	are calculated from the average positional components of the th poses  and , respectively. Since both systems are tracking the same object at the same pose, we would assume that the relative rotational change  is given by 
	n
	nx
	n′x
	,ij′R

	 
	                 (94) 
	,,=()()()()==.TTTijijijijij′′′≈ΩRRRRRRRRW

	 
	As a result, the angle of rotation  of  should be approximately equal to the angle of rotation  of  or 
	,ijr
	,ijR
	,ijr′
	,ij′R

	 
	          (95) 
	,,||0.ijijrr′−≈

	 
	Similarly, the relative positional change is given by 
	 
	        (96) 
	()()=.ijijijττ′′−≈+−+−ppppppΩΩΩΩ

	 
	As a result, 
	 
	       (97) 
	,,===ijijijijijpp′′′−≈−−ppppppΩΩ

	 
	or 
	 
	          (98) 
	,,||0.ijijpp′−≈

	 
	If the quantity given by either Eq. (95) or Eq. (98) is not close to 0, then this would suggest that systematic biases are influencing the data and caution is advised for any registration based on this data. 
	      To determine if systematic biases are influencing the data collected from systems  and , the relative rotational changes and relative positional changes are calculated for each of the  unique pairings  for  such that . From these calculations, the average systematic bias for the rotational data is defined as 
	X
	'X
	(1)/2NN−
	(,)ij
	,=1,2,ijN
	ij≠

	 
	        (99) 
	1rot,,=2=12=||(1)jNijijjirrNN−′−−∑∑avg

	 
	while the average systematic bias for the positional data is defined as 
	 
	                  (100) 
	1pos,,=2=12=||.(1)jNijijjippNN−′−−∑∑avg

	 
	Note that these values would be 0 if systematic biases are not influencing the data. Results from our data are displayed in Table 3. 
	 
	Table 3. Average systematic biases in the rotational and positional data of  and  versus the random variability in the data represented as  and  and the registered data represented as . For these systems, the average systematic biases are larger than the random variability in the data resulting in the average distance between  and  to be larger than the variability in the data. 
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	'X
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	ˆX
	ˆX
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	t [mrad] 
	t [mrad] 

	f [mrad] 
	f [mrad] 

	r [mrad] 
	r [mrad] 

	px [mm] 
	px [mm] 

	py [mm] 
	py [mm] 

	pz [mm] 
	pz [mm] 


	 Systematic Bias 
	 Systematic Bias 
	 Systematic Bias 

	avgrot = 12.79 
	avgrot = 12.79 

	avgpos = 3.14 
	avgpos = 3.14 


	 Variability in   
	 Variability in   
	 Variability in   
	X


	0.48 
	0.48 

	3.39 
	3.39 

	0.45 
	0.45 

	0.03 
	0.03 

	0.03 
	0.03 

	0.03 
	0.03 


	 Variability in  
	 Variability in  
	 Variability in  
	'X


	0.26 
	0.26 

	0.69 
	0.69 

	0.45 
	0.45 

	0.05 
	0.05 

	0.03 
	0.03 

	0.11 
	0.11 


	 Variability in  
	 Variability in  
	 Variability in  
	ˆX


	0.35 
	0.35 

	0.45 
	0.45 

	0.58 
	0.58 

	0.15 
	0.15 

	0.27 
	0.27 

	0.17 
	0.17 


	 Average  
	 Average  
	 Average  
	ˆ'−XX


	15.20 
	15.20 

	18.01 
	18.01 

	26.93 
	26.93 

	4.02 
	4.02 

	4.54 
	4.54 

	5.17 
	5.17 



	 
	      Another factor affecting registration is random variability in the data due to factors such as the level of instrument noise. The random variability is computed by first calculating the variances of the  repeats for each of the  poses. Then the mean of the variances is computed from all  poses from which the corresponding mean standard deviation can be calculated for each system. Note that these mean standard deviations gauge the variability of the data measured in the same experimental conditions and
	K
	N
	N

	5.2  Registration Results 
	 
	      The analytical formulations for propagation of error derived in the previous sections are compared with a brute force method based on the leave-one-out method on experimentally obtained data. Specifically, analytical solutions are obtained for each  by withholding  and  and the associated  and  from the pool of  datasets. The remaining  datasets are used to calculate the analytical registration parameters  from the corresponding registration matrix  as outlined in Sec. 3. In addition, the correspondin
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	      The brute force solutions are obtained for each , by obtaining the  registration parameters  formulated from registering  with  for all  and . The covariance matrix  is then calculated from the  and compared with the analytically derived  calculated from above. Comparing the th diagonal element  of  with the th diagonal element  of , we found 
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	             (101) 
	10.0310.03.ˆiiσσ−≤≤+

	 
	Note that if , then . As a result, we see that our analytical solutions do match up with the brute force methods. 
	ˆ=iiσσ
	ˆ/=1iiσσ

	      The transformed poses  are also computed for  where  is the registration matrix associated with  and  is the homogeneous matrix representation of . Using the 6DOF representation  of , the covariance matrix  is computed for the positional data and the covariance matrix  is computed for the orientational data. Comparing the th diagonal element  from these covariance matrices with the th diagonal element  from  and , we found 
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	             (102) 
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	as illustrated in Fig. 3. Note that if , then . As a result, we see that our analytical solutions do match up with the brute force methods. 
	ˆ=iiσσ
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	Figure
	 
	Fig. 3. The standard deviation of the propagated test point  obtained from the experimental (E) brute force method and the theoretical (T) analytical method presented in this paper. 
	,ˆnkX

