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Depletion attraction induced by non-adsorbing polymers or small particles in colloidal solutions has
been widely used as a model colloidal interaction to understand aggregation behavior and phase
diagrams, such as glass transitions and gelation. However, much less attention has been paid to study
the effective colloidal interaction when small particles/molecules can be reversibly attracted to large
colloidal particles. At the strong attraction limit, small particles can introduce bridging attraction as it
can simultaneously attach to neighbouring large colloidal particles. We use Baxter’s multi-component
method for sticky hard sphere systems with the Percus-Yevick approximation to study the bridging
attraction and its consequence to phase diagrams, which are controlled by the concentration of small
particles and their interaction with large particles. When the concentration of small particles is very low,
the bridging attraction strength increases very fast with the increase of small particle concentration.
The attraction strength eventually reaches a maximum bridging attraction (MBA). Adding more small
particles after the MBA concentration keeps decreasing the attraction strength until reaching a concen-
tration above which the net effect of small particles only introduces an effective repulsion between large
colloidal particles. These behaviors are qualitatively different from the concentration dependence of
the depletion attraction on small particles and make phase diagrams very rich for bridging attraction
systems. We calculate the spinodal and binodal regions, the percolation lines, the MBA lines, and the
equivalent hard sphere interaction line for bridging attraction systems and have proposed a simple
analytic solution to calculate the effective attraction strength using the concentrations of large and
small particles. Our theoretical results are found to be consistent with experimental results reported
recently. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913197]

I. INTRODUCTION

Colloidal systems are very important for many materials
in our daily life, such as paint, food, soft armour,1,2 deter-
gents, microemulsions,3 therapeutical drugs,4 and biological
systems.5,6 A clear understanding of the effective interaction
among colloidal particles is the key to control and optimize
the performance of materials and their responses in different
applications. One common approach is to determine an effec-
tive interaction between colloidal particles by treating all small
molecules in solvent as continuous medium, which allows us
to focus on the structure and dynamics of only large colloidal
particles.7 The effect of all solvent molecules including coions
and counterions is all considered implicitly in these effec-
tive interactions. Hence, effective interactions between large
colloidal particles are tunable by changing the properties of
small molecules. It is this tunability of effective interactions
that lends us the power of controlling the properties of colloidal
systems. However, even with this simplification, the under-
standing of colloidal systems is still very challenging despite
tremendous progress.

a)Author to whom correspondence should be addressed. Electronic addresses:
yunliu@nist.gov or yunliu@udel.edu

Model colloidal systems with well-characterized inter-
actions have been developed and investigated. Arguably, the
simplest system is spherical colloidal particles with only hard
sphere (HS) interaction, i.e., particles cannot overlap in space.
Many theoretical and experimental works have been already
devoted to study HS systems.8–11 The complexity of the phase
behavior for a system quickly increases even by adding just
one more feature, such as a short-ranged square well attraction
(SW) in addition to the HS interaction (SWHS). Systems with
SWHS potentials show many interesting features.12–17

One of the most studied experimental SWHS systems is
the PMMA colloidal system in organic solvents with added
non-adsorbing polymers, such as polystyrene.15,18,19 Due to the
osmotic pressure of added polymers in solvent, a depletion
attraction is generated between large PMMA colloidal parti-
cles. This mechanism was first pointed out by Asakura and
Oosawa.20,21 When the inter-distance of colloidal particles is
smaller than the characteristic size of small particles, such as
the radius of gyration of polymers, the exclusion of the non-
adsorbed small particles results in a concentration gradient
between the gap regions of the big particles and bulk solution.
This concentration gradient pushes big particles close to each
other, and generate an effective attraction,21,22 as schematically

0021-9606/2015/142(8)/084904/11/$30.00 142, 084904-1 © 2015 AIP Publishing LLC
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FIG. 1. Schematic figures for depletion attraction (a) and bridge attraction
(b). For depletion attraction, the big particles become closer to each other
because of the excluded volume effect of the small particles; for bridge
attraction, one side of a small particle may be stuck to a big particle and
the other side may be stuck to another one to “bridge” the big particles. To
make the bridge effect clear, the “bridging” particle is shown in red.

shown in Fig. 1(a). The range of interaction can be controlled
by the radius of gyration of added polymers. Systems with
depletion attraction have been very successfully used to study
phase behavior of SWHS systems in the past few decades.23–29

In addition to introducing SW attraction using the deple-
tion attraction, it can be also introduced by the bridging attrac-
tion. Here, unlike the case of the depletion attraction where
there is no attraction between small molecules and large colloi-
dal molecules, small molecules can be physically attracted to
the surface of large colloidal particles and serve as a bridge
linking two or more large colloidal particles together (see a
schematic picture in Fig. 1(b)). Though some systems related
with the bridging attractions have been discussed,30–32 the ef-
fect of bridging attractions on colloidal systems, in general,
received much less attention compared to depletion attraction
cases. This is partially due to the fact that there were not many
good model systems. There is a great need to study this type of
systems as bridging attractions potentially play important roles
for many systems such as oppositely charged colloidal particles
and protein solutions with different counterions.33–35

Recently, Zhao et al. showed that by adding small parti-
cles made of Poly N-isopropyl acrylamide (PNIPAM) into
large polystyrene particle solutions, PNIPAM colloidal parti-
cles can reversibly attach to the surface of polystyrene parti-
cles and introduce a bridging attraction between large parti-
cles. The system changes from a liquid to a solid-like gel
by adding a very small amount of PNIPAM particles. When
further adding PNIPAM particles, the system becomes liquid
again. And when more PNIPAM particles are added, it be-
comes a solid-like gel.1

Theoretically speaking, the difference between the deple-
tion and bridging attraction systems lies in the difference of the
interaction between small particles and large particles. Here,
small particles are treated as parts of solvent molecules. If
there is no attraction between small and large particles, the
osmotic pressure of small particles can introduce an effective
depletion attraction. When there is a strong attraction between
small and large particles, an effective bridging attraction is
generated. By varying the attraction strength between small
and large particles, the two types of systems can be considered
two extreme cases of the same type of binary colloidal systems.
However, unlike the cases of the depletion attraction, there
are fewer works devoted to the theoretical study of systems
interacting with bridging attractions.

