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Abstract This paper presents a comparative study of six
methods for the retrieval and classification of textured 3D
models, which have been selected as representative of the
state of the art. To better analyse and control how methods
deal with specific classes of geometric and texture deforma-
tions, we built a collection of 572 synthetic textured mesh
models, in which each class includes multiple texture and
geometricmodifications of a small set of nullmodels. Results
show a challenging, yet lively, scenario and also reveal inter-
esting insights into how to deal with texture information
according to different approaches, possibly working in the
CIELab as well as in modifications of the RGB colour space.
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1 Introduction

Thanks to advances in geometric modelling techniques and
to the availability of cheaper, yet effective 3D acquisition
devices, we are witnessing a dramatic increase in the num-
ber of available 3D data [35,75]. How to accurately and
efficiently retrieve and classify these data has become an
important problem in computer vision, pattern recognition,
computer graphics andmany other fields. Most methods pro-
posed in the past years analyse geometric and/or topological
properties of 3D models [3,21,72], that is, they focus on
shape. Nevertheless, most sensors are able to acquire not
only the 3D shape but also its texture; this is the case, for
instance, of the Microsoft Kinect device. Also, image-based
modelling and multiple-view stereo techniques enable the
recovery of geometric and colourimetric information directly
from images [65].

Characterizing 3D shapes based on both geometric and
colourimetric features can be of great help while defining
algorithms for the analysis and the comparison of 3D data.
Texture and colourimetric features contain rich information
about the visual appearance of real objects: perceptual studies
demonstrated that colour plays a significant role in low- and
high-level vision [71]. Thus, colourimetric information plays
an important role in many shape analysis applications, such
as matching and correspondence; it can also provide addi-
tional clues for retrieval in case of partial or inaccurate shape
scans [27]. An example is given by face recognition, where
the combination of geometric and colourimetric properties is
a way to achieve better trust-worthiness under uncontrolled
environmental conditions (illumination, pose changes, unco-
operative subjects) [25].

The attention towards texture properties has grown con-
siderably over the past few years, as demonstrated by the
number of techniques for the analysis of geometric shape
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and texture attributes that have been recently proposed
[32,45,53,63,74,80]. Since 2013, a retrieval contest [8] has
been launched under the umbrella of the SHREC initiative
[76] to evaluate the performances of the existing methods
for 3D shape retrieval when dealing with textured models.
The contest provided the first opportunity to analyse a num-
ber of state-of-the-art algorithms, their strengths as well as
their weaknesses, using a common test collection allowing
for a direct comparison of algorithms. In 2014, the contest
ran over a larger benchmark andwas extended to include also
a classification task [2]. The two events obtained a positive
outcome; indeed, they saw the participation of six groups in
2013 and eight groups in 2014.

In this context, we present here a comparative study on
the retrieval and classification performance of six state-of-
the-art methods in the field of textured 3D shape analysis.
The present contribution builds on the dedicated SHREC’14
benchmark [2] and extends the associated track in three main
respects:

• Most of the algorithms tested in [2] have been re-
implemented with some modifications for performance
improvement. Additionally, a new method has been
included in the comparative study to have a sufficiently
detailed picture of the state-of-the-art scenario.

• To help the reader in comparing methods beyond their
algorithmic aspects, Sect. 4.7 presents a taxonomy of
methods highlighting the emerging shape structure, the
scale at which the shape description is captured, the
colour space that is considered to analyse texture shape
properties and how this information is combined with the
geometric one.

• The analysis of methods has been strengthened by
exploiting the peculiar composition of the dataset, which
has been populated by considering multiple modifica-
tions of a set of null shapes. This has made possible to
evaluate how algorithms cope with specific geometric
and colourimetric modifications.

The remainder of the paper is organized as follows: In Sect. 2
we introduce the related literature. Section 3 describes the
collection of textured 3D models and how the comparative
study has been organized, while in Sect. 4 we describe the
methods implemented and discuss their main characteristics.
Experimental results are presented, analysed and discussed in
Sect. 5, while conclusive remarks and possible future devel-
opments are outlined in Sect. 6.

2 Related literature

While the combination of shape and colour information is
quite popular in image retrieval [23] and processing [29,44],

most of methods for 3D object retrieval and classification do
not take colourimetric information into account [3,72].

The first attempts to devise 3D descriptors for textured
objects adopt a 3D feature-vector description and combine
it with the colourimetric information, where the colour is
treated as a general property without considering its distribu-
tion over the shape. For example, Suzuki [70] complemented
the geometry description with a colour representation in
terms of the Phong’s model parameters [56]. Similarly, Ruiz
et al. [63] combined geometric similarity based on shape
distributions [52] with colour similarity computed through
the comparison of colour distribution histograms, while in
Starck and Hilton [68] the colourimetric and the 3D shape
information was concatenated into a histogram.

In the field of image recognition, a popular description
strategy is to consider local image patches that describe the
behaviour of the texture around a group of pixels. Examples
of these descriptions are the local binary patterns (LPB) [51],
the scale-invariant feature transform (SIFT) [46], the his-
togram of oriented gradients (HoG) [12] and the spin images
[26]. The generalization of these descriptors to 3D textured
models has been explored in several works, such as the VIP
description [79], the meshHOG [80] and the textured spin-
images [11,53]. Further examples are the colour-CHLAC
features computed on 3D voxel data proposed by Kanezaki
et al. [27]; the sampling method introduced by Liu et al. [45]
to select points in regions of either geometry-high variation or
colour-high variation and define a signature based on feature
vectors computed at these points; theCSHOTdescriptor [74],
meant to solve the surface matching problem based on local
features, i.e. by point-to-point correspondences obtained by
matching shape- and colour-based local invariant descriptors
of feature points.

Symmetry is another aspect used to characterize local and
global shape properties [50]. For instance, Kazhdan et al.
[28] introduced the spherical harmonic descriptor to code
the shape according to its rotational symmetry around axes
centred in the centre of mass. In [2], the Spherical Harmonic
descriptor has been proposed in combination with colouri-
metric descriptors to analyse textured 3D models. Giachetti
and Lovato [24] introduced the multiscale area projection
transform (MAPT) to couple the local degree of radial sym-
metry (in a selected scale range)with a saliency notion related
to high shape symmetry, following an approach similar to the
fast radial symmetry [47] used in image processing. Colour-
weightedvariations ofMAPT,merginggeometric and texture
information, have been presented in [2,8].

In the past years, close attention has been paid to non-
rigid 3D shapematching and retrieval. To deal with non-rigid
deformations (bendings) it is necessary to adopt shape
descriptions that are invariant to isometric shape deforma-
tions. A suitable metric for comparing non-rigid shapes is
the geodesic one; indeed, 3D shape descriptions based on
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geodesics, such as geodesic distance matrices [67] or geo-
desic skeleton paths [37], have been successfully adopted
for non-rigid shape comparison, see also [43]. In addition
to geodesic, more sophisticated choices are possible, such
as the diffusion or the commute-time distance [77]. On the
basis of the fact that these distances are well approximated
by the Laplace–Beltrami operator, several spectral descrip-
tors were proposed to characterize the geometric features
of non-rigid 3D shapes [36], such as the ShapeDNA [61],
the heat kernel signature [22,69], the wave kernel signature
[1], the global point signature [64] and the spectral graph
wavelet signature [39]. In the context of textured 3Dmeshes,
the photometric heat kernel signatures [30–32] fuse geome-
try and colour in a local-global description. The underlying
idea is using the diffusion framework to embed the shape into
a high-dimensional space where the embedding coordinates
represent the photometric information. Following the same
intuition, in [4] the authors generalized the geodesic distance
as a hybrid shape description able to couple geometry and
texture information.

Other invariance classes can be relevant in applications,
possibly including non-isometric transformations such as
topological deformations or local and global scaling. In
this case, topological approaches [15,20] offer a modular

framework in which it is possible to plug in multiple shape
properties in the form of different real functions, so as to
describe shapes andmeasure their (dis)similarity up to differ-
ent notions of invariance. Examples of these descriptions are
Reeb graphs [5,60], size functions [6], persistence diagrams
[10,41] and persistence spaces [9]. Recently, topological
descriptors have been shown to be a viable option for com-
paring shapes endowed with colourimetric information [4].

3 The benchmark

In this Section, we describe the benchmark adopted in the
proposed comparative analysis. The dataset and the ground
truth are available by following the instructions at http://shrec.
ge.imati.cnr.it/shrec14/texture.html.

3.1 The dataset

The dataset is made of 572 watertight mesh models, see
Fig. 1, grouped in 16 geometric classes of 32 or 36 instances.
Each geometric class represents a type of geometric shape
(e.g., humans, birds, trees, etc.). Besides the geometric clas-
sification, models are also classified into 12 texture classes.

Fig. 1 The collection of textured 3D models used in the comparative study
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Fig. 2 Two base models (a, f) together with some purely geometric (b–e) and purely texture (g–l) modifications

Each texture class is characterized by a precise pattern (e.g.,
marble, wood, mimetic, etc.).

