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ABSTRACT: Commonly known in macroscale mechanics, buckling
phenomena are now also encountered in the nanoscale world as revealed
in today’s cutting-edge fabrication of microelectronics. The description of
nanoscale buckling requires precise dimensional and elastic moduli
measurements, as well as a thorough understanding of the relationships
between stresses in the system and the ensuing morphologies. Here, we
analyze quantitatively the buckling mechanics of organosilicate fins that are
capped with hard masks in the process of lithographic formation of deep
interconnects. We propose an analytical model that quantitatively describes
the morphologies of the buckled fins generated by residual stresses in the
hard mask. Using measurements of mechanical properties and geometric
characteristics, we have verified the predictions of the analytical model for
structures with various degrees of buckling, thus putting forth a framework
for guiding the design of future nanoscale interconnect architectures.
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Technological advances in developing new fabrication
methods, complex materials, and characterization tools

are needed in the quest for scaling down integrated
components1,2 such as transistors and interconnects in high-
performance electronics.3,4 To this end, fabrication efforts have
to address not only requirements for desired electronic
functionalities but also challenging demands5 on the mechan-
ical integrity and robustness of nanoscale architectures. The
characterization techniques that target mechanical properties
have recently made significant advances toward accurate
interrogation of the mechanical response of separated and
integrated nanoscale building blocks6−10 and is poised now to
guide advanced designs for nanoscale circuitry. Testing and
characterization of materials and structures integrated at the
nanoscale are necessary because of the presence of size
effects7,11−13 and of the degradation of mechanical properties
during multiple fabrication steps.14,15 Because both size effects
and degradation of properties are unavoidable in the next
generations of densely integrated circuits, a fundamental
understanding of the structure−property relationship, coupled
with accurate characterization, is required in order to
significantly improve the design, performance, and reliability
of nanoscale devices.

Currently, in the dual damascene patterning of interlayer
dielectric (ILD) structures for interconnects,16,17 hard masks
(e.g., TiN) are used to define ILD trenches with widths below
one hundred nanometers.18 The hard masks provide precise
alignment and great chemical selectivity in defining nanoscale
patterns on the ILD. However, because the ILD and the
deposited TiN have very different structural and mechanical
properties, there is a residual stress accumulated in the TiN
hard mask which can generate high compressive stresses in the
patterned structures. This becomes a drawback when the ILD
lines are thinner and taller because mechanical instabilities can
occur in ILD lines that are fabricated below certain dimensions,
for example, thinner than 50 nm and taller than 100 nm. These
mechanical instabilities are in the form of wiggled lines,
reminiscent of the classical buckling phenomenon. Similar
instabilities19−21 have been investigated for micron-scale
structures either as potential components in stretchable
electronic devices6 or as phenomena underlying new
metrologies.22 Micron-scale buckling phenomena have been
observed in thin films and strips,23,24 whereas the nanoscale

Received: February 18, 2015
Revised: April 27, 2015
Published: May 7, 2015

Letter

pubs.acs.org/NanoLett

© 2015 American Chemical Society 3845 DOI: 10.1021/acs.nanolett.5b00685
Nano Lett. 2015, 15, 3845−3850

pubs.acs.org/NanoLett
http://dx.doi.org/10.1021/acs.nanolett.5b00685


patterned structures in this work are thin and tall lines (fins).
Although observations of buckling in TiN-capped ILD fins have
been reported,25,26 detailed dimensional and mechanical
measurements have not yet been performed for self-consistent
diagnostics based on analytical or finite element modeling.
Here, we report results from accurate dimensional and

mechanical characterization experiments and propose an
analytical model for the buckling of TiN-capped ILD fins.
We have performed dimensional measurements using atomic
force microscopy (AFM), with the AFM tip scanning directly
atop the buckled fins so as to measure the amplitude and
wavelength of their undulations. In addition, we have measured
the geometrical dimensions (width and height) of the patterned
lines using AFM and transmission electron microscopy (TEM)
on selected samples; we have also determined the elastic
modulus of the patterned structures from contact-resonance
AFM (CR-AFM) and the residual stress of the TiN films from
measurements of wafer curvature. We have used the results of
all these measurements in the buckling analysis model in order
to achieve a consistent fundamental understanding of the
observed buckling and to provide quantitative guidance for the
mechanical response of the TiN-capped ILD fins fabricated at
tighter pitches and higher aspect ratios.
Figure 1 shows the TiN-capped ILD fins investigated here,

