relations at the sub-percent level. We also expect that this technique will enable ultra-precise measurements of dispersion and optical properties of high-reflectivity mirror coatings. Such measurements should provide new capabilities for characterizing material non-linearities which are relevant to optical cavities used for pulse energy enhancement, high-harmonic generation and broadband comb-based spectroscopy [52]. Finally, we describe how to extend our method and to improve its sensitivity to best exploit the potential of modern optical systems.

Acknowledgments

The research is part of the program of the National Laboratory FAMO in Toruń, Poland, and is supported by the Polish National Science Centre Project nos. DEC-2011/01/B/ST2/00491, DEC-2012/05/D/ST2/01914 and DEC-2013/11/D/ST2/02663 as well as by the Foundation for Polish Science TEAM and START Projects which are co-financed by the EU European Regional Development Fund. The research was also supported by the European Regional Development Fund within the Regional Operational Programme for Kujawsko-Pomorskie Voivodeship for the years 2007-2013 and the national budget of Poland (project RPKP 05.04.00-04-006/13). J.T. Hodges was supported by the Greenhouse Gas and Climate Sciences Measurements Program of the National Institute of Standards and Technology.