The collection is built on top of a set of null models, that
is, base meshes endowed with two or three different textures.
All the other elements in the dataset come as the result of
applying a shape transformation to one of the null shapes
so that a geometric and a texture deformation are randomly
combined case by case.

The geometric deformations include the addition of
Gaussian noise, mesh re-sampling, shape bending, shape
stretching and other non-isometric transformations that do
not necessarily preserve the metric properties of shapes (e.g.
the Riemannian metric).

As for texture deformations, they include topological
changing and scaling of texture patterns, as well as affine
transformations in the RGB colour channels, resulting in,
e.g., lighting and darkening effects, or in a sort of pattern
blending.While the topological texture deformation has been
applied manually, affine transformations admit an analytic
formulation. A numerical parameter allows to tune each
analytic formulation, thus making possible to automatically
generate a family of texture deformations. In our dataset,
texture transformations are grouped into five families, each
family being the result of three different parameter values.

Figure 2 illustrates some geometric and texture deforma-
tions in action. The added value in working with a dataset
built in this way is that particular weaknesses and strengths of
algorithms can be better detected and analysed. Indeed,meth-
ods can be evaluated in specific tasks, for example, retrieval
against (simulated) illumination changing or degradation of
texture pattern. This is actually part of the proposed compar-
ative study, see Sect. 5.1.1 for more details.

Togetherwith the dataset, a training setmade of 96models
classified according to both geometry (16 classes) and texture
(12 classes) has been made available for methods requiring
a parameter tuning phase.

3.2 The retrieval and classification tasks

In our analysis we distinguished two tasks: retrieval and clas-
sification. For each task, at most three runs for each method
have been considered for evaluation, being the result of either
different parameter settings or more substantial method vari-
ations.

Retrieval task Each model is used as a query against the rest
of the dataset, with the goal of retrieving the most relevant
objects. For a given query, a retrieved object is considered
highly relevant if the two models share both geometry and
texture;marginally relevant if they share only geometry; not
relevant otherwise. For this task, a dissimilarity 572 × 572
matrix was required, each element (i, j) recording the dis-
similarity value between models i and j in the whole dataset.

Classification task The goal is to assign each query to both
its geometric and texture class. To this aim, a nearest neigh-
bour (1-NN) classifier has been derived from the dissimilarity
matrices used in the retrieval task. For each run, the output
consists of two classification matrices, a 572×16 one for the
geometric classification and a 572 × 12 one for the texture
classification. In these matrices, the element (i, j) is set to 1
if i is classified in class j (that is, the nearest neighbour of
model i belongs to class j), and 0 otherwise.

3.3 The evaluation measures

The following measures have been used to evaluate the
retrieval and classification performances of each method.

3.3.1 Retrieval evaluation measures

3D retrieval evaluation has been carried out according to
standard measures, namely precision–recall curves, mean
average precision (mAP), nearest neighbour, first tier, sec-
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ond tier, normalized discounted cumulated gain and average
dynamic recall [76].

Precision–recall curves and mAP Precision and recall are
common measures to evaluate information retrieval systems.
Precision is the fraction of retrieved items that are relevant
to the query. Recall is the fraction of the items relevant to
the query that are successfully retrieved. Being A the set of
relevant objects and B the set of retrieved object,

Precision = |A ∩ B|
|B| , Recall = |A ∩ B|

|A| .

Note that the two values always range from0 to 1. For a visual
interpretation of these quantities it is useful to plot a curve
in the reference frame recall vs. precision. We can interpret
the result as follows: the larger the area below such a curve,
the better the performance under examination. In particular,
the precision–recall plot of an ideal retrieval system would
result in a constant curve equal to 1. As a compact index
of precision vs. recall, we consider the mAP, which is the
portion of area under a precision recall-curve: from the above
considerations, it follows that the maximum mAP value is
equal to 1.

Nearest neighbour, first tier and second tier These evalua-
tion measures aim at checking the fraction of models in the
query’s class also appearing within the top k retrievals. Here,
k can be 1, the size of the query’s class, or the double size of
the query’s class. Specifically, for a class with |C | members,
k = 1 for the nearest neighbour (NN), k = |C | − 1 for the
first tier (FT) and k = 2(|C | − 1) for the second tier (ST).
Note that all these values necessarily range from 0 to 1.

Average dynamic recall The idea is to measure how many
of the items that should have appeared before or at a given
position in the result list actually have appeared. The aver-
age dynamic recall (ADR) at a given position averages this
measure up to that position. Precisely, for a given query let A
be the set of highly relevant (HR) items, and let B be the set
of marginally relevant (MR) items. Obviously A ⊆ B. The
ADR is computed as

ADR = 1

|B|
|B|∑

i=1

ri ,

where ri is defined as

ri =
{ |{HR items in the first i retrieved items}|

i , if i ≤ |A|;
|{MR items in the first i retrieved items}|

i , if i > |A|.

Normalized discounted cumulated gain It is first convenient
to introduce the discounted cumulated gain (DCG). Its def-
inition is based on two assumptions. First, highly relevant

items are more useful if appearing earlier in a search engine
result list (have higher ranks); second, highly relevant items
are more useful than marginally relevant items, which are in
turn more useful than not relevant items. Precisely, the DCG
at a position p is defined as

DCGp = rel1 +
p∑

i=2

reli
log2(i)

,

with reli the graded relevance of the result at position i .
Obviously, the DCG is query-dependent. To overcome this
problem, we normalize the DCG to get the normalized dis-
counted cumulated gain (NDCG). This is done by sorting
elements of a retrieval list by relevance, producing the max-
imum possible DCG till position p, also called ideal DCG
(IDCG) till that position. For a query, the NDCG is computed
as

NDCGp = DCGp

IDCGp
.

It follows that, for an ideal retrieval system, we would have
NDCGp = 1 for all p.

3.3.2 Classification performance measures

We also consider a set of performance measures for classifi-
cation, namely confusion matrix, sensitivity, specificity and
the Mattews correlation coefficient [18,48].

Confusion matrix Each classification performance can be
associated with a confusion matrix CM , that is, a square
matrix whose order is equal to the number of classes (accord-
ing to either the geometric or the texture classification) in the
dataset. For a row i in CM , the element CM(i, i) gives the
number of items which have been correctly classified as ele-
ments of class i ; similarly, elements CM(i, j), with j �= i ,
count items which have been misclassified, resulting as ele-
ments of class j rather then elements of class i . Thus, the
classification matrix CM of an ideal classification system
should be a diagonal matrix, such that the element CM(i, i)
equals the number of items belonging to the class i .

Sensitivity, specificity and Matthews correlation coefficient
These statistical measures are classical tools for the evalua-
tion of classification performances. Sensitivity (also called
the true positive rate) measures the proportion of true
positives which are correctly identified as such (e.g. the
percentage of cats correctly classified as cats). Specificity
(also known as true negative rate) measures the propor-
tion of true negatives which are correctly identified as
such (e.g. the percentage of non-cats correctly classified
as non-cats). A perfect predictor is 100% sensitive and
100% specific. The Matthews correlation coefficient takes
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into account true and false positives and negatives and is
generally regarded as a balanced measure which can be
used even if the classes are of very different sizes. The
MCC is in essence a correlation coefficient between the
observed and predicted classifications; it returns a value
between −1 and 1. A coefficient of 1 represents a perfect
classification, 0 no better than random classification and
−1 indicates total disagreement between classification and
observation.

4 Description of the methods

Sixmethods for textured 3D shape retrieval and classification
have been implemented. In this section we describe them
in detail, focusing also on their possible variations and the
choice of the parameters adopted to implement the runs used
in our comparative evaluation.

1. Histograms of area projection transform (APT) and
colour data and joint histograms ofMAPT and RGB data
(runs GG1, GG2, GG3), Sect. 4.1. These runs are based
on a multi-scale geometric description able to capture
local and global symmetries coupled with histograms of
the normalized RGB channels.

2. Spectral geometry based methods for textured 3D shape
retrieval (runsLBG1,LBG2,LBG3 andLBGtxt), Sect. 4.2.
These runs combine an intrinsic, spectral descriptor with
the concatenated histogram of the RGB values.

3. Colour+ shapedescriptors (runsVe1,Ve2,Ve3), Sect. 4.3.
These runs adopt combinations (with different weights)
of the histogram of the RGB values with a geometric
descriptors represented by the eigenvalues of the geo-
desic distance matrix.

4. Textured shape distribution, joint histograms and persis-
tence (runsGi1,Gi2,Gi3), Sect. 4.4. These runs combine
several geometric, colourimetric and hybrid descriptors,
namely the spherical harmonics descriptor, the shape dis-
tributions of the geodesic distances weighted with the
colourimetric attributes and a persistence-based descrip-
tion based on the CIELab space.

5. Multi-resolution representation local binary pattern his-
tograms (run TAS), Sect. 4.5. This run captures the
geometric information through the combination of a
multi-view approach with LPB and combines it with the
concatenated histograms of the CIELab colour channels.