	 
	      The variability of the registered data  are comparable with the variability of the original data  and  as shown in Table 3. However, the average distance between the registered data  and  is larger than the average uncertainty  This is the result of the systematic biases affecting the systems  and  as cautioned in Sec. 5.1. As a result,  does not lie in the uncertainty region  as shown in left example of Fig. 4. The next section will further elaborate on the effects of systematic biases on registratio
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	5.3  Effects of Systematic Bias 
	 
	      In order to investigate the effects of systematic biases on the data, quasi-simulated data are generated from the experimentally acquired data by first determining the deviation of the th repeated measurement from the mean value as 
	k

	 
	          (103) 
	,,=.nknkn′′−exx

	 
	Then the registration matrix Ψ is computed from all pairs . The quasi-simulated data is then determined by setting 
	(,)nn'xx

	 
	           (104) 
	()=()nnnnss′′−+xxxxΨΨ

	 
	 
	 
	 
	Figure
	 
	Fig. 4. Possible outcomes from the registration of data from systems  and  with fixed positional bias. The black dots are the averaged (over K repeats) registered data , while the white dots are the averaged  data. The light gray circles illustrate the uncertainty of the registered data , while the dark gray circles illustrate the uncertainty of  from system . Pose  lies in the uncertainty of the registered data  only in the case where the positional bias is less than the uncertainty. For ease of understand
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	where  is a scale factor. Note that when  the average systematic biases are 0 and the assumption of a rigid body registration is perfectly fulfilled. As  increases, the average systematic biases increase linearly until  and . For an illustration, see Fig. 5. The noisy th repeated quasi-simulated data can then be generated as 
	01s≤≤
	=0s
	s
	=1s
	()=(1)=nnns′′′xxx
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	                  (105) 
	,,()=().nknnkss′′+xxe

	 
	Note that the standard deviation of the simulated data  is exactly the same as the standard deviation of the original experimental data  – the only thing that changes is the location of the average . Through this process, data for a new quasi-simulated system  is created that depends on . 
	,()nks′x
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	s

	 
	 
	Figure
	 
	Fig. 5. Schematic diagram explaining how the simulated data  are generated from experimental data. The black dots depict registered data  which corresponds to zero systematic biases (), while the white circles correspond to the original data obtained from system  with large systematic biases ().  
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	      The analytical formulations for propagation of error on the simulated data from systems  and  are compared with the brute force methods outlined in Sec. 5.2 for multiple  values. Specifically, results comparing the covariance of the registration parameters derived from the analytical and brute force methods are similar to the results shown in Eq. (101) regardless of the  value. In addition, results comparing the propagation of error through the covariances of the registered poses derived from the anal
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	                (106) 
	,=11ˆˆ()=()KnnkkssK∑xx

	 
	can be defined where  is the 6DOF representation of  and the corresponding errors in  can be approximated with  – the standard deviation of each of the 6DOF elements of . Then the goodness of fit ratio between  and  can be represented by the vector 
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	        (107) 
	()=(,,,,,)Ttfrpppxyzsggggggg

	 
	where  for  being the th vector elements of  respectively and  is the standard deviation of the th elements of . Note that if for all  
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	            (108) 
	ˆ()<1() is within ()innsss′⇒∆gxx

	 
	           (109) 
	ˆ()1() is on the border of ()innsss′≈⇒∆gxx

	 
	            (110) 
	ˆ()>1() is outside ()innsss′⇒∆gxx

	 
	Results for our data are shown in Fig. 6. If the systematic bias represented by , then  is in the region  centered at  and the analytical formulations presented in this work accurately represent the actual propagation of error. 
	<0.022s
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	Figure
	 
	Fig. 6. The goodness of fit ratio  calculated from the original experimental 6DOF data from system  registered to the simulated data from system  for varying scale s values. 
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	6.  Conclusions 
	 
	      This paper focuses on methods to understand how errors in collected data from two systems can be propagated to parameters obtained from the registration of the two systems. These, often error-prone, registration parameters are then used to build a homogeneous matrix to transform data collected in only one system to the other. As a result, any errors in the original collected data that get propagated to the registration parameters will also be propagated onto any transformed data through the correspond
	 
	  
	7.  Appendix A. 
	 
	      Let the objective function be defined as 
	               (111) 
	322,,=1=1=(,)=Nnjnjiinjψτ′′−++−∑∑xΩyyΩpp

	 
	                  (112) 
	111111111111,,,,,,=,,,,,,xyzxyztfrppptfrppp′′′′′′x

	 
	                   (113) 
	=(,,,,,).xyzψθφρτττ

	 
	Note that each component of  can be decomposed as 
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	                (114) 
	2,,,,,,,,=2TTTnjnjnjnjnjnjnjnj′′′′−−+ΩyyyyyΩyyy

	 
	            
	2=()()Tnnnnnnτττ′′′+−+−+−ΩppΩppΩpp

	 
	                          (115) 
	=222.TTTTTTnnnnnnnnττττ′′′′+−−++ppΩppΩpppp

	 
	Using this formulation, the gradient  of  can be decomposed as the partials 
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	where 
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	and 
	 
	    
	=sin(1cos)TTSθµµµρρµµθθθ∂∂∂+−+∂∂∂Ω

	 
	    
	=sin(1cos)TTSφµµµρρµµφφφ∂∂∂+−+∂∂∂Ω

	 
	       (118) 
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	Moreover, the partials 
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	       (120) 
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	where 
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	      (122) 
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	and 
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	        (124) 
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	            (125) 
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	        (126) 
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	for  and . The partials  and  can be obtained in a method similar to Eq. (118). And, 
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	    (130) 
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