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Abstract

We consider the equilibrium and stability of rotating axisymmetric fluid drops
by appealing to a variational principle that characterizes the equilibria as stationary
states of a functional containing surface energy and rotational energy contributions,
augmented by a volume constraint. The linear stability of a drop is determined by
solving the eigenvalue problem associated with the second variation of the energy
functional. We compute equilibria corresponding to both oblate and prolate shapes,
as well as toroidal shapes, and track their evolution with rotation rate. The stabil-
ity results are obtained for two cases: (i) a prescribed rotational rate of the system
(“driven drops”), or (ii) a prescribed angular momentum (“isolated drops”). For
families of axisymmetric drops instabilities may occur for either axisymmetric or
non-axisymmetric perturbations; the latter correspond to bifurcation points where
non-axisymmetric shapes are possible. We employ an angle-arc length formulation
of the problem which allows the computation of equilibrium shapes that are not
single-valued in spherical coordinates. We are able to illustrate the transition from
spheroidal drops with a strong indentation on the rotation axis to toroidal drops
that do not extend to the rotation axis. Toroidal drops with a large aspect ratio
(major radius to minor radius) are subject to azimuthal instabilities with higher
mode numbers that are analogous to the Rayleigh instability of a cylindrical inter-
face. Prolate spheroidal shapes occur if a drop of lower density rotates within a
denser medium; these drops appear to be linearly stable. This work is motivated by
recent investigations of toroidal tissue clusters that are observed to climb conical
obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012)
051013].

Keywords: bifurcation; linear stability; rotating drop; toroids; variational principle

1



1 Introduction

Analyses of the dynamics of a rotating liquid drop held together by surface tension were

initiated by Plateau [1]. In his work a liquid drop was immersed in an immiscible liquid

which has about the same density but a much smaller viscosity than the drop. The

drop was then spun at a controllable rate using a rotating rod that threaded the drop

axis. Spinning of the drop produces significant deviations from the spherical equilibrium

shape that is obtained for stationary drops. By matching the density of the drop and its

surrounding medium, gravitational effects can be minimized in a terrestrial experiment.

Assuming rigid body motion and taking into account solely axisymmetric drop config-

urations, the drops evolve from spherical configurations at zero rotation rate through a

family of axisymmetric shapes that progressively flatten at the poles while developing

an equatorial bulge. At large enough rotation rates, Plateau observed transient toroidal

configurations that tended to break up into smaller drops (see also [2]).

Studies of rotating drops with significant density contrasts have also been performed

in microgravity environments [3]. Due to the qualitative similarity between Plateau’s

rotating liquid masses held together by surface tension and self-gravitating celestial bod-

ies, there have been many theoretical studies of the resulting equilibrium configurations

and their stability, including work by Rayleigh [4], Maclaurin [5], Lyttleton [6], Chan-

drasekhar [7], Ross [8] and Brown and Scriven [9], and Myshkis et al [10].

Recently there has been interest in the stability of toroidal shapes. Experimentally,

macroscopic liquid toroidal droplets [11] and nanoscale toroids of varying sizes have been

carefully generated and observed [12, 13]. Analysis indicates that the stability of these

toroidal shapes is related to the aspect ratio of the major and minor radii. Both groups

report that toroids with a small aspect ratio tend to coalesce to form a single spherical

droplet, while thinner toroids, i.e., those with large aspect ratio, mainly break up into

smaller droplets.

Experiments on neonatal fibroblast cells that have self assembled into a toroidal clus-

ter about the base of a conical pillar, have shown that the toroidal cluster will actively
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do work to climb the pillar to become a sphere or will remain at the base of the pillar and

break up to form smaller clusters [14]. Subsequent theoretical work on this self assembled

system points to the surface energy as the configurational driving force for the climbing

motion of the cluster [15]. This suggests that the fate of the cluster is determined by its

size. As such, thinner toroidal clusters do not climb the conical pillar and the develop-

ment of localized deformations along its circumference is considered to be a result of the

unstable growth of surface fluctuations.

These studies have revived interest in the stability of a rotating toroidal drop held

together by surface tension. In this paper the stationary points of an energy functional

are used to determine the equilibrium shapes of spheroidal and toroidal drops. The

stability of the drops is then determined by examining the second variation of their

energy functionals. The loss of stability of an equilibrium drop can indicate a transition to

another equilibrium shape or signal the impending loss of the existence of the equilibrium

drop itself.