6. PHOG: photometric and geometric functions for tex-
tured shape retrieval (runs BCGS1, BCGS2, BCGS3),
Sect. 4.6. These runs combine a shape descriptor based on
geometric functions; a persistence-based descriptor built
on a generalized notion of geodesic distance that com-
bines geometric and colourimetric information; a purely
colourimetric descriptor based on the CIELab colour
space.

4.1 Histograms of area projection transform and colour
data and joint histograms of MAPT and RGB data
(runs GG1–3)

Computing the similarity between textured meshes is
achieved according to two different approaches based on his-
tograms of MAPT [24]. MAPT originates from the APT, a
spatial map that measures the likelihood of the 3D points
inside the shape of being centres of spherical or cylindrical
symmetry. For a shape S represented by a surface mesh S,
the APT is computed at a 3D point x for a radius of interest
r :

APT(x,S, r, σ ) = Area(T−1
r (kσ (x) ⊂ Tr (S,n))),

where Tr (S,n) is the surface parallel to S shifted along the
inward normal vector n for a distance r , and kσ (x) is a sphere
of radius σ centred in x. APT values at different radii are
normalized to have a scale-invariant behaviour, creating the
multiscale APT (MAPT):

MAPT(x,S, r) = APT(x,S, r, σ (r))

4πr2
,

with σ(r) = c · r for 0 < c < 1.
A discrete version of the MAPT function is implemented

following [24]. Roughly, the map is estimated on a grid of
voxels with side length s and for a set of corresponding sam-
pled radius values r1, . . . , rt . This grid partitions the mesh’s
bounding box, but only the voxels belonging to the inner
region of the mesh are considered when creating the his-
togram.

Histograms ofMAPT are very good global shape descrip-
tors, performing state-of-the-art results on the SHREC 2011
non-rigid watertight contest dataset [42]. For that retrieval
task, the MAPT function was computed using eight different
scales (radius values) and the map values were quantized in
12 bins; finally the eight histograms were concatenated cre-
ating an unique descriptor of length 96. The voxel size and
the radius values were chosen differently for each model,
proportionally to the cube root of the object volume, to have
the same descriptor for scaled versions of the same geometry.
The value of c was always set to 0.5.

To deal with textured meshes, the MAPT approach has
been modified in two different ways, so to exploit also the
colour information.

4.1.1 Histograms of MAPT and colour data

MAPT histograms are computed with the same radii and
sampling grid values as in [24]: the isotropic sampling grid
is proportional to the cube root of the volume V of each
model, that is, of side length s = 3

√
V /30), and the sam-
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pled radii are integer multiples of s (10 values from 2s to
11s). The radius σ is taken, as in the original paper, equal to
ri/2 for all the sampled ri . Furthermore, for each mesh the
histogram of colour components is computed. With this pro-
cedure each mesh is described by two histograms, the first
one representing the geometric information and the second
one representing the texture information. The total dissim-
ilarity between two shapes S1,S2 is then assessed using a
convex combination of the two histogram distances:

D(S1,S2) = γ dgeo(S1,S2) + (1 − γ ) dclr (S1,S2), (1)

where 0 ≤ γ ≤ 1 , dgeo(S1,S2) is the normalized Jeffrey
divergence between the twoMAPT histograms of S1 and S2,
and dclr (S1,S2) corresponds to the normalized χ2-distance
of the two colour histograms. The choice of γ in (1) allows
the user to decide the relevance of colour information in the
retrieval process.

Results shown in Sect. 5 are obtained by applying two dif-
ferent pre-processing steps to the RGB values, both adopted
to have a colour representation that is invariant to illumina-
tion changes.

The first method, resulting in run GG1, is a simple con-
trast stretching for each RGB channel, mapping the min-max
range of each channel to [0, 1]. In this case the colour quan-
tization is set to 4 bins for each normalized RGB channels
and γ is set to 0.6.

The second model, corresponding to run GG2, is the
greyworld representation [19] in which each RGB value is
divided by its corresponding channel mean value: (Rg =
R/Ravg,Gg = G/Gavg, Bg = B/Bavg). Here, γ = 0.6 and
the 4 histogram bins are centred in themean value and are lin-
early distributed within a range of [0, 2] for each greyworld
RGB channel.

4.1.2 Joint histograms of MAPT and greyworld RGB data

To get run GG3, a new descriptor has been designed by con-
catenating the original APT histogram with those obtained
from the three components of the selected (normalized)
colour space. For each voxel, theAPT is evaluated at a certain
radius; the procedure is then repeated for all the radius values
(r1, . . . , rt ), and the t histograms are finally linearized and
concatenated. In the present paper, a sampling grid with side
length s = 3

√
V /18 has been used for each model, together

with 9 sampled radii that are integermultiples of s (t = 9 val-
ues from 2s to 10s). The APT target set has been divided into
8 bins. As for the colour components, the above greyworld
RGB representation has been adopted, and each channel has
been quantized in 4 bins in the range [0, 2]. The dissimilarity
between two meshes is obtained with the normalized Jeffrey
divergence [14] between the two corresponding linearized
and concatenated sets of joint histograms.

4.2 Spectral geometry-based methods for textured 3D
shape retrieval (runs LBG1-3, LBGtxt)

This method is built on the spectral geometry-based frame-
workproposed in [36], suitably adapted for textured3Dshape
representation and retrieval.

The spectral geometry approach, which is based on
the eigendecomposition of the Laplace–Beltrami operator
(LBO), provides a rich set of eigenbases invariant to isometric
transformations. Also, these eigenbases serve as ingredi-
ents for two further steps: feature extraction, detailed in
Sect. 4.2.1, and spatial sensitive shape comparison via intrin-
sic spatial pyramid matching [38], discussed in Sect. 4.2.2.
The cotangent weight scheme [13] was used to discretize
LBO. The eigenvalues λi and associated eigenfunctions ϕi
can be computed by solving the generalized problem

Cϕi = λi Aϕi , i = 1, 2, . . . ,m,

where A is a positive-definite diagonal area matrix andC is a
sparse symmetric weight matrix. In the proposed implemen-
tation, m is set to 200.

4.2.1 Feature extraction

The first step consists in the computation of an informative
descriptor at each vertex of a triangle mesh representing a
shape. The spectral graph wavelet signature [39] is used
to capture geometry information and colour histogram to
encode texture information.

Geometry information In general, any of the spectral descrip-
tors with the eigenfunction-squared form reviewed in [40]
can be considered in this framework for isometric-invariant
representation. Here, the spectral graph wavelet signature
(SGWS) is adopted as local descriptor. SGWS provides a
general and flexible interpretation for the analysis and design
of spectral descriptors. For a vertex x of a triangle mesh, it
is defined as

SGWSt (x) =
m∑

i=1

g(t, λi )ϕ
2
i (x).

In a bid to capture both global and local geometry, a multi-
resolution shape descriptor is derived by setting g(t, λi ) as
a cubic spline wavelet generating kernel and considering the
scaling function (see [39, Eq. (20)] for a precise formula-
tion of g). This leads to the multi-scale descriptor defined as
SGWS(x) = {SGWSt (x), t = 1, . . . , T }, with T the chosen
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Fig. 3 The isocontours of the second eigenfunction

resolution and SGWSt (x) the shape signature at the resolu-
tion level t . In the proposed implementation T is set to 2.

Texture informationColour histograms (CH) are used to char-
acterize texture information on the surface. Each channel is
discretized into 5 bins.

4.2.2 Shape comparison via intrinsic spatial pyramid
matching

To incorporate the spatial information, the intrinsic spa-
tial pyramid matching (ISPM) [38] is considered. ISPM
can provably imitate the popular spatial pyramid matching
(SPM) [34] to partition a mesh in a consistent and easy way.
Then, bag-of-feature (BoF) and locality-constrained linear
coding (LLC) [78] can be used to characterize the partitioned
regions.

The isocontours of the second eigenfunction (Fig. 3) are
considered to partition the shape into R regions, with R =
2l−1 for the partition at a resolution level l. Indeed, the second
eigenfunction is the smoothest mapping from the manifold
to the real line, making this intrinsic partition quite stable.
Thus, the shape description is given by the concatenation
of R sub-histograms of SGWS and CH along eigenfunction
values in the real line. To consider the two-sign possibilities
in the concatenation, the histogram order is inverted, and
the scheme with the minimum cost is considered as a better
matching. Therefore, the descriptive power of SGWS and
CH is enhanced by incorporating this spatial information.

Given a SGWS+CHdescriptor densely computed on each
vertex on a mesh, quantization via the codebook model
approach is adopted to obtain a compact histogram shape
representation. The classical k-meansmethod is used to learn
a dictionary Q = {q1, . . . , qK }, where words are obtained
as the K centroids of the k-means clusters. In the proposed
implementation, K = 100. In order to assign the descriptor
to a word in the vocabulary, approximated LLC is performed
for fast encoding and then max-pooling is applied to each
region. Finally, ISPM induced histograms for shape repre-
sentation are derived.