with a schematic of the TiN/ILD/SiO2/Si stack structure
displayed in Figure 1a and an AFM micrograph showing the
topography of the buckled fins [Figure 1b] in the vicinity of a
region where fins have been scraped down to the substrate. The
samples investigated (labeled A through D) have been prepared
on 300 mm-diameter Si(100) wafers, as described in the
Methods section. The fins have been defined first by patterning
the TiN film deposited on an ILD layer (areas of about 1 mm ×
1 mm), and then exposing the ILD to plasma etch. As the etch
of the ILD progresses through the slots patterned into the TiN
film, the residual stress developed in the TiN layer during
fabrication forces the entire fin (TiN cap and ILD ridge) into a
buckling state. The etching depth is one of the main control
parameters for buckling; at the same width, buckling is more
pronounced for the fins that are patterned deeper [Figure 1c,d].
Using partially scraped samples, we have assessed the height of
the fins from the height difference between the tops of original
fins and the roots of the scraped fins [Figure 1b]. These height
measurements are in excellent agreement with the dimensions
obtained from TEM images [Figure 1c,d], which provide the
widths and heights of the ILD fins and TiN caps. The
dimensions are listed in Table 1, along with the elastic moduli
of the caps and fins.
The elastic moduli of the TiN caps have been determined

from nanoscale contact stiffness measurements. We have
performed contact-resonance AFM (CR-AFM) measure-
ments7−9 on 300 nm wide strips of TiN films adjacent to the
buckled lines [refer to Figure S1 in Supporting Information].
The wide TiN strips have been fabricated in the same way as
the buckled lines, but, unlike the buckled lines, they provide a
flat and straight support for the spherical AFM tip used during
CR-AFM measurements (refer to Supporting Information for
details on the determination of elastic moduli). The elastic
moduli determined from CR-AFM are summarized in Table 1.
All the measurement uncertainties reported in this paper
represent one standard deviation from the mean of the
measured values.
To quantitatively describe the morphology of the buckled

fins, we have measured the lateral deflections of the TiN tops of

the fins using AFM. For each sample, we have acquired three
AFM micrographs of 7.5 μm × 7.5 μm (640 pixels ×640 pixels)
at different locations within the patterned areas. The left
column of Figure 2 shows selected regions of the AFM
micrographs for samples A−D, with different amplitudes and
wavelengths for each sample. We have traced the undulations of
each buckled fin at the midpoint of its width. Examples of such
traces are shown in the middle column of Figure 2. For each
sample, we have assembled the traces acquired via AFM
measurements into a large train of data and then performed
Fourier analysis to determine the mean wavelength and
standard deviation (refer to Supporting Information).
In the buckling analysis, each half-wavelength segment of an

ILD ridge has been modeled as a thin plate simply supported
along the x = 0 and x = λ/2 edges, built-in at the bottom edge

Figure 1. (a) Schematic of the stack structure of the TiN-capped ILD
fins investigated in this work. (b) AFM micrograph showing the three-
dimensional view of the tops and sides of the buckled fins. (c), (d)
False-color cross-sectional TEM images of samples A and B,
respectively, showing more pronounced buckling for the taller fins
of sample A.

Table 1. Dimensions and Young’s Moduli of the TiN Caps
and ILD Ridges, for an Average Fin Width of 32 nm

sample hILD (nm) hTiN (nm) EILD (GPa) ETiN (GPa)

A 180 35 2.5 ± 0.3 185.8 ± 14.2
B 150 36 2.5 ± 0.3 185.8 ± 14.2
C 180 16 5.7 ± 1.1 210.0 ± 17.0
D 160 17 5.7 ± 1.1 210.0 ± 17.0
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(y = 0), and connected with a TiN beam at the top edge, y =
hILD (refer to Figure 3). In Figure 3, hTiN and hILD are the
heights of the TiN cap and ILD plate, respectively, and the
beam and plate have the same width d and length λ/2. The
simply supported boundary conditions require zero bending
moments at the inflection points x = 0 and x = λ/2, which
ensures that these boundary conditions are appropriately used