In this paper, we calculate phase diagrams of systems with
bridging attractions by considering binary hard sphere systems

with asymmetric sizes using the multicomponent theory for
sticky hard sphere (SHS) systems developed by Baxter in the
1960’s.36,37 The size ratio between the large and small particles
in our systems is chosen to be consistent with recent experi-
mental results reported by Zhao et al.1 in order to compare the
calculated results with experimental values. There are only HS
interactions between particles with the same size. By varying
the attraction strength from zero to very large values between
small and large particles, this binary particle system can change
from a depletion attraction system to a bridging attraction
system.

Binary SHS systems have been investigated before.38–48

However, we focus here on understanding the change of the
effective bridging attraction and phase diagrams with different
concentrations of small and large particles. As far as we know,
these issues have not been addressed systematically before
despite a few early studies.45–48 We investigate the spinodal
and binodal transitions, percolation lines, and other interest-
ing properties for bridging attraction systems. An analytical
solution is developed to calculate the effective interaction
between large colloidal particles. Our results are compared
with the experimental phase diagram reported by Zhao et al.1

We demonstrate here that binary SHS systems can successfully
explain most experimental observations reported by Zhao
et al. Some of our results nearly agree with the experimental
observations quantitatively.

II. THEORIES AND METHODS

The analytic solution of the Ornstein-Zernike (OZ) equa-
tion for a one component system interacting with SHS interac-
tions was first developed by Baxter using the Percus-Yevick
(PY) closure.36,37 Later, using the “Q method,” he further
developed theories for multicomponent systems with SHS
interactions.49 Since then, numerous works using his methods
have been devoted to study the properties and phase diagrams
of SHS systems.39,50–59 These methods have been shown to
work reasonably well.60–63 But it should be noted that the
PY approximation is lacking thermodynamic consistency. Its
limits and problems have been discussed in Refs. 64 and 65.

The pair potential of a multi-component SHS system be-
tween components i and j can be described as

βUi j =




∞, r < σi j,

ln[12τi j
(di j − σi j)

di j
], σi j < r < di j,

0, di j < r,

(1)

where β = 1/(kT), k is the Boltzmann constant, and T is
the absolute temperature. σi is the diameter of component i.
σi j = (σi + σ j)/2. di j − σi j is the attraction range between
components i and j. In the limiting case of SHS interaction, di j

is infinitesimally close to σi j. τi j is a parameter related to the
strength of the attraction between different components and is
commonly called the stickiness parameter. It can be considered
as an effective “temperature,” i.e., smaller τ means stronger
attraction. When τ approaches infinity, there is no attraction
between particles, and the interaction becomes hard sphere
interaction.
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In Appendix A, we have summarized all the equations
needed to calculate the partial structure factors for an N-
component system. At the SHS limit, di is the same as σi.
The most important step of this method is to solve N(N + 1)/2
polynomial equations (A2) for the elements of matrix Q (A1),
which has an algebraical relation with structure factors (A3).

In this paper, we focus on two-component systems (N
= 2), where the size ratio between small and large particles is
defined as x = dS/dL. There are only hard sphere interactions
among particles with the same size, i.e., τSS = τLL = ∞. τSL,
the stickiness parameter between small and large particles, is
varied to have different attraction strengths between small and
large particles. Because the size ratio is small, the small parti-
cles can be considered as parts of solvent molecules, such as
polystyrene in PMMA colloidal solutions (depletion attraction
case) and PNIPAM polymers in large PS solutions (bridging
attraction case), which are added to solutions to change the
effective interaction between large colloidal particles. For a
depletion attraction, τSL is very large. For the bridging attrac-
tion case, τSL is very small. In this paper, we focus on bridging
attraction cases. The partial structure factors, SLL(q), SSL(q),
and SSS(q), can be calculated analytically. Since our focus is
on large colloidal particles, SLL(q)will be used to help identify
phase diagrams of large colloidal particles.

A. Calculation of spinodal regions

It has been demonstrated that at relatively dilute colloidal
concentrations, gelation is related to the arrested spinodal
decomposition.19 Hence, the understanding of the spinodal
decomposition line (SDL) is very useful to understand the gela-
tion of bridging attraction systems. The SDL can be calculated
analytically in binary SHS systems. The details are given in
Appendix A 2. For a given attraction strength τSL between big
and small particles and size ratio x, the SDL in φS − φL plane
is

3 +

(3 + 1−φ

φS
)(3 + 1−φ

φL
)

(1+x)2
4x (1 − φ)

=
(1 + x)(1 − φ) + 3(φS + xφL)

1−φ
4x (φS + xφL)(1 + x)2 + (1 + x)(φS + xφL)2τSL

,

(2)

where φS and φL are the volume fractions of small and large
particles, respectively, and φ = φS + φL. This is equivalent to
Eq. (A8), the points on the SDL correspond to the divergence
of SLL(q = 0).36

B. Mapping binary systems to one-component SHS
systems

Because our focus is on phase diagrams of large colloidal
particles, we can calculate an equivalent one component SHS
system whose phase diagram is the same as that of large parti-
cles in our binary colloidal systems. There are three parameters
in one-component SHS system: the particle diameter (σeff ,
also deff for SHS), volume fraction (φeff ), and the stickiness
parameter (τeff ). Here, the superscript “eff” means the param-

eters of the one-component system determined by the effective
potential. Once these three parameters are known, the phase
behavior can be determined for this equivalent one component
SHS system.