The dissimilarity between two shapes is given by L2

distance between the associated ISPM-induced histograms.
Geometry and texture information are handled separately,
and the final dissimilarity score is a combination of the geo-
metric and the texture distance.

4.2.3 The runs

The proposed approach has been implemented to derive three
different runs for the retrieval task:

• LBG1 represents LCC strategy with partition level l = 1
for geometric information.

• LBG2 represents LCC strategy with partition level l = 3
for geometric information.

• LBG3 is aweighted combination of geometric and texture
information, namely LCC strategy with partition level 3
for SGWSandpartition level l = 5 for colour histograms,
with coefficients 0.8 and 0.2, respectively.

For the classification task, two nearest neighbour classifiers
are derived, a geometric one from LBG2 and a texture one
from the texture contribution of LBG3. In what follows, the
latter is referred to as LBGtxt.

4.3 Colour + shape descriptors (runs Ve1–3)

This method is a modification of the “3D shape + colour”
descriptor proposed in [8]. To describe a textured 3D shape
S represented by a surface mesh S, two main steps are con-
sidered:

1. Let G be a n × n geodesic distance matrix, where n
is the number of vertices in S and the element G(i, j)
denotes the geodesic distance from the vertex i to ver-
tex j on S. Building on G, the centralised geodesic
matrix [49] is defined as D = G − 1nG − G1n +
1nG1n , where 1n denotes a n × n matrix having each
component equal to 1/n. Following [67], a spectral rep-
resentation of the geodesic distance is finally adopted
as shape descriptor, that is, a vector of eigenvalues
Eig(D) = (λ1(D), . . . , λn(D)), where λi (D) is the i th
largest eigenvalue. As in [8], the first 40 eigenvalues
are used as shape descriptor. The vectors of eigenvalues
Eig(D1),Eig(D2) associated with two shapes S1,S2

are compared through the mean normalized Manhattan
distance, i.e.,

dgeo(S1,S2)) =
40∑

k=1

2|λk(D1) − λk(D2)|
λk(D1) + λk(D2)

.

2. To incorporate texture information in the shape descrip-
tor, the RGB colour histograms are considered as in [8].
Accordingly, the distance dclr (S1,S2)) between the tex-
ture shape descriptors associated with S1,S2 is given by
the Earth mover’s distance (EMD) between the corre-
sponding RGB colour histograms. For two histograms
p and q, the EMD measures the minimum work that is
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Fig. 4 The proposed method includes a shape descriptor from the
geodesic distance matrix and a colour descriptor from the histogram
representation of RGB colour information. Details are included in Sect.
4.3

required to move the region lying under p to that under q.
Mathematically, it has been defined as the total flow that
minimizes the transport fromp toq.We refer keen readers
to [62] for a comprehensive review of EMD formula-
tion, and to [57] for an application to shape retrieval. To
concretely evaluate EMD, the fast implementation intro-
duced by [55] has been used with a thresholded ground
distance.

Last, the final distance between S1 and S2 is defined as fol-
lows:

D(S1,S2) = (dgeo(S1,S2))
p + (dclr (S1,S2))

1−p,

where p is a parameter to control the trade-off between colour
and shape information. In the experiments, p = 0.75 (run
Ve1), p = 0.85 (run Ve2) and p = 0.95 (run Ve3), follow-
ing the paradigm that geometric shape properties should be
more important than colourimetric ones in the way humans
interpret similarity between shapes. An illustration of the
proposed description for a textured shape is given in Fig. 4.

4.4 Textured shape distribution, joint histograms and
persistence (runs Gi1–3)

The CIELab colour space well represents how human eyes
perceive colours. Indeed, uniform changes of coordinates
in the CIELab space correspond to uniform changes in the
colour perceived by the human eye. This does not happen
with some other colour spaces, for example, the RGB space.
In the CIELab colour space, tones and colours are held sepa-
rately: the L channel is used to specify the luminosity or the
black and white tones, whereas the a channel specifies the
colour as either a green or a magenta hue and the b channel
specifies the colour as either a blue or a yellow hue.

Run Gi1 The textured shape distribution (TSD) descriptor
is a colour-aware variant on the classical shape distributions

(SD) descriptor [52]. Indeed, TSD consists of the distribu-
tion of colour-aware geodesic distances, which are computed
between a number of sample points scattered over the surface
mesh representing the 3D model.

The surface mesh is embedded in the three-dimensional
CIELab colour space, so that each vertex has (L , a, b) coordi-
nates. Then, in order to get colour-aware geodesic distances,
a metric has to be defined in the embedding space. To this
end, the length of an edge is defined as the distance between
its endpoints, namely the CIE94 distance defined for CIELab
coordinates [17]. This distance is used here instead of a clas-
sical Euclidean distance as it was specifically defined for the
CIELab space and employs specific weights to respect per-
ceptual uniformity [17]. The colour-aware geodesic distances
are computed in the embedding spacewith themetric induced
by the CIE94 distance. The distances are computed between
pairs of points sampled over the surface mesh. A set of 1024
points was sampled in the current implementation, following
a farthest-point criterion. The Dijkstra algorithm was used to
compute colourimetric geodesic distances between pairs of
samples.

The final descriptor encodes the distribution of these
distances. In the current implementation, the distribution
was discretized using a histogram of 64 bins. Histograms
were compared using the L2 norm. Therefore, the distance
between twomodels is the distance between their descriptors,
namely the L2 norm between the corresponding histograms.
TSD encodes the distribution of colour distances, yet it also
takes into account the connectivity of the underlying model,
as distances are computed by walking on the surface model.
In this sense, TSD can be considered as a hybrid descriptor,
taking into account both colourimetric and geometric infor-
mation.

Run Gi2 Though TSD retains some information about the
shape of 3D models, in terms of the connectivity of the mesh
representing the object, it still loses most of the geometric
information about the object, as it does not take into account
the length of the edges in the Euclidean space. This geometric
information can be recovered using a joint distribution,which
takes into account both colourimetric geodesic distances and
classical geodesic distances computed on the surface embed-
ded in the Euclidean space. In this run, the joint distribution
has been discretized by computing a 16× 16 bi-dimensional
joint histogram (JH) for each 3D model. The L2-norm is
used for comparison. The distance matrix is the sum of the
distance matrix obtained using the TSD descriptor and the
distance matrix obtained using the JH descriptor.

Run Gi3 In [4] the authors proposed a signature which com-
bines geometric, colourimetric and hybrid descriptors. In
line with this idea, Run Gi3 combines TSD with a geomet-
ric descriptor, namely the popular spherical harmonic (SD)
descriptor [28], and a colourimetric descriptor, namely the
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persistence-based descriptor of the PHOG signature in [4],
using the CIELab colour space coordinates. The distance
matrix corresponding to this run is the sum of the three dis-
tance matrices obtained using the TSD descriptor, the SH
descriptor, and the persistence-based descriptor of PHOG,
respectively.

4.5 Multi-resolution representation local binary pattern
histograms (run TAS)

The multi-resolution representation local binary pattern his-
tograms (MRLBPH) is proposed here as a novel 3D model
feature that captures textured features of rendered images
from 3D models by analysing multi-resolution representa-
tions using local binary pattern (LBP) [51].

Figure 5 illustrates the generation of MRLBPH. A 3D
model is normalized via point SVD [73] to be contained
in a unit geodesic sphere. From each vertex of the sphere,
depth and colour buffer images with 256 × 256 resolution
are rendered; a total of 38 viewpoints are defined. A depth
channel and each CIELab colour channel are then processed
as detailed in what follows.

To obtain multi-resolution representations, a Gaussian fil-
ter is applied to an image with varying standard deviation
parameters. The standard deviation parameter σl at level l
is evaluated using the following equation involving the left
factorial of l:

σl = σ0 + α·!l, l = 0, . . . , 	

where σ0 is the initial value of the standard deviation para-
meter, and α is the incremental parameter. This equation has
been derived from the optimal standard deviation parameters
obtained through preliminary experiments. In the proposed
implementation, σ0 = 0.8 and α = 0.6, while the number of
levels 	 is set to 4.

For each scale image, a LBP histogram is evaluated. To
incorporate spatial location information, the image is par-
titioned into 2 × 2 blocks and the LBP histogram at each
block is computed. The LBP histogram of each scale image
is obtained by concatenating the histograms of these blocks.

Fig. 5 Overview of our multi-resolution representation local binary
pattern histograms (MRLBPH)

Let gc denote the image value at arbitrary pixel (u, v), and
let g1, . . . , g8 be the image values of each of the eight neigh-
bourhood pixels. The LBP value is then calculated as

LBP(u, v) =
8∑

i=1

s(t, gi − gc) · 2i−1,

where s(t, g) is a threshold function defined as 0 if g < t and
1 otherwise. In the proposed implementation, the threshold
value t is set to 0, and the LBP values are quantized into 64
bins.