for describing the periodic form of the buckling wave, which
has inflection points at x = nλ/2 along the beam, with n being
any integer. The residual compressive stress σTiN in the TiN
beam induces the buckling of the entire structure (beam and
plate), with the work done by the compressive forces converted
into bending energies of the beam and the plate. We have
derived the critical buckling state of a TiN-capped ILD fin by
adapting the solution proposed by Miles27,28 for a rectangular
plate with two edges simply supported, one edge built-in, and
one edge supported by an elastic beam. Unlike Miles’ solution,
where the load is distributed uniformly along the simply
supported edges, the (only) load in our case is provided by the
compressive stress in the TiN beam. The reason for neglecting
the stress in the ILD ridges is that this stress is 1 to 2 orders of
magnitude smaller than the stress in the TiN beams. From
wafer curvature measurements, the stress in the ILD films
before patterning has been estimated at about 65 MPa, which is
well below the minimum critical buckling stress28 (about 200
MPa) of the ILD ridges investigated in this work. Indeed, due
to their small residual stress, the ILD ridges recover from their
buckling upon removal of the TiN caps. Furthermore, due to
the large difference in stiffness between the stiff TiN beam and
the compliant ILD ridge, the ridge-beam interface is described
as a plate supported by an elastic beam because the twisting
moments transmitted from the complaint ILD ridge to the stiff
TiN beam are negligible.28 Under these assumptions, we have
explicitly calculated (details provided in Supporting Informa-
tion) the critical stress σTiN that causes buckling as a function of
the wavelength λ of the mth order buckling state (m = 1 for the
first order, m = 2 for the second order, etc.)

Figure 2. AFM analysis of the bucked lines for 1.250 μm × 5.000 μm regions of samples A−D. Left column: AFM micrographs of the tops of the
buckled lines (horizontal and vertical scale bars are 1000 and 500 nm, respectively). Middle column: (b) Enlarged areas with traces of the buckled
fins extracted from the AFM micrographs in the left column. Right column: Selected individual traces from each sample. The buckling wavelengths
have been determined from Fourier analysis of the traces (buckled lines).

Figure 3. Out-of-plane deflection w of a buckled TiN-capped ILD fin
over half-wavelength λ/2. Under the residual compressive stress σTiN,
the buckling of the TiN beam is limited by the deformation of the ILD
plate. ETiN and EILD refer here to Young’s moduli, and νTiN and νILD to
Poisson’s ratios of beam and plate, respectively.
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3/12
are the area and the moment of inertia of the cross section of
the TiN beam, respectively. We note that relations between the
critical stress and the buckling wavelength can in general be
obtained from minimizing energy using variational trial
solutions.24,29 Energy minimization approaches are most
effective in cases where a rigorous solution of the deflection
equation cannot be readily derived, and therefore variational
approximations would be sufficient; here, it was possible to
derive the exact analytical solution, in the form of eq 1.
Equation 1 is the main result of our analysis and also

constitutes an implicit relation from which the buckling
wavelength is extracted in terms of the critical stress and the
geometric and material parameters of the fins: as such, eq 1
provides a framework for comparisons with our wavelength
measurements (see Figure 4). Experimentally, the wavelengths

of the buckled fins have been obtained from AFM scans as
described above and in Figure 2, and the residual stresses have
been determined from wafer curvature measurements before
patterning. Being performed prior to patterning, the residual
stress measurements provide only an indication of the average
values of the stress of the TiN mask. It is also plausible that the
residual stress in the patterned TiN film could further undergo
local variations during processing. Therefore, the error bars for
the stress measurements shown in Figure 4 are lower bounds

on the uncertainty in stress, and they correspond to one
standard deviation from the mean of the measurements.
Nevertheless, the measurement results show good agreement
with the theoretical curves of the buckling critical stress versus
wavelength for all the investigated samples. The stress−
wavelength dependencies are calculated for the first buckling
modes, m = 1, of each sample with the parameters given in
Table 1. For each pair of samples (A and B; C and D) the range
of the induced wavelengths is different. Also, within each pair,
the sample with shallower trenches (B for the first pair, and D
for the second pair) exhibits shorter wavelengths and,
theoretically, its minimum critical stress for buckling should
be higher. This behavior resembles the out-of-plane buckling of
compressively strained free-hanging films30 and polymer
ridges.31,32