We first need to estimate deff . It is important to note that
deff is not necessarily the same as dL. It is the closest distance
that two large particles can approach each other. When τSL is
small, small particles can strongly bind to the surface of large
particles. The equivalent excluded volume of large particle has
to include the volume of small particle on the surface. As a
result, deff is larger than dL. It is not easy to estimate deff for
a general case. But at the limit of small τSL, which is the case
in this paper, deff can be calculated analytically using the size
information of two component systems as

deff
L

dL
=

2
3
(1 + x +

1
2 + x

). (3)

The details of the calculation is given in the Appendix (Appen-
dix B).

Once deff is known, the effective volume fraction, φeff ,
can be estimated by equating the number density of large
colloidal particles in the binary system and the equivalent one-
component system through the relation φeff/φL = (deff/d)3.

τeff determines the effective interaction potential between
large colloidal particles and is a complex function of param-
eters of two component systems, i.e., τeff = f (x, φS, φL, τSL).
In order to evaluate τeff , we require that the value of structure
factor at q = 0 is the same for SLL(0) and Seff (0), where Seff (0)
is calculated using one component theory using deff , φeff , and
τeff . As shown in Appendix B, the effective stickiness param-
eter τeff can then be calculated analytically as

τ
eff
L = [ (1 − φ

eff
L )2

36
SLL(0) + 4φeff

L − 1
18


SLL(0)

−
14(φeff

L )2 − 4φeff
L − 1

36(1 − φ
eff
L )2 ]/[ 2φeff

L + 1

3(1 − φ
eff
L )

−
1 − φ

eff
L

3


SLL(0)]. (4)

Even though we only require Seff (0) = SLL(0), we find that
Seff (q) is almost identical to SLL(q) for all of the q range for
most cases studied in this paper, which means the proposed
mapping method from a two-component system to an equiva-
lent one-component system is valid. We also emphasize that all
calculated parameters have analytical solutions, which makes
this mapping method very efficient.

III. RESULTS AND DISCUSSIONS

Without losing generality, we have chosen the size ratio, x,
to be 0.1444, consistent with the experimental value reported
by Zhao et al.1,66 The advantage is that we then can compare
our theoretical results to the experimental ones to offer physical
interpretations of experimental systems. The studied volume
fractions for both φS and φL range from about 0% to 40%,
which is compatible with the concentration range investigated
by experiments.1,66 Our methods can be extended to many
other cases with different particle size ratios.
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A. Difference between the depletion attraction
and the bridging attraction

As aforementioned, by varying τSL, this two component
system model can change from a depletion attraction sys-
tem to a bridging attraction system. Therefore, it is interest-
ing to compare the structures of these two cases by calcu-
lating SLL(q). For the depletion attraction case, this can be
approached by setting the parameter τSL to a very large value.
To compare the two different mechanisms, τSL has been set to
10 000 and 0.02 for the depletion and bridging attraction cases,
respectively.

Fig. 2 shows the change of SLL(q) by varying volume
fractions of small particles. (a) and (b) are for the depletion
attraction cases, while (c) and (d) are for the bridging attrac-
tion. φL is chosen to be 4% as an example. However, the general
observation studied here can also be extended to other volume
fractions.

For a given φL, the intensity of SLL(0) is related to the
strength of the effective attraction between large particles.
Larger values of SLL(0) mean stronger attractions. As shown
in Figs. 2(a) and 2(b), when increasing the volume fraction of
small particles (φS), SLL(0) monotonically increases, indicat-
ing that the addition of small particles increases the strength
of the depletion attraction. Associated with the increase of
depletion attraction, the first peak position shifts slowly to
larger q values indicating that large particles aggregate so that
the inter-particle distance becomes smaller. For binary hard
sphere systems, even though a more accurate estimation of
an effective depletion attraction due to small particles can be
achieved by constructing an effective Hamiltonian proposed by
Dijkstra and co-workers,67 the current method can still catch
the qualitative trend.16

FIG. 2. Comparison between depletion and bridge interactions. For all the
figures, the size ratio of small to large particle is x = 0.1444 and the volume
fraction of large particles is 4%. (a) and (b) are with the same attraction
strength (τSL = 10 000, introducing depletion attraction) between small and
large particles, while it is 0.02 (introducing bridging attraction) for (c) and
(d). (a) and (c) show the partial structure factors for large particles with
different volume fractions of small particles, as told in the figures, (b) and
(d) show the values of partial structure factors at q = 0 with increasing small
particles’ volume fraction. To make the difference clear, y axis of (c) is shown
in logarithmic scale.