An MRLBP histogram is generated by merging the
histograms of scale images through the selection of the max-
imum value of each histogram bin. Let h(l)

i be the i th LBP
histogramelement of a scale image at level l. The i thMRLBP
histogram element hi is defined as

hi = max
l

h(l)
i , l = 0, . . . , 	.

The MRLBP histogram is finally normalized using the L1

norm.
The feature vector associated with a 3Dmodel is obtained

by calculating the MRLBP histogram of the depth and
CIELab channel for each viewpoint.

To compare two shapes S1 and S2, the Hungarian method
[33] is applied to all dissimilarities between the associated
MRLBP histograms. In evaluating the final dissimilarity
score, the histograms of the depth and CIELab channels are
combined by calculating the weighted sum of each dissimi-
larity. Let dd , dL , da , and db denote the dissimilarity of each
channel, and let wd , wL , wa , and wb be the weight of each
channel. The dissimilarity D(S1,S2) is defined as the dis-
similarity between the corresponding MRLBP histograms:

D(S1,S2) = wddd(S1,S2) + wLdL(S1,S2)

+wada(S1,S2) + wbdb(S1,S2).

In this implementation, wd is set to 0.61, wL to 0.13, wa

to 0.13, and wb to 0.13. For the dissimilarity between two
histograms, the Jeffrey divergence is used [14].

4.6 PHOG: photometric and geometric functions for
textured shape retrieval (runs BCGS1–3)

The combination of colourimetric properties and geometric
properties represented in terms of scalar and multi-variate
functions has been explored in PHOG [4], a shape signature
consisting of three parts:
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• A colourimetric descriptor. CIELab colour coordinates
(normalized L , a, b channels) are interpreted as either
scalar or multi-variate functions defined over the shape.
The CIELab colour space is considered due the percep-
tual uniformity of this colour representation.

• A hybrid descriptor. Shape and texture are jointly
analysed by opportunely weighting the colourimetric
information (L , a, b channels) with respect to the under-
lying geometry and topology.

• A geometric description relying on a set of functions rep-
resenting as many geometric shape properties. Functions
are first clustered; then, a representative function is cho-
sen for each cluster. The goal here is to select functions
that are mutually independent, thus complementing each
other via the geometric information they carry with them.

Figure 6 shows a pictorial representation for the generation
of a PHOG signature.

Run BCGS1 Following the PHOG original setting, the
colourimetric description is included in the persistence
framework. Indeed, the a, b coordinates are used to jointly
define a bivariate function over a given shape, whereas L is
used as a scalar function. In this way, colour and intensity
are treated separately. Precisely, for a shape S represented
by a triangle mesh S, the two functions fL : S → R and
fa,b : S → R

2 are considered, the former taking each point
x ∈ S to the L-channel value at x and the latter to the pair
given by the a- and the b-channel values at x , respectively.
The values of fL and fa,b are then normalized to range in the
interval [0, 1]. Last, S is associated with the 0th persistence
diagram Dgm( fL) and the 0th persistence space Spc( fa,b):
these descriptors encode the evolution of the connectivity in
the sublevel sets of fL and fa,b in terms of birth and death
(i.e. merging) of connected components, see [4] for more
details.
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Fig. 6 Generating a PHOG signature. First row a shape S (left), the
function fgeod (center) and the corresponding persistence diagram
Dgm( fgeod ). Second row the mutual distance matrix MDM(S), the
function fL and the corresponding persistence diagram Dgm( fL )

The hybrid description comes from a geodesic distance
fgeod : S → R defined in a higher dimensional embedding
space, similarly to the approach proposed in [30,32], and
used as a real-valued function in the persistence framework
to associate S with the persistence diagram Dgm( fgeod).
The definition of the joint geometric and colourimetric inte-
gral geodesic distance is straightforward and implemented
through the Dijkstra’s algorithm, which is based on edge
length.

The geometric description is based on the DBSCAN clus-
tering technique [16]. Once a set of functions { fi : S → R}
(from an original set of 70 geometric functions, see [4] for
the complete list) is selected, a matrixMDM(S)with entries

MDM(i, j) := 1 − 1

Area(S)

∑

t∈S

∣∣∣∣

〈 ∇ t fi
‖∇ t fi‖ ,

∇ t f j
‖∇ t f j‖

〉∣∣∣∣

is used to store the distances between all the possible couple
of functions, with∇ t fi ,∇ t f j representing the gradient of fi
and f j over the triangle t of the mesh S.

To assess the similarity between two shapesS1 andS2, the
corresponding colourimetric, hybrid and geometric descrip-
tions are compared. In particular, the colourimetric distance
dclr (S1,S2) is the normalized sum of the Hausdorff dis-
tance between the 0th persistence diagrams of fL and that
between the 0th persistence spaces of fa,b; the hybrid dis-
tance dhbd(S1,S2) is the Hausdorff distance between the
corresponding persistence diagrams of fgeod ; the geometric
distance dgeo(S1,S2) is computed as theManhattan distance
between the matrices MDM(S1) and MDM(S2). The final
dissimilarity score between S1 and S2 is the normalized sum
dclr (S1,S2) + dhbd(S1,S2) + dgeo(S1,S2).

Variations Several variations of the PHOG framework are
possible, for instance exploring the use of different distances
between feature vectors or dealingwith variations of the three
(colourimetric, hybrid, geometric) shape descriptions. For
the current implementation the following changes have been
proposed:

• Run BCGS2 The original hybrid description is replaced
by a histogram-based representation of the geodesic
distance. While getting rid of the additional geometric
contribution provided by persistence, the hybrid perspec-
tive is maintained as the considered geodesic distance
takes into account both geometric and texture informa-
tion.

• Run BCGS3 The stability properties of persistence dia-
grams and spaces imply robustness against small varia-
tions in the L , a, b values. This also holds when colour
perturbations arewidely spreadover the surfacemodel, as
in the case of slight illumination changes. On the other
hand, colour histograms behave well against localized
colourimetric noise, even if characterized by large vari-
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ations in the L , a, b values. Indeed, in this case colour
distribution is not altered greatly. In this view, the idea
is to replace the hybrid contribution with CIELab colour
histograms, so to improve the robustness properties of the
persistence-based description. Histograms are obtained
as the concatenation of the L , a, b colour channels.

In runs BCGS2–3, histograms are compared through the
earth mover’s distance (EMD). The DBSCAN clustering
technique for selecting representative geometric functions
is replaced by the one used in [7], which is based on the
replicator dynamics technique [54]. The modified geometric
descriptors are compared via the EMD as well, after convert-
ing the MDM matrices into feature vectors.

4.7 Taxonomy of the methods

The methods detailed above can be considered as represen-
tatives of the variety of 3D shape retrieval and classification
techniques overviewed in Sect. 2. Indeed, they range from
local feature vector descriptions coded as histograms of geo-
metric and/or colour properties, to spectral and topological
based descriptions, including also a spatial pyramid match-
ing framework. In what follows, we group the properties of
these methods on the basis of the key characteristics they
exhibit, e.g., the geometric and colourimetric structure they
capture, at which scale level the shape description is for-
malized, or which colour space has been chosen for texture
analysis. These characteristics are briefly described in the
following and summarized in Table 1.

Intrinsic vs. extrinsic Studying the geometric shape of a 3D
model relies on the definition of a suitable metric between its
points. Among the possible options, two particular choices
appear quite natural.

The first one is to consider the Euclidean distance, which
in turn reflects the extrinsic geometry of a shape. Extrinsic
shape properties are related to how the shape is laid out in an
Euclidean space, and are therefore invariant to rigid transfor-
mations, namely rotations, translations and reflections.

A second choice is to measure the geodesic distance
between points, that is, to consider the intrinsic geometry
of a shape. Intrinsic shape properties are invariant to those
transformations preserving the intrinsicmetric, including not
only rigid shape deformations but also non-rigid ones such
as shape bendings.

Methods associated with runs GG(1–3), TAS and Gi3 are
examples of extrinsic approaches; spectral methods [runs
LBG(1-3)] and those based on geodesic distances [runsVe(1–
3) and Gi(1–2)] well represent intrinsic approaches. The
PHOG method [runs BCGS(1–3)] can be seen as a “mostly”
intrinsic approach, being based on a collection of geometric

functions which prevalently describe intrinsic shape proper-
ties.

Global vs. multi-scale Shape descriptors generally encode
information about local or global shape properties. Local
properties reflect the structure of a shape in the vicinity of a
point of interest and are usually unaffected by the geometry
or the topology outside that neighbourhood. Global proper-
ties, on the other hand, capture information about the whole
structure of a shape.

Another option is to deal with shape properties at differ-
ent scales, thus providing a unifying interpretation of local
and global shape description. Such an approach is usually
referred to as multi-scale.

The methods presented in this contribution can be classi-
fied as global and multi-scale ones, both for geometric and
texture information, see Table 1 for details.

RGB vs. non-RGB The more natural colour space to be used
in the analysis of colourimetric shape properties appears
to be the RGB one. This was actually the choice carried
on by methods associated with runs and Ve(1–3). How-
ever, other options are possible. For instance, runs GG(1–3)
are based on normalized and averaged RGB channels,
while methods related to runs TAS, BCGS(1–3), Gi(1–3)
study colourimetric shape properties in the CIELab colour
space.