The comparison shown in Figure 4 between the measured
wavelengths (Figure S4 in Supporting Information) and the
calculated stress−wavelength dependencies [eq 1] suggests that
stresses from 0.5 to 0.9 GPa induce buckling in samples A and
B with wavelengths in the 950 to 1700 nm range and that
stresses from 1.4 to 1.8 GPa induce wavelengths in the 800 to
1200 nm range in sample C. The mean wavelengths in samples
A, B, and C are observed for stresses that are above the
minimum critical stresses at which buckling is induced in each
sample. The induced buckling wavelengths are obtained when
the work done by the residual stresses is balanced by the
bending energies of the TiN beam caps and ILD ridges. This
means that the buckling condition for a given observed
wavelength is fulfilled by the existing residual stresses in the
TiN beam caps, which are, in general, above the minimal critical
stresses. The calculated stress values are comparable with those
measured from wafer curvature prior to processing: 1.0 ± 0.2
GPa for samples A and B and 1.4 ± 0.2 GPa for samples C and
D. Of interest for the design of buckle-free structures would be
the minimal critical stress at which buckling appears first, which
accordingly with Figure 4 is about 0.5 to 0.7 GPa for samples A
and B and 1.4 to 1.6 GPa for samples C and D, respectively.
In contrast to samples A−C, the small-amplitude undulations

observed in sample D do not have a well-defined, long-range
spatial periodicity (refer to Supporting Information). In sample
D, the buckling state occurs in the form of small-amplitude
isolated bursts (Figure 2, also Figure S4b in Supporting
Information), rather than undulations with nearly uniform
wavelength along the fins. This observation of an incipient,
burst-like buckling state for sample D indicates that the residual
stress of the TiN film is smaller than the minimum critical
stress required for inducing buckling with uniform wavelength
(Figure 4). The discontinuous buckling state along the fins
could very likely indicate pronounced local variations of the
residual stress of the TiN film. Improved future analyses would
therefore call for measurements and consideration of local
stress fluctuations and effects of tapering of the fins along their
height.26

In Figure 4, we also show the theoretical wavelength
dependence of the buckling critical stress of a TiN beam by
itself, with the moduli and dimensions taken to correspond to
those of sample A. This is the known Euler’s critical stress of a
beam of length λ/2 at buckling, σc

beam = 4π2EbeamIbeam/
(λ2Abeam).

28 As shown in Figure 4, the buckling states of the
fins deviate from the Eulerian formula: although the buckling
critical stress of a beam varies monotonically with the length,
the buckling state of a beam-stiffened plate can be realized only
above a minimum critical stress above which the work of the

Figure 4. Measured critical buckling stresses and wavelengths (marks
with error bars) compared to the results of buckling analysis (curves).
The critical stress as a function of wavelength for a free TiN beam cap
(unattached to any fin) is also shown for comparison (black dotted
curve). The highlighted portions of the theoretical curves correspond
to the observed experimental wavelength ranges for each sample.
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compressive stress from the beam offsets the bending energies
of the beam and plate. Moreover, at a given critical stress above
the minimum critical stress, the beam-stiffened plate can
accommodate wavelengths within the range defined by that
stress value around the minimum. This correlation is well
fulfilled for samples A and B, but it is less accomplished in the
case of sample C, for which a shift to shorter wavelengths is
observed. This is because the stress in sample C is very close to
the minimum critical stress for that sample. Small wavelengths
also suggest possible nonuniformities of the stress and
geometry along the beam; such local variations in stress and
dimensions diminish the long-range periodicity and favor
correlated buckling over shorter lengths (Figure 4). This is also
consistent with the observation of incipient, uncorrelated
buckling in sample D at stresses below the theoretical minimum
critical buckling stress.
We have analyzed the minimum critical buckling stress of

TiN-capped fins as a function of TiN and ILD dimensions over
relevant ranges. From eq 1, we have found that for a given
height of the TiN cap, the fins remain unbuckled at higher
stresses as they are wider and have shorter ILD ridges.
Alternatively, for a given height of the ILD ridges, the fins can
remain stable at smaller heights and larger widths of TiN caps.
These results are in good agreement with those derived from
finite element mechanical analysis of the bifurcation buckling of
similar TiN-capped ILD fins.25,26,33