However, this concentration dependence is dramatically
different in the bridging attraction case as shown in Figs. 2(c)
and 2(d). Unlike the previous case where the small change of
φS at the beginning has a very minor effect to SLL(q), SLL(q) in
(C) shows a large low-q upturn even at φS = 1.5%. The inten-
sity of SLL(0) in Fig. 2(d) first increases and reaches a peak
before it finally slowly decays. This shows that the increase of
φS first increases the effective attraction favoring the particle
aggregation. However, when there are enough small particles,
the further increase of φS actually stabilizes the large colloidal
particles as the effective attraction becomes smaller. This is
because that when more and more small particles stick to the
surface of large particles, the “coated” large particles will not
have strong attraction between them any more since there is
no attraction between the “shells” of small particles. As a
result, the large particles are stabilized by the addition of small
particles. Therefore, this can be a different way of stabilizing
large colloidal particles by introducing small molecules that
can stick to the surface of large colloidal particles.

The inter particle distance between large particles is consis-
tent with the change of attractions in both depletion and
bridge attraction cases. Assuming that the position of first
order diffraction peak is q0, the inter-particle distance of large
colloidal particles can be approximately estimated as 2π/q0 as
shown in Fig. 3. The open circles and stars are for the depletion
and bridging attraction cases, respectively. When increasing
small particle concentrations, the inter-particle distance for the
depletion attraction case decreases slowly as more attraction
favors closer packing of large particles. However, for the bridg-
ing attraction case, the addition of small colloidal particles
first decrease the inter-particle distance dramatically favoring
aggregation. Once φS reaches certain value, the inter-particle
distance increases as small particles can coat the surface of
large particles. When φS is large enough, the small particles
will not introduce attraction effect. Instead, it generates an
effective repulsion between large colloidal particles. Because
of the difference of the depletion and bridging attraction, it
has different consequences to their phase diagrams that can
partially explain the phase behavior of experimental results
reported by Zhao et al.1,66

B. Phase diagrams of large colloidal particles

As the spinodal decomposition line (SDL) is intrinsically
linked to the gel formation at low concentrations, it is very

FIG. 3. The inter-particle distance normalized to the diameter of large par-
ticles versus the volume fraction of small particles for depletion attraction
(green circles with dashed line) and bridge attraction (red stars with solid
line). The volume fraction of large particles is 4% and the diameter of small
and large particles is the same with Fig. 7.
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interesting to calculate SDL in our systems. As mentioned
before, in order to compare our calculations to the experimental
results, we have fixed the size ratio x to be 0.1444.

SDL is very sensitive to the value of τSL. Different SDLs
calculated using Eq. (2) are shown in Fig. 4 for different values
of τSL. The volume fraction of large and small particles are
chosen to be the horizontal and vertical axes, respectively, as
the recent phase diagrams of experimental results of bridging
attraction are reported in this way. The spinodal regions form
isolated islands encompassed by the SDL. Within the area
delimited by the SDL, systems become unstable. The areas
for these spinodal islands increase by decreasing τSL. It seems
that the size of area saturates at τSL = 0.001. Decreasing τSL
further does not change the shape and area of the island too
much. When increasing τSL, the spinodal region shrinks. If
τSL ≈ 0.017, the spinodal island shrinks to almost a point
(the red star in Fig. 4), which we define as “τcritical.” For τSL
> τcritical, systems do not show any spinodal decomposition for
any volume fraction compositions. Since the binodal transition
line and spinodal transition line collapse to the same point at
τSL = τcritical, there is no binodal phase transition either when
τSL > τcritical. Hence, systems are always stable as there are
no phase separations happening when the attraction is small
enough, i.e., τSL is large enough. Note that when τSL is too
large, i.e., the attraction between small and large particles is
very weak, the depletion attraction dominates and can result in
a phase separation of large colloidal particles at large φS. The
limiting case for weak attraction is a binary HS system that
shows interesting liquid-liquid and liquid-solid transitions as
discussed by Dijkstra and co-workers.67 It is important to also
point out that τcritical is very sensitive to particle size ratio. When
x become smaller, τcritical increases. Therefore, when small
particle becomes smaller, weaker attraction between small and
large particles is needed to introduce phase transitions of binary
colloidal systems.

When τSL is small enough (strong bridging attraction
case), the formed spinodal region always appears where φS is
small as demonstrated in Fig. 4. If there are no small particles,
samples are stable because there is only HS interaction between

FIG. 4. Spinodal decomposition lines for systems with different attraction
strengths between small and big particles (see the legend). The size ratio is
x = 0.1444, the linear relation of the purple solid line is from Ref. 1, which
means the volume fraction of small particles need to cover the surface of big
particles. The start represents the critical stickiness parameter above which
the system will never show spinodal decomposition phenomenon.

large particles. By increasing φS to even a very small value, the
system immediately becomes unstable by entering the spinodal
region. With more small particles, it will eventually move out of
the spinodal region. Lu et al. has demonstrated that at low par-
ticle concentration, the gelation transition is driven by spinodal
decomposition.19 We can use the SDLs to roughly estimate the
gelation transitions in bridging attraction systems. Therefore,
we would expect that adding small particles can cause gel
formation when the system starts entering the spinodal island.
Further adding small particles, the system should move out of
the spinodal region and become liquid again. This observation
is consistent with the experiment reported by Zhao et al.1,66

In order to use our theories to better understand the experi-
mental system,1,66 we attempted to estimate τSL between small
and large particles. The purple solid line shown in Fig. 4
is the saturation line from Zhao’s paper.1 According to their
interpretation, this straight line represents the number of small
particles needed to fully cover the surface of big particles. It is
difficult for our theory to predict the coverage of small particles
on large particles as small particles on large particle surface is
always at dynamic equilibrium due to the exchange of particles
on surfaces with ones in solvent. During the experiment, they
observed the large particle aggregation using a microscope at
very small φL. They reported that their systems become stable
(have fewer aggregates) again when φS reaches the straight
solid line. This indicates that this straight line may be close
to the transition line from a gel state to a liquid state. We,
hence, estimated τSL by allowing the SDL to overlap as much
as possible with the saturation line. The estimated value is
τSL = 0.012 whose spinodal line is shown as cyan circles in
Fig. 4. This is a very rough estimation of τSL. But interestingly,
this estimated result can explain many of their observations
quantitatively as shown later. The following calculation in the
paper will assume τSL = 0.012 and x = 0.1444 unless explic-
itly stated otherwise.