Feature vectors vs. topology Once geometric and texture
shape properties have been analysed and captured, they have
to be properly represented through suitable shape descrip-
tors. The most popular approach is to use feature vectors
[72], and most of the methods implemented in this paper
actually adopt this description framework. Feature vectors
generally encode shape properties expressed by functions
defined on the shape and are usually represented as his-
tograms. While being very efficient to compute, histograms
might forget part of the structural information about the con-
sidered shape property. To overcome this limitation, it is
possible to consider the shape connectivity directly at the
function level, see for instance shape distributions (runs Gi1
and Gi2). Alternatively, one can move to more informa-
tive histogram variations: bi-dimensional histograms, such
as the geodesic distance matrix used in runs Ve(1–3) and
the mutual distance matrix adopted in runs BCGS(1–3), or
concatenated histograms obtained at different resolution lev-
els, as in the case of runs GG(1–3), LBG(1–3, txt) and
TAS.

A different way to preserve the structure of geometric
information is provided by descriptors rooted in topology
[runs BCGS(1–3) and Gi3]. Indeed, they keep track of the
spatial distribution of a considered shape property, and possi-
bly encode the mutual relation among shape parts of interest,
that is, regions that are highly characterized by the consid-
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Table 1 Methods of
classification according to the
taxonomy provided in Sect. 4.7

Run Geometric description Texture description Colour space Final descriptor

BCGS1 Mostly intrinsic (mixed) Multi-scale CIELab Hybrid/combined

Global Topological

2D histogram

BCGS2 Mostly intrinsic (mixed) Multi-scale, global CIELab Hybrid/combined

Global Topological, histogram

2D histogram

BCGS3 Mostly intrinsic (mixed) Multi-scale, global CIELab Hybrid/combined

Global Topological, histogram

2D histogram

GG1 Extrinsic (symmetry) Global Normalized RGB Combined

Multi-scale Histogram

Concatenated histogram

GG2 Extrinsic (symmetry) Global Averaged RGB Combined

Multi-scale Histogram

Concatenated histogram

GG3 Extrinsic (symmetry) Multi-scale Averaged RGB Hybrid

Multi-scale Histogram

Concatenated histogram

Gi1 Intrinsic (geodesic) Global CIELab Hybrid

Global Histogram

Histogram

Gi2 Intrinsic (geodesic) Global CIELab Hybrid/combined

Global Histogram

2D histograms

Gi3 Extrinsic (spherical harmonics) Global CIELab Hybrid/combined

Global Topological

Histogram

LBG1 Intrinsic (spectral) – – –

Multi-scale

Concatenated histogram

LBG2 Intrinsic (spectral) – – –

Multi-scale

Concatenated histogram

LBG3 Intrinsic (spectral) Multi-scale RGB Combined

Multi-scale Histogram

Concatenated histogram

TAS Extrinsic (image-based) Multi-scale CIELab Combined

Multi-scale Histogram

Concatenated histogram

Ve1 Intrinsic (geodesic) Global RGB Combined

Global Histogram

2D histogram

Ve2 Intrinsic (geodesic) Global RGB Combined

Global Histogram

2D histogram
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Table 1 continued
Run Geometric description Texture description Colour space Final descriptor

Ve3 Intrinsic (geodesic) Global RGB Combined

Global Histogram

2D histogram

Geometric description each run is characterized by type of invariance (type of information); scale; type of
descriptor. Texture description each run is characterized by scale; type of descriptor. Colour space the space
used for colour representation. Final descriptor either hybrid or combined; “hybrid/combined” means that a
hybrid contribution is combined a posteriori with other shape descriptions

ered property. The reader is referred to Table 1 for details
about the approaches adopted by methods under evaluation.
Hybrid vs. combined Finally, methods can be distinguished
by the way both geometric and texture information are
merged together. Typically, this can be done either a priori or
a posteriori. The first case results in a hybrid shape descrip-
tor, as for runs GG3 and partially for runs BCGS(1–3) and
Gi(1–3). In the second case, a pure geometric and a pure tex-
ture descriptor are obtained and compared separately, while
the final dissimilar score is a weighted combination of the
two distances.

5 Comparative analysis

The methods detailed in Sect. 4 have been evaluated through
a comparative study presented in what follows. Each run
has been processed in terms of the output specified in
Sect. 3.2 and according to the evaluation measures described
in Sects. 3.3.1 and 3.3.2.

5.1 Retrieval performances

Following [76], the retrieval performance of each run has
been evaluated according to the following relevance scale:
if a retrieved object shares both shape and texture with the
query, then it is highly relevant; if it shares only shape, it is
considered marginally relevant; otherwise, it is not relevant.
Note that, because of the multi-level relevance assessment
of each query, most of the evaluation measures have been
split up as well. Highly relevant evaluation measures relate
to the highly relevant items only, while relevant evaluation
measures are based on all the relevant items (highly relevant
items + marginally relevant items).

5.1.1 Highly relevant evaluation

In the highly relevant scenario, the main goal is to evaluate
the performance of algorithms when models vary by both
geometric shape and texture.

Figure 7 shows the performances of the six methods
in terms of the average precision–recall curve, which is
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Fig. 7 Highly relevant precision–recall curves for the best run of each
method

obtained as the average of the precision–recall curves com-
puted over all the queries. To ease results visualization, the
plot in Fig. 7 includes only the best run for each method, that
is, runs with the highestmAP score.We remind that, for ideal
retrieval systems, the mAP score equals to 1.

The runs of Fig. 7 have been analysed also in terms of the
weighted average mAP score computed over the 48 classes
that represent the highly relevant scenario, where weights are
determined by the size of the classes, see the second column
of Table 2. Moreover, we considered also the percentage of
classeswhosemAPscore is larger that some threshold values,
namely 0.40, 0.55, 0.70, 0.85, see columns (3–6) in Table 2.

To further analyse retrieval performances against texture
deformations, we restrict the mAP analysis to each specific
class of colourimetric transformations described in Sect. 3.
More precisely, we first let the algorithms run exclusively
on set of null models. Then, we add only those elements
that come as a result of one of the five texture transforma-
tions used to generate the entire dataset. Note that, according
to the procedure used to create the benchmark, each texture
deformation is always applied together with a geometric one;
hence it still makes sense to apply the highly relevant para-
digm along the evaluation process. Table 3 summarizes the
results.

Looking at how the performances degrade across the dif-
ferent families of transformations, it can be noted that all
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Table 2 Highly relevant
analysis for the runs in Fig. 7:
weighted average mAP score
(first column), and how many of
the 48 highly relevant classes
have a mAP score exceeding
values 0.40, 0.55, 0.70, 0.85
(third–last column, respectively;
results are reported in
percentage points)

Runs mAP >0.40 (%) >0.55 (%) >0.70 (%) >0.85 (%)

BCGS3 0.7225 100.00 79.17 52.08 27.08

GG1 0.6980 100.00 81.25 50.00 18.75

Gi3 0.5365 79.17 39.58 18.75 4.17

LBG3 0.5256 77.08 33.33 10.42 2.08

TAS 0.4380 64.58 12.50 2.08 0.00

Ve1 0.4671 68.75 29.17 4.17 0.00

The best two results are in bold and italic text, respectively

methods appear to be not too sensitive against transforma-
tions of type 2, while the worst results are distributed among
transformations of type 1 (runs Gi3, LBG3, TAS and Ve2),
and 3 (runs BCGS3 and GG1).

Table 4 reports the best highly relevant performances in
terms of nearest neighbour, first tier and second tier eval-
uation measures. Additionally, the last column of Table 4
records the ADRmeasures. All the scores, which range from
0 (worst case) to 1 (ideal performance), are averaged over all
the models in the dataset.

Finally, Fig. 8 shows the best run of each method accord-
ing to the NDCG measure as a function of the rank p. In
the present evaluation, the NDCG values for all queries are
averaged to obtain a measure of the average performance for
each submitted run. Remind that, for an ideal run, it would
be NDCG ≡ 1.

The NDCG measure takes geometric retrieval perfor-
mances into larger account than texture ones. Indeed, geo-
metric shape similarity is involved in the definition of both
relevant and highly relevant items. Thismeans that runs char-
acterized by moderate geometric retrieval performances will
be more penalized than others (see also Sect. 5.1.2). This is
the case of run GG1, which is indeed definitely tuned for the
highly relevant rather then the relevant scenario.

Discussion Trying to interpret the outcome of the highly rel-
evant evaluation, we are led to the following considerations:

• The algorithm design associated with runs BCGS3 and
Gi3 proposes a similar combination of geometric and tex-
ture information. Indeed, both methods rely on a hybrid
shape description, in which texture contribution is in part
based on a geometric–topological analysis of colourimet-
ric properties and carried out in the CIELab colour space.
In otherwords, a “structured” analysis of the colour chan-
nels is paired with the choice of a colour space that better
reflects, with respect to the RGB one, human colour per-
ception. Moreover, the geometric–topological approach
allows for keeping track of the underlying connectivity of
3D models, thus providing additional information about
the spatial distribution of colourimetric shape properties.