Figure 5a shows the trade-off between the height of the TiN
cap and that of the ILD ridge for a given width (d = 32 nm) for
samples C and D. These samples can sustain higher stresses for
either (i) shorter TiN caps for a given ILD height or (ii)
shorter ILD ridges for a given TiN height. In each case, a
reduction of the total bending energy is accomplished by
reducing the total height of the fin, although a more efficient
control is provided by adjusting the height of the cap (i.e., the
thickness of the TiN mask). For example, from Figure 5a, we
note that in order to remain unbuckled under stresses around
1.5 GPa, the 32 nm wide fins should be made either of a 200
nm tall ILD and a 12 nm thick TiN cap or a 400 nm tall ILD
and a 4 nm thick TiN cap. Although the residual stress of the
TiN caps is the same (1.4 GPa) for both samples C and D, the
shorter ILD ridge of sample D prevents its buckling. As shown
in Figure 5a, the theoretically predicted 1.5 GPa border
between buckled (sample C) and unbuckled (sample D) states
of the two samples agrees very well with the measurements
shown in Figure 4. The dependence of the minimum critical
buckling stress on all three dimensions (ILD height hILD, cap
height hTiN, fin width d) is shown in Figure 5b in the form of
isosurfaces at 0.5 and 2.0 GPa. Such minimum critical stress
isosurfaces in the (d, hILD, hTiN) space provide the general
solution for stable configurations that can remain unbuckled for
a given residual stress of the TiN mask.
In conclusion, we have analyzed the nanoscale buckling of

patterned TiN-capped ILD fins by intertwining measurements
and calculations. The wavelength dependence of the critical
buckling stress has been calculated from the buckling equation,
the experimental points on these curves have been obtained
from dimensional measurements, the buckling states have been
determined from topography measurements, and the buckling/
unbuckling stress curves have been compared with residual
stress values from wafer curvature measurements. Our
combined experimental and theoretical analysis offers working
points (dimensions and mechanical properties) for buckling-
free structures, and the proposed analytical model for the

buckling stress provides a framework for guiding the design of
future nanoscale interconnect architectures.

Methods. General. Certain commercial equipment, instru-
ments, or materials are identified in this document. Such
identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor
does it imply that the products identified are necessarily the
best available for the purpose.

Sample Fabrication. The ILD film stack consists of 100 nm
SiO2 deposited by chemical vapor deposition (CVD) directly
on the Si wafer, followed by a 12 nm dense (k = 4.80) SiOC:H
etch stop film deposited by plasma enhanced CVD
(PECVD).34 Low-k dielectric a-C:H (k = 2.25) (samples A
and B) and a-SiOC:H (k = 2.65) (samples C and D) ILD films
(about 200 nm thick) were deposited on the SiO2/SiOC:H film
stack by spin-on deposition and PECVD, respectively.35,36 The
SiO2/SiOC:H/ILD dielectric film stack was capped with a 40
nm (for samples A and B) to 20 nm (for samples C and D)

Figure 5. (a) Contours of the minimum critical buckling stress from
0.5 to 5.0 GPa in the (hILD, hTiN) plane (fin width 32 nm). Each
contour is labeled with the critical stress value in GPa, and separates
the unbuckled (left) from buckled (right) states of fins of various
dimensions. (b) Critical stress isosurfaces at σc = 0.5 GPa and σc = 2.0
GPa in the (d, hILD, hTiN) space. Each isosurface separates the buckled
(left and front) from the unbuckled (right and behind) states of fins of
various dimensions. The blue contour highlights the intersection
between the 0.5 GPa isosurface and the (hILD, hTiN) plane at d = 32
nm; the same blue contour is labeled 0.5 GPa in panel a. The stack
structure and material parameters correspond to samples C and D.
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thick TiN hardmask deposited by standard physical vapor
deposition methods.
Nanoscale trenches were formed in the ILD via standard

lithographic, spacer based pitch division, and plasma etching
procedures.37 Briefly, standard 193 nm immersion lithography
was utilized to pattern photoresist structures with a minimum
160 nm pitch. A spacer material was then deposited over the
photoresist and the photoresist was subsequently selectively
removed to produce a minimum 80 nm pitch grating in the
spacer material with 40 nm wide lines and spaces. A standard
TiN plasma etch process was then utilized to selectively transfer
the resulting spacer pattern into the TiN mask. The spacer
pattern was then selectively removed utilizing standard wet
chemical and ash procedures. The 80 nm grating pattern
formed in the TiN mask was finally transferred into the ILD
using a second plasma etch, optimized for the particular ILD
material of interest.
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