Once the size ratio, x, and the attraction strength, τSL,
are determined, we can calculate all partial structure factor,
from which we can obtain much useful information. We first
focus on SLL(0). As we noted already, large SLL(0)means large
attraction strength (small τeff ) between large colloidal particles
at a given φL. Fig. 5 shows the change of SLL(0) as a function
of φS at a given φL.

At φL = 0.1%, the increase of φs first increases SLL(0)
very sharply and reaches a maximum, indicating that the
effective attraction strength between large particles reaches
maximum at about φS = 0.6%. This concentration is termed
as the maximum bridge attraction (MBA) concentration. By
further increasing φS, SLL(0)decreases slowly. At φS = 33.0%,
SLL(0) is the same as that at φS = 0. This value of φS is termed
as equivalent hard sphere (EHS) point as at this EHS volume
fraction, the osmotic compressibility of the binary systems is
identical to that of a HS system at the same volume fraction. A
structure factor comparison of the two-component SHS system
at the EHS point and one-component HS system with the same
volume fraction of big particles for the four points in Fig. 5 is
shown in the supplementary material.68

At this φL (0.1%), SLL(0) remains finite in a wide range
of φS. Therefore, there is no spinodal region. At φL = 10.0%,
SLL(0) quickly diverges as the increase of φS. There is a gap
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FIG. 5. Partial structure factor of large
particles at q = 0 with different volume
fractions as shown in the figures. Green
line means the structure factor value at
q = 0 for pure hard sphere system with
volume fraction of corresponding φ

eff
L .

for SLL(0) from φS = 0.9% to φS = 3.4% as the calculated
value of SLL(0) is not physically meaningful in the unstable
regions. When φS > 3.4%, SLL(0) begins to decrease and even-
tually reaches the EHS concentration. For φL = 30.0% and
40.0%, the change of SLL(0) shows a trend similar to that at φL

= 0.1%. There are no spinodal transition regions for these two
cases.

We have calculated the lines for SDL (cyan open circles),
MBA (red stars), and EHS (green open circles), which are
plotted in Fig. 6. Clearly, MBA and EHS concentrations vary at
different φL. Because the EHS line lies at larger concentrations,
it is shown in the inset of Fig. 6. The EHS line is fitted to a linear
function as φS = −0.4245φL + 0.3311. We will compare this
phase diagram with the experimental results later in this paper.
(Points A and B indicated in the figure are the conditions for
experimental data.)

C. Validation of the mapping method

As mentioned earlier in Sec. II B, we can benefit from
the extensive investigations of one component SHS systems by
mapping out this two component system to an equivalent one
component SHS system that has been carefully studied both
theoretically and experimentally for many decades.36,37,49–52

Since we focus on phase behavior of large colloidal particles,
and the size ratio, x, is small, we can attribute the effect of
the solvent molecule (small particles) to the effective attraction

FIG. 6. State diagram for our system. The inset is all the information from
Fig. 5 for the volume fraction range interested and the main panel is the local
scale for SDL and MBA. The line in the inset is the linear fitting of the EHS
points.

between large colloidal particles, which is sensitive to the prop-
erties of small particles, such as size and concentration. Once
having this effective potential, theories for one-component
SHS systems can be applied to understand the phase diagrams
of large colloidal particles in our two component systems.
As S(q) is a measure of inter-particle structure, all thermody-
namic quantities, such as pressure, energy, can be calculated
using S(q). The calculation of the effective potential of a one-
component system finds a correct set of parameters (τeff , φeff ,
and deff ) to reproduce SLL(q).

The details of this mapping method are given in Sec. II
B. Here, we would like to compare the structure factor (S(q))
between two component systems and ones calculated from this
mapping method. Fig. 7 shows the structure factor comparison
of this method for four cases. These four cases are chosen to

FIG. 7. The structure factor comparison of binary hard sphere system (green
open circles) with the equivalent pure hard sphere system (red solid line). In
the binary systems of both figures, the parameter for attraction between small
and large particles is τSL = 0.012, the diameters of small and large particles
is 260 Å and 1800 Å, respectively, and the volume fractions are on the plots.
The corresponding equivalent pure SHS system is mapped by the method
described in the context, the effective “diameter” is deff = 1932.8 Å, and the
others are (a) τeff = 0.0686, φeff = 0.0124; (b) τeff = 0.7472, φeff = 0.3715;
(c) τeff = 0.1335, φeff = 0.0124; (d) τeff = 0.2378, φeff = 0.3715. Recall it that
deff is the effective inter-particle distance rather than diameter. Here x axis is
scaled by the diameter of large particles (1800 Å) to make it more general.
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cover a wide range of regions of the phase diagram in Fig. 6.
The solid lines are the calculated Seff (q) of one component
SHS system and the green circles are SLL(Q) from two compo-
nent systems. The agreements are excellent in our cases. We
would like to emphasize again that the calculations in our
proposed method are all analytical. The solid lines are not fits,
but simply calculated curves from our method without fitting
parameters. The structure factor over the whole q range can be
almost exactly reproduced. Of course, once the experimental
conditions have reached the EHS line or beyond, our proposed
method will not work. In the supplementary material,68 we
show the region in the phase diagram where our proposed
method works best.