• RunGG1 represents a combined shape descriptor, whose
texture contribution is based on considering a normalized
version of the RGB colour space. Such a choice seems to
imply a good robustness against texture affine transfor-
mations. Incidentally, it should be noted that, in spite of
presenting only the best runs to ease readability and visu-
alization of results, runs GG2 and GG3, which are based
on the greyworld RGB channels normalization, exhibit
results which are comparable with those of run GG1.

• As for runs LBG and Ve, texture description is accom-
plished through standard histograms of RGB colour
channels, although runsLBG incorporate some additional
information as the result of considering amulti-resolution
approach applied to shape sub-parts. However, it seems
that dealing with colourimetric information in other
colour spaces, such as the CIELab one or variations of the
RGB colour space, allows for a representation of colour
that is more robust to the texture deformations proposed
in this benchmark.

5.1.2 Relevant evaluation

In this section we analyse the performances of methods with
respect to their capability of retrieving relevant items; in this
case shape (dis)similarity depends only on geometric shape
properties. In analogy to Sect. 5.1.1, Fig. 9 shows the best
runs for all methods in terms of the average precision–recall
curve. Table 5 reports the mAP scores of those runs, which
are now averaged over the 16 geometric classes composing
the dataset. Also in this case, we report for howmany classes
the mAP score exceeds values 0.40, 0.55, 0.70, 0.85.

Table 6 reports the best relevant retrieval performances
according to the nearest neighbour, first tier and second tier
evaluation measures. All scores are averaged over all the
models in the dataset.

DiscussionApart from the nearest neighbour scores (Table 6,
first column), it seems that the overall relevant performance is
still not ideal here. This is actually not surprising, since most
of methods considered for evaluation have been specifically
tuned for dealingwith both texture and geometric shapemod-
ifications. Nevertheless, the relevant evaluation can be used
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Table 3 Highly relevant
analysis of the five families of
affine texture deformations used
to build the benchmark

Run mAP >0.40 (%) >0.55 (%) >0.70 (%) >0.85 (%)

No transformations (only null models)a

BCGS3 72.41 100.00 97.92 64.58 6.25

GG1 71.91 100.00 91.67 66.67 6.25

Gi3 62.45 100.00 75.00 27.08 0.00

LBG3 61.84 100.00 66.67 25.00 6.25

TAS 60.30 100.00 66.67 18.75 2.08

Ve1 64.46 100.00 72.92 39.58 0.00

Tran. 
1b

BCGS3 0.6340 97.92 72.92 31.25 4.17

GG1 0.6057 95.83 72.92 20.83 2.08

Gi3 0.5162 93.75 33.33 10.42 0.00

LBG3 0.5030 85.42 22.92 10.42 0.00

TAS 0.4713 77.08 22.92 4.17 0.00

Ve1 0.5104 87.50 31.25 8.33 0.00

Tran. 
2c

BCGS3 0.6506 81.25 77.08 62.50 14.58

GG1 0.6261 81.25 70.83 52.08 18.75

Gi3 0.5609 79.17 58.33 37.50 10.42

LBG3 0.5611 81.25 56.25 35.42 12.50

TAS 0.5564 77.08 58.33 39.58 8.33

Ve1 0.5766 81.25 62.50 47.92 6.25

Tran. 
3d

BCGS3 0.6234 95.83 68.75 37.50 4.17

GG1 0.6072 95.83 64.58 25.00 4.17

Gi3 0.5227 93.75 41.67 6.25 2.08

LBG3 0.5172 87.50 39.58 8.33 0.00

TAS 0.4758 83.33 25.00 4.17 0.00

Ve1 0.5312 85.42 45.83 14.58 0.00

Tran. 
4e

BCGS3 0.6401 97.92 72.92 41.67 4.17

GG1 0.6247 97.92 66.67 31.25 8.33

Gi3 0.5498 93.75 45.83 10.42 0.00
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Table 3 continued
Run mAP >0.40 (%) >0.55 (%) >0.70 (%) >0.85 (%)

LBG3 0.5197 87.50 33.33 10.42 0.00

TAS 0.4974 79.17 35.42 6.25 0.00

Ve1 0.5324 87.50 43.75 12.50 2.08

Tran. 
5f

BCGS3 0.6262 95.83 64.58 33.33 12.50

GG1 0.6021 97.92 62.50 35.42 4.17

Gi3 0.5442 87.50 50.00 16.67 2.08

LBG3 0.4964 81.25 25.00 10.42 4.17

TAS 0.5003 81.25 31.25 14.58 0.00

Ve1 0.5264 87.50 45.83 12.50 2.08

a Highly relevant analysis of the mAP score associated with null models. The best two results are in bold
and italic text, respectively.
b Highly relevant analysis of the mAP score associated with affine texture deformation 
1. A visual
interpretation of this kind of transformation, and of the considered strength levels, is given by the pictures
above.
c Highly relevant analysis of the mAP score associated with affine texture deformation 
2. A visual
interpretation of this kind of transformation, and of the considered strength levels, is given by the pictures
above.
d Highly relevant analysis of the mAP score associated with affine texture deformations 
3. A visual
interpretation of this kind of transformation, and of the considered strength levels, is given by the pictures
above.
e Highly relevant analysis of the mAP score associated with affine texture deformations 
4. A visual
interpretation of this kind of transformation, and of the considered strength levels, is given by the pictures
above.
f Highly relevant analysis of the mAP score associated with affine texture deformations 
5. A visual
interpretation of this kind of transformation, and of the considered strength levels, is given by the pictures
above

Table 4 Best NN, FT, ST and ADR values for each method

Runs NN FT ST ADR

BCGS 0.967 (3) 0.620 (3) 0.760 (3) 0.496 (3)

GG 0.930 (3) 0.600 (1) 0.740 (1) 0.478 (1)

Gi 0.894 (2) 0.455 (3) 0.590 (3) 0.383 (3)

LBG 0.686 (3) 0.440 (3) 0.592 (3) 0.369 (3)

TAS 0.558 0.375 0.527 0.318

Ve 0.735 (1) 0.396 (1) 0.539 (1) 0.342 (1)

Numbers in parenthesis indicate the run achieving the corresponding
value. For each evaluation measure, the best two results are in bold and
italic text, respectively

as a lever for further comments about the benchmark and the
considered methods.

As an overall comment, it is worth mentioning that a
large part of geometric shape modifications is not metric-
preserving. Indeed, the geometric deformations used to
create the benchmark alter both the extrinsic and the intrinsic
properties of shapes. This suggests the need for the develop-
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Fig. 8 Performances of the best runs w.r.t. the NDCG measure (run
GG1 is almost totally covered by runs Gi3, LBG3 and TAS)

ment of more general techniques for 3D shape analysis and
comparison. This is actually one of the most recent trends in
the field, see, e.g. [58,59].

More in detail, we observe that

• The good performance of run LBG2 relies on two main
motivations. First, this run is completely determined by a
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Fig. 9 Relevant precison–recall curves for the best run of each method

geometric contribution and, therefore, it is not affected by
any other, possiblymisleading, information about texture
shape properties.
Second, the method represented by run LBG2 is spectral-
based and, therefore, is able to capture intrinsic shape
properties. As a consequence, it is invariant to rigid
shape transformations, as well as some non-rigid defor-
mations such as pose variations and bendings, which are
all present in the dataset. Finally, differently from runs
Gi3 and Ve2, whose geometric contribution is intrin-
sic as well, the descriptive power of the spectral-based
approach is improved by additional spatial information
provided by the intrinsic spatial pyramid matching (see
Sect. 4.2 for details).

• A similar reasoning about the invariance under rigid and
non-rigid deformations also holds for run BCGS1, whose
associated method can be considered as “mostly” intrin-
sic. Indeed, the geometric contribution relies in this case
on a collection of descriptors which are mainly intrinsic,
considering either spectral-based functions or geodesic
distances or Gaussian curvature.

• The relatively good performance of run TAS can be
explained by the fact that it mixes an extrinsic approach
with a “view-based” strategy that is widely acknowl-
edged as the most powerful and practical approach

Table 6 Best NN, FT and ST values of each method

Runs NN FT ST

BCGS 0.972 (2) 0.463 (1) 0.601 (1)

GG 0.938 (3) 0.374 (1) 0.374 (2)

Gi 0.968 (3) 0.383 (3) 0.504 (3)

LBG 0.939 (2) 0.471 (2) 0.626 (3)

TAS 0.9768 0.4578 0.5847

Ve 0.918 (2) 0.398 (1) 0.499 (1)

Numbers in parenthesis indicate the run achieving the corresponding
value. For each evaluation measure, the best two results are in bold and
italic text, respectively

for rigid 3D shape retrieval [66]. Even when a 3D
model is articulated, non-uniformly deformed or par-
tially occluded, the number of views (38, actually) used
in this implementation should limit the noisy effect pos-
sibly generated in the images captured around an object.