The energy functional that we employ takes the form of a Lagrangian representing

the difference between a drop’s potential energy, due to capillary forces, and the kinetic

energy of rotation, subject to a volume constraint. This formulation is analogous in many

ways to that for the classical problem for the equilibrium and stability of rotating, self-

gravitating drops, where the potential energy is then due to a Newtonian gravitational

potential [6, 16]. In that case there is a class of equilibria given by axisymmetric ellipsoids

that take the form of oblate spheroids (shaped like “hamburger buns” with respect to the

rotational axis). In our case there also are axisymmetric solutions that resemble oblate

ellipsoids. These occur when the density of the drop exceeds that of the surrounding

medium, so that due to centripetal acceleration the drop tends to bulge at the equator

and flatten at the pole. On the other hand if the density of the surrounding medium

exceeds that of the drop a family of solutions that instead resemble prolate ellipsoids

(“cigar-shaped” with respect to the rotational axis) are possible. We will refer to these

families of solutions as oblate spheroids and prolate spheroids, respectively, with the
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understanding that in our case these solutions are not literally axisymmetric ellipsoids

of revolution. More generally we will refer to our solutions as spheroidal or toroidal

depending on their topology.

For the drop undergoing rigid body rotation with a fluid of a different density, the

application of an external torque may be necessary to maintain a given rotation rate as

the moment of inertia of the drop changes due to variations in the shape of the drop.

Here, such a drop is referred to as a driven drop. Alternatively, if there is no applied

external torque, the angular momentum of the drop is conserved. If the drop rotates

with constant angular momentum, it is termed an isolated drop. The energy functional

for the driven drop is a function of the drop’s shape and the rate of rotation, while the

energy functional of the isolated drop is a function of the drop’s shape and its angular

momentum. This latter energy functional is formulated by a Legendre transform of the

former functional to account for the constant angular momentum constraint, forming

what is termed the Routhian in classical mechanics [17].

We first describe the variational formulation of the problem, including the Euler

equation governing the equilibrium drops that results from the first variation of the

energy functional. In §3 we discuss the second variation that governs the stability of the

equilibrium drops. Our numerical techniques are described in §4, followed by numerical

results in §5. Some conclusions are given in §6.

2 Variational Formulation

We describe the variational formulation for the equilibrium and stability of rotating

spheroidal and toroidal drops. The case of a rigidly rotating system consisting of a

drop confined by a co-rotating surrounding medium is considered first, followed by the

modifications necessary to treat the rotation of an isolated drop that conserves its angular

momentum. An example of the former would be a two-fluid system in a container that

is attached to a platter revolving at a constant rate. An example of the latter would be

4



a isolated drop rotating in vacuum in a microgravity environment.

2.1 Forced Rotation at a Prescribed Rate

The equilibrium of a driven axisymmetric drop that undergoes rigid body rotation at

a specified angular velocity in tandem with a surrounding co-rotating medium can be

described in terms of the stationary points of an energy functional that includes contri-

butions from the kinetic energy and surface energy of the system. For simplicity we begin

by formulating the variational principle in a cylindrical coordinate system in which the

drop surface has the form z = f(r) for r0 < r < r1 and z > 0; we will assume that the

drops have a mid-plane of symmetry about z = 0. We later generalize to a body-fitted

set of coordinates employing angle/arclength variables that avoids difficulties associated

with infinite slopes and is more suitable for the stability determination of distorted drops.

For a spheroidal drop r0 = 0 corresponds to the axis of rotation and r1 is the equatorial

radius, with a vanishing slope fr = df/dr at r = 0 and a tangent angle ψ, defined by

tan ψ = fr, of ψ = −π/2 at r = r1 where f(r1) = 0. The polar radius of the drop is

Z0 = f(0). For a toroidal drop r0 > 0 is the inner radius of the toroid and r1 > r0 is the

outer radius, with a tangent angle of ψ = π/2 at r = r0 where f(r0) = 0, and ψ = −π/2

at r = r1 where f(r1) = 0. Schematic diagrams are shown in Fig. 1.