Once we have τeff , φeff , and deff , we are able to use the re-
sults obtained from one component SHS to determine the phase
diagram of large particles in our two-component systems.

D. Percolation threshold and binodal lines

First, we would like to calculate the percolation as this
an important property of a SHS system that has been studied
extensively.52

The percolation lines of one component SHS systems have
been calculated analytically by Glandt with PY approximation
to be55

τeff =
12φeff2 − 2φeff + 1

12(1 − φeff )2 . (5)

Here, percolation is defined as the point at which there is at
least a system-spanning cluster.

Equation (4) is used to calculate the effective stickiness
parameter, τeff , from a two component system. Given φL and
φS, we obtain τeff and φeff and use Eq. (5) to estimate the
percolation lines. The calculated percolation region for the two
component systems is sandwiched by two lines (filled blue
circles) as shown in Fig. 8. When adding small particles, the
system is able to percolate at very small φS and then exits the
percolated region when there is an excess of small particles.

We did not calculate the percolation line at small volume
fraction of large particles (φL < 7.7%) even though this can
be done by following Eq. (5). At small φL, the structure factor

FIG. 8. The phase diagram for binary system with size ratio x = 0.1444 and
inverse stickiness parameter τSL = 0.012. The symbols are green circles for
EHS, blue filled circles for percolation, cyan crosses for binodal line, cyan
circles for SDL and red stars for MBA. Logarithmic scale is used for y axis
to show more details, and a linear scale version is shown in supplementary
material.68

calculated from Baxter’s method for one component system is
not very accurate when the system is close to the instability
line, which is obtained by finding the unphysical solutions in
the Baxter’s method, and is commonly assigned as the spinodal
line. (It is well known that at low concentration, S(q) calcu-
lated using Baxter’s method will not diverge at the estimated
instability line.36) However, since Baxter’s method works well
at large φL,52,61 we would expect that the percolation lines at
larger φL is quantitatively more accurate. We also would like to
point out that this issue only affects the percolation and binodal
line estimation using one component theories in our works.
There is no problem calculating the instability lines (spinodal
decomposition lines) using Baxter’s multi-component theory.

Note that the percolation lines of two component systems
can be also directly calculated using multi-component theory
proposed by Baxter.45–48 The results have been shown in the
supplementary material (Fig. S3),68 where the system spanning
clusters include both small and large particles. Since we focus
on only large particles here, the calculated percolation region
is only a subset of the percolation region directly calculated for
two-component systems.

Miller and Frenkel52 have also calculated the binodal
transition line for one-component SHS system through grand
canonical MC simulation. By mapping two component sys-
tems to the equivalent one-component SHS system, we are
able to identify the binodal lines of large colloidal particles
in our two component systems. The results are shown in Fig. 8
as cyan pluses (+). The regions between the two binodal lines
are two phase regions. We do not have results for φL < 4% as
Miller and Frenkel’s simulation52 did not simulate the cases
for φL < 4.0%.

E. Comparison with the experimental results

In their experiments, Zhao et al. observed liquid-gel-
liquid phase transitions by progressively adding small particles
(PNIPAM) for some volume fractions of large particles (PS).1

These liquid-gel-liquid phase transitions can be qualitatively
explained by the isolated spinodal regions at moderate volume
fraction range for large particles. Also, it has been found that
their experimental systems cannot form gel when the volume
fraction of large particles (polystyrene) is smaller than 5%.1

Very interestingly, this happens to be the left boundary of the
spinodal region (point A in Fig. 6). It was also reported that
in a gel state at φL = 25%, the mechanical strength of the gel
becomes strongest at φs between 2% and 5% as the storage
modulus for a sample at φL = 25% reaches the maximum value
at this concentration range of φS.1 Our results indicate that
φS reaches the MBA concentration at about 3.0% (Point B
in Fig. 6) with φL = 25%. Therefore, the effective attraction
strength between large particles is the strongest at φS = 3.0%,
which agrees excellently with the small particle volume frac-
tion at which the storage modulus reaches a peak. Hence, the
experimental system observed by Zhao et al. can be explained
indeed by bridging attraction and can be modelled as a binary
SHS system.

Despite the agreement with some of their experimental
results, our theoretical models are still different from the exper-
imental systems. For example, the small particles (PNIPAM
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gel particles) in their experiments are relatively soft and may
deform when they are attached to the surface of large parti-
cles while both small and large particles are treated as non-
deformable hard spheres in our models. These differences can
lead to some difference between theoretical calculations and
experimental observed results.

Also, our theoretical results indicate that once moving
out of the spinodal region, the effective attraction strength
between large colloidal particles decreases continuously that
is unlikely to introduce another gelation transition. However,
experimentally, their samples can re-enter the gelation region
at very large φS. The current paper focuses on the equilibrium
phase diagrams while the gelation and glass transitions are
related with the kinetic phase diagrams, especially at large
concentrations of small and large particles. It will be interesting
to calculate the kinetic phase diagrams in future works using
existing theories.69–73

IV. CONCLUSION

There is current interest in understanding bridging attrac-
tion systems where small molecules added to solutions can be
reversibly attracted to the surface of large colloidal particles
to serve as a bridge linking two large particles. Interesting
phase behavior has been reported recently. This kind of model
colloidal systems differs from the widely used depletion attrac-
tion systems where small particles cannot be adsorbed on
the large particle surface. Therefore, it is of great interest to
understand these systems theoretically.