• Run GG2 mainly focuses on radial and spherical local
symmetries. While the approach appears to be robust
when the analysis is restricted to a single class of geo-
metric transformations, in the most general case (i.e. the
whole dataset) results are affected by a non optimal trade-
off between geometric and colourimetric contribution. In
this way, the relevant retrieval performance is partially
conditioned by the inter-class texture variations.

5.2 Classification performances

In the classification task, each run results in two classifica-
tion matrices, one for geometry and one for texture, which
are derived from the 1-NN classifier associated with the dis-
similarity matrices used for the retrieval task. Hence, for a
classificationmatrixC , the elementC(i, j) is set to 1 ifmodel
i is assigned to class j , meaning that j is the nearest neigh-
bour of i , and 0 otherwise.

Figures 10 and 11 represent the confusion matrices for the
best runs of each method. For visual purposes, we have nor-
malized the matrices with respect to the number of elements
in each class, so that possible values range from 0 to 1.

Table 5 Relevant analysis for
the runs in Fig. 9: weighted
average mAP score (first
column), and how many of the
16 relevant classes have a mAP
score exceeding values
0.40, 0.55, 0.70, 0.85 (third–last
column, respectively; results are
reported in percentage points)

Run mAP >0.40 (%) >0.55 (%) >0.70 (%) >0.85 (%)

BCGS1 0.5181 81.25 37.50 6.25 0.00

GG2 0.3811 37.50 6.25 0.00 0.00

Gi3 0.4266 56.25 12.50 0.00 0.00

LBG2 0.5480 81.25 43.75 18.75 0.00

TAS 0.5158 81.25 37.50 12.50 0.00

Ve2 0.4479 56.25 25.00 12.50 0.00

The best two results are in bold and italic text, respectively
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Fig. 10 Geometric confusion matrices for the best runs of the considered methods
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Fig. 11 Texture confusion matrices for the best runs of the considered methods

Table 7 Averaged geometric TPR, TNR and MCC for the best run of
all considered methods

Run TPR TNR MCC

BCGS2 0.9725 0.9988 0.9814

GG3 0.9371 0.9959 0.9341

Gi3 0.9685 0.9979 0.9668

LBG2 0.9388 0.9959 0.9355

TAS 0.9773 0.9985 0.9759

Ve2 0.9178 0.9945 0.9138

The best two results are in bold and italic text, respectively

Table 8 Averaged texture TPR, TNR and MCC for the best run of all
considered methods

Run TPR TNR NCC

BCGS3 0.9913 0.9992 0.9904

GG3 0.9860 0.9987 0.9847

Gi2 0.9161 0.9922 0.9093

LBGtxt 0.8811 0.9885 0.8714

TAS 0.5874 0.9621 0.5524

Ve1 0.8129 0.9820 0.7952

The best two results are in bold and italic text, respectively

Tables 7 and 8 provide a quantitative interpretation of
the visual information contained in the confusion matri-
ces. Indeed, the true positive rate (TPR), the true negative
rate (TNR) and the Matthews correlation coefficient (MCC)
can be directly computed from the elements of a confusion
matrix.

More precisely, given a confusion matrix CM and a class
ı̄ , it is possible to derive the associated TPR,TNR and MCC
as follows. It is first convenient to introduce the number of
true positiveTP, the number of false negativeFN, the number
of false positive FP and the number of true negative TN that

are defined as TP = CM(ı̄ .ı̄),FN = ∑
j �=ı̄ CM(ı̄, j),FP =∑

j �=ı̄ CM( j, ı̄),TN = ∑
i, j CM(i, j) − (TP + TN + FP).

Then, we get TPR,TNR and MCC by the relations

TPR = TP

TP + FN
, TNR = TN

FP + TN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

In Tables 7 and 8, the reported values are averaged over all
the considered classes (16 geometric and 12 textured ones).
Discussions Dealing with 1-NN classifiers, the classification
results resemble somehow the nearest neighbour perfor-
mances registered in Tables 4 and 6. Note however, that the
dataset classifications considered in this task are purely geo-
metric and purely texture ones. In particular, the latter does
not coincidewith the classification adopted in the highly rele-
vant retrieval task, since geometric similarity is not involved.
Also, results in Tables 7 and 8 are averaged on the dataset
classes: this explains the slight discrepancy between the geo-
metric TPR and the relevant NN measure that is averaged
over all the elements in the dataset.

As shown in Fig. 10, geometric confusion matrices reveal
a good classification performance of the methods. Indeed,
all matrices appear almost diagonal, meaning that almost
all elements in the dataset should be correctly classified.
This qualitative intuition is confirmed by the TPR scores
reported in Table 7. Furthermore, TNR values are even
higher, thus revealing that allmethods are close to the optimal
performance in detecting true negatives (e.g., “non-tables”
correctly identified as such). As much in the same way, the
MCCmeasure assigns scores very close to 1 for all methods.

Nevertheless, Fig. 11 shows that, while the geometric clas-
sification of the considered runs are roughly comparable, in
the texture scenario a sort of transition occurs, in such a way
that three methods (BCGS3, GG3–, Gi2) perform substan-
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tially better than the others. The numerical details in Table 8
highlight that the main differences are at the TPR and MCC
level, revealing that the confusion highlighted in Fig. 11 is
essentially in the localization of true positives (e.g., “tables”
correctly identified as tables).

Finally, it is worth noting how, in the texture classification
task, best performances still come from those methods deal-
ing with texture information in colour spaces which differ
from the standard RGB one, that is, CIELab and the grey-
world normalized RGB colour space.

6 Discussion and conclusions

In this paper, we have provided a detailed analysis and evalu-
ation of state-of-the-art retrieval and classification algorithms
dealingwith an emerging type of content, namely textured 3D
objects, whichwe believe deserve attention from the research
community. The increasing availability of textured models
in computer graphics, the advances in 3D shape acquisition
technology which are able to acquire textured 3D shapes,
the importance of colour features in 3D shape analysis appli-
cations together call for shape descriptors which take into
consideration also colourimetric information.

Beyond the extensive analysis that has been carried out
throughout the paper, we hope that the experimental results
presented here may offer interesting hints for further inves-
tigation. We list a few as follows:

• On the one hand, the retrieval performances are positive
for all methods, in either the relevant or the highly rele-
vant scenario, or both. On the other hand, the NDCG and
ADR measures are specifically designed for interpreting
amulti-level dataset classification as in this case, and thus
offer a complementary evaluation to the above ones. As
can be seen by Fig. 8 and Table 4, results in this sense are
quite far from being optimal: indeed, the best possible
value for the ADR score is 1, while the highest regis-
tered scores fluctuate around 0.5; similarly, the highest
possible area under a NDCG curve equals 1, while the
best scores in this contribution are around 0.75. In other
words, the benchmark was challenging and call for fur-
ther improvements and new strategies able to deal with
non-isometric geometric deformations, as well as affine
texture deformations.

• Results achieved by some of the proposed runs suggest
that a structured colourimetric analysis could be more
informative than a purely histogram-bases one. However,
there is probably still a long road ahead in this sense. For
example, an interesting question could be how to gen-
eralize, in a reasonable colourimetric sense, well-known
extrinsic and intrinsic geometric properties, for example,

as in the case of the colour-aware geodesic distances, see
Sect. 4.4 for details.

• An issue deserving further investigation is to understand
which approach is preferable for textured shape analy-
sis, either a combined or a hybrid one. For instance, the
aforementioned colour-aware geodesic distances and the
topological approach for the analysis of colour informa-
tion appear to be promising hybrid solutions to extract
useful information from texture shape attributes. Never-
theless, it should be noted that such approaches have been
complemented with purely geometric and colourimetric
contributions, to achieve satisfactory retrieval and clas-
sification performances. Another meaningful example
is the one provided by MAPT-based algorithms, which
obtained top-rank results in the highly relevant scenario:
however, a combined approach generally performed bet-
ter than a hybrid one in a retrieval context, being the
opposite in the classification task. Based on the above
remarks, it seems that the overall picture is still quite
unclear, calling for a deeper understanding of how geo-
metric and colourimetric shape properties can be jointly
analysed.

• Some of the best retrieval and classification results have
been accomplished through the use of the CIELab colour
space, as well as variations of the more classical RGB
colour space. Indeed, the CIELab space well represents
human perception of colour and hence appears as a more
natural choice. As for the considered variations of the
RGB colour space, it seems that they allow to better cope
with the affine colourimetric transformations that have
been included in the proposed benchmark. Obviously,
these are not the only possible alternative to the RGB
colour space. Also, the affine colourimetric transforma-
tions considered here are just a subset of all the possible
texture modifications. Therefore, it could be interesting
to investigate how changing the choice of colour repre-
sentation might affect performance results in retrieving
and classifying textured 3Dmodels, as well as which par-
ticular choice in the colour space is better suited to face
with certain classes of texture deformations.
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