In this paper, we have applied the multi-component SHS
theory proposed by Baxter to calculate the equilibrium phase
diagrams of two component SHS systems with asymmetric
sizes. This model can be used to understand qualitatively the
behavior for both depletion attraction and bridging attraction
systems. We have focused on the bridging attraction case where
the attraction between small and large particles is very strong.
The equilibrium phase diagrams including spinodal region,
percolation threshold, and binodal phase transition lines are
calculated. By using the experimental information as the input
of the theory, the calculated results are compared with experi-
mental observations. Qualitative agreement between the theo-
retical results and experimental observations is found indi-
cating that the previously observed experiment results can be
explained with liquid theories of two component systems with
bridging attraction.

It is well-known that many depletion attraction systems
can be modelled by SHS systems. Here, we demonstrate that
the bridging attraction system can be also modelled as an
equivalent SHS system when the small particle concentration
is below the EHS concentration. At the limit of strong attrac-
tion, we have proposed a method to analytically calculate the
parameters for the equivalent one-component SHS system.
Unlike the depletion attraction case where the effective attrac-
tion increases monotonically as the concentration of small
particles increases, the dependence of the effective attraction
on small particle concentration is highly non-trivial for bridg-
ing attraction systems. At small φS, increasing φS sharply
increases the effective attraction strength between large parti-

cles. After reaching a maximum effective attraction strength,
adding more small molecules decreases the attraction strength
between large particles. When the concentration of small parti-
cles is larger than the EHS concentration, the small particles
cannot introduce effective attraction any more between large
particles. Instead, it introduces an effective repulsion between
large particles. Hence, in bridging attraction systems, adding
enough small particles can essentially stabilize large colloidal
particles. Because of this non-monotonic dependence of the
effective attraction strength between large colloidal particles
on φS, it results in the formation of isolated two phase regions
of large colloidal particles. Outside of these isolated regions,
the bridging attraction systems are stable. For a given size ratio,
there is a threshold value for the stickiness parameter between
small and large particles, above which there is no phase sepa-
ration observed based on our theoretical calculations. This also
poses a requirement if one would like to generate a gel phase
for a bridging attraction system as the gelation at low concen-
tration is believed to be related to spinodal decomposition.

Even though through our paper, we have focused on
comparing our theoretical phase diagram with recent experi-
mental reports in neutral colloidal systems, we believe that our
theoretical approaches can be also used to understand oppo-
sitely charged colloidal systems and counterion condensation
in protein systems. It was recently reported that adding triva-
lent counterions can make BSA protein solutions turbid. By
adding more counterions, the protein can become transparent
again.35 This observation is also qualitatively similar to what
we observe in our phase diagrams. Of course, more work needs
to be done in order to quantitatively explain this experimental
phenomenon.
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APPENDIX A: THEORIES FOR MULTI-COMPONENT
SHS SYSTEMS
1. General case

The pair potential for a multi-component SHS system is
shown in Eq. (1). The average SHS diameter a is defined as

a3 =

i

xi(σi + ∆i)3.

Here ni is the number density of component i and n
=


i ni. xi = ni/n is the number ratio.
Now, we define di = (σi + ∆i)/a and di j = (di + d j)/2.

The Q matrix for Baxter’s Q method is found to be37,39

Qnm(q) = δnm +
πa3

6
√

nnnmexpiqadn/2

× [−λnmdmd2
nm j0(qadm/2)
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+
3dnd2

m

1 − ε3
j0(qadm/2)

+ 3and3
m ×

j1(qadm/2)
qadm/2

− i ×
3dnd2

m

1 − ε3
j1(qadm/2)] (A1)

with

τnmλnm =
1

1 − ε3
+

3aε2

2(1 − ε3)2 ×
dndm

dnm

− 1
2(1 − ε3) ×

1
dnm
× π

6
a3

× [

k

(nkd2
nkdkdmλnk + nkd2

mkdkdnλmk)]

+
1

12
× π

6
a3

k

nk

d2
mk

d2
nk

dnm
λmkλnk, (A2)

εn =
π

6


k

nk(adk)n,

Xn =
π

6
a3

k

nkd2
nkdkλnk,

an =
1 − Xn

1 − ε3
+

3adnε2

(1 − ε3)2 ,

j0(x) = sin x
x

, j1(x) = sin x − x cos x
x2 .

To calculate the Q matrix, the key step is to solve the
N(N + 1)/2 non-linear equations for λnm as shown in Eq. (A2),
where N is the number of components.

Assume Qnm(q) = Qr
nm(q) + i ×Qi

nm(q), where Qr
nm(q)

and Qi
nm(q) are the real and imaginary part, respectively. Then

through the direct correlation function c(r), the structure factor
matrix is calculated as74

S(q)−1 = I − C(q) = Q(−q)TQ(q). (A3)

C(q) is the Fourier transformation of c(r). I is the unit matrix.
The (i, j)th element of structure factor matrix, S(q), is the
partial structure factor between components i and j, whose
inverse matrix is

(S(q)−1)i j =

k

Q∗ik(q)Qk j(q)

=

k

(Qr
ik(q)Qr

k j(q) +Qi
ik(q)Qi

k j(q))

+ i

k

(Qr
ik(q)Qi

k j(q) −Qi
ik(q)Qr

k j(q)). (A4)

The imaginary part was found to be 0 and the structure factor
to be real.

The spinodal decomposition from the compressibility equ-
ation is defined as |Q(0)| = 0.39,56 Substitute this into Eq. (A1)
and apply the limit j0(x → 0) = 1, j1(x → 0) = x/3 to get

Qnm(0) = δnm +
πa3

6
√

nnnm

× [−λnmdmd2
nm +

3dnd2
m

1 − ε3
+ and3

m]. (A5)

2. Spinodal decomposition lines

For the system studied in this article, the component num-
ber is N = 2 and τSS = τLL = +∞, which makes λSS and λLL
to be zero. So we solve one equation for one variable λSL from
Eq. (A2) that can be expressed as

λSL =
ε(1 + x) + 3(ηS + xηL)

ε
4x (1 + x)2(ηS + xηL) + (1 + x)ε2τSL

, (A6)

where

ηα =
π

6
(adα)3nα,

ε = 1 − ε3 = 1 − ηS − ηL,

x =
dS

dL
.

At the SHS limit, x is the diameter ratio of small particles
to large particles. ηα is volume fraction φα. The total volume
fraction φ = φS + φL = ε3. By forcing |Q(0)| = 0 in Eq. (A5),
we obtain

λSL =

3 +

(3 + ε

φS
)(3 + ε

φL
)

ε (1+x)2
4x

. (A7)

Equations (A6) and (A7) are two expressions for λSL at
spinodal decomposition points, so the right hand side of these
two equations should be equal to each other. Hence, we can
obtain

τSL =
(1 + x)[(1 + x)(1 − φ) − ∆(φS + xφL)]

4x(1 − φ)(3 + ∆) , (A8)

where

∆ =


9 +

φ(3 − 2φ)
φSφL

.

So with fixed attraction between small and large particles
and their diameter ratio, the spinodal decomposition lines in
the volume fraction plane can be calculated from Eq. (A8).

APPENDIX B: MAPPING BINARY SYSTEMS
TO EQUIVALENT ONE-COMPONENT SHS SYSTEMS

We first calculate the average inter-particle distance be-
tween large particles, deff . As shown in Fig. 9, the distance
between two neighbouring large particles is a function of angle
θ. Hence, the distance, d(θ), can be expressed as

d(θ) = (dS + dL) cos( θ
2
) = (1 + x)dL cos( θ

2
). (B1)

Assume the small particle is isotropically stuck to the sur-
face of one large particle, then the probability to have two large

FIG. 9. Configuration for two large particles connected by a small particle.
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particles with the angle between θ and θ + dθ is proportional
to the surface area of small particle accessed by another large
particle, that is

P(θ) ∝ 2πRS sin θ × RSdθ ∝ sin θdθ. (B2)

Here, RS is the radius of small particles.
The geometric arrangement of two large and one small

particle also sets the maximum value of θ to satisfy d(θ) ≥ dL.
And it turns out to be

cos( θmax

2
) = 1

1 + x
. (B3)

With the three equations above, the average inter-particle
distance can be calculated as an effective “diameter” of one-
component SHS system

deff
L =

 θmax
0 d(θ)P(θ) θmax

0 P(θ)
and the final result is

deff
L

dL
=

2
3
(1 + x +

1
2 + x

). (B4)

The volume fraction of the mapped SHS system is

φ
eff
L

φL
= (deff

L

dL
)3. (B5)

The next step is to map out the attraction of the equivalent
pure SHS system according to the value of partial structure
factor for large particles at q = 0, which can be calculated
directly from Appendix A. The results are (here, unlike the
case in Appendix A, which is for a general multi-component
system, “S” and “L” are used to be the subscripts instead of “1”
and “2,” respectively):

QSS(0) = 1 +
4φS

ε
+

3φS(φS + xφL)
ε2 − (1 + x)2φSφL

4ε
λSL,

QSL(0) = −


φSφL

x3 [ (1 + x)2(1 − φS)
4ε

λSL −
1 + 3x

ε

− 3(φS + xφL)
ε2 ],

QLS(0) = −


x3φSφL[ (1 + 1/x)2(1 − φL)
4ε

λSL −
1 + 3/x

ε

− 3(φS/x + φL)
ε2 ],

QLL(0) = 1 +
4φL

ε
+

3φL(φS/x + φL)
ε2

− (1 + 1/x)2φSφL

4ε
λSL,

SLL(0) = (QT(0)Q(0))−1
LL

=
Q2

SS(0) +Q2
LS(0)

QSS(0)QLL(0) −QSL(0)QLS(0) .
For the equivalent one-component SHS system with pa-

rameters deff
L , φ

eff
L , τ

eff
L , the structure factor at q = 0 is36,50

Qeff (0) = 1 + φ
eff
L [ 4 − φ

eff
L

(1 − φ
eff
L )2 −

λ

1 − φ
eff
L

],

λ =
6

φ
eff
L

{τeff
L +

φ
eff
L

1 − φ
eff
L

− [(τeff
L +

φ
eff
L

1 − φ
eff
L

)2

−
φ

eff
L (1 + φ

eff
L /2)

3(1 − φ
eff
L )2 ]1/2},

Seff (0) = 1
(Qeff (0))2 .

The relation between the binary system and the equiva-
lent one-component SHS system is Seff (0) = SLL(0). Then the
mapped attraction τ

eff
L is

τ
eff
L = [ (1 − φ

eff
L )2

36
SLL(0) + 4φeff

L − 1
18


SLL(0)

−
14(φeff

L )2 − 4φeff
L − 1

36(1 − φ
eff
L )2 ]


[ 2φeff

L + 1

3(1 − φ
eff
L )

−
1 − φ

eff
L

3


SLL(0)]. (B6)

From Eqs. (B4)–(B6), it is straightforward to map the
binary system to equivalent one-component SHS system.
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