The effective energy functional is written as

E [f, Ω] = γA[f ] − 1

2
Ω2I[f ] − PV [f ], (1)

where γ is the surface energy of the drop, Ω is the given rotation rate, and

A[f ] = 4π

∫ r1

r0

r
√

1 + f 2
r dr (2)

is the total surface area of the drop. The effective kinetic energy of the system is Ω2I/2,

where

I[f ] = 4π ∆ρ

∫ r1

r0

r3f(r) dr (3)
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Figure 1: Schematic diagrams showing cross-sections of a rotating spheroidal
drop (left) and a rotating toroidal drop (right). Here the arclength s increases
in the clockwise direction, and the tangent angle ψ is measured with respect
to the horizontal.

is the moment of inertia. The total volume of the drop is

V [f ] = 4π

∫ r1

r0

rf(r) dr, (4)

and P is a Lagrange multiplier that is used to enforce a constraint V [f ] = V0 of constant

volume V0. Here ∆ρ = ρinner − ρouter is the difference between the drop density ρinner and

the density of the exterior medium ρouter. Rotation in a vacuum or medium of negligible

density then corresponds to ∆ρ = ρinner > 0, whereas a drop in a heavier surrounding

fluid medium with density ρouter > ρinner would correspond to a negative density difference

∆ρ < 0. We are assuming there are no gravitational effects.

Equilibrium of the drop is then described by requiring the energy functional to be sta-

tionary to perturbations δf in the shape that conserve the volume and satisfy appropriate

boundary conditions at r = r0 and r = r1,

0 = δE = γδA[f ] − 1

2
∆ρ Ω2δI[f ] − PδV [f ], (5)

which leads to the Euler equation

−γ

r

d

dr

[

r
fr

√

1 + f 2
r

]

= P +
∆ρ Ω2

2
r2, (6)
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for the shape f(r) and the Lagrange multiplier P , which is chosen so that the volume

constraint

4π

∫ r1

r0

rf(r) dr = V0 (7)

is satisfied. The Euler equation is equivalent to the Laplace-Young boundary condition

γK = pinner − pouter at a fluid-fluid interface, where K is the mean curvature of the

interface and pinner and pouter are the local pressures on the inside and outside of the

drop, respectively. In a hydrodynamic description of the motion based on the Navier-

Stokes equations [18], in each phase the pressure satisfies a radial momentum balance

ρrΩ2 = dp/dr for a rigid body motion rΩ in the azimuthal direction, which integrates

to p − ρΩ2r2/2 = p̄ = constant. The Lagrange multiplier is then given by the difference

between the constants of integration, p̄inner − p̄outer. For a spheroidal drop this difference

corresponds to the jump in pressure across the surface at the axis of rotation r = 0.

The Euler equation has an explicit first integral

−γ
fr

√

1 + f 2
r

=
Pr

2
+

∆ρ Ω2r3

8
+

C

r
, (8)

where C is a constant of integration. The first integral can be solved for fr to reduce the

solution to quadrature. For spheroidal solutions with fr(0) = 0 the integration constant

C vanishes. The oblate spheroidal solutions that result if ∆ρ > 0 were obtained in terms

of elliptic integrals by Chandrasekhar [7]. The prolate solutions that result if ∆ρ < 0

can also be described in terms of elliptic integrals; these solutions are summarized in

Appendix A1. In the toroidal case, fr tends to positive infinity at the inner radius r0

and the integration constant satisfies

−γ =
Pr0

2
+

∆ρ Ω2r3
0

8
+

C

r0

. (9)

There is an analogous expression relating C and the outer radius r1 where fr tends to

negative infinity. The existence of toroidal solutions was proved in 1984 by Gulliver [19].

The spheroidal and toroidal solutions will be described in more detail below when we

discuss the stability results in §5.
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2.2 Free Rotation of an Isolated Drop

If an isolated drop is freely rotating rather than being driven by an external torque that

provides a constant rotation rate, it is appropriate to formulate the problem in terms of

the drop’s angular momentum L, which is conserved by the motion. With the explicit

form for the energy functional E [f, Ω] given in Eq. (1), the angular momentum functional

L[f, Ω] is given formally by

L[f, Ω] = − ∂

∂Ω
E [f, Ω] = ΩI[f ]. (10)

We define the Routhian functional R[f, L] (see, e.g., [6, 9]) via a Legendre transformation

[20] with respect to Ω,

R[f, L] = E [f, Ω] − Ω
∂

∂Ω
E [f, Ω], (11)

where in the right hand side the rotation rate is now regarded as a functional Ω[f, L] =

L/I[f ] that is obtained by inversion of the relation (10). This leads to the expression

R[f, L] = γA[f ] +
L2

2I[f ]
− PV [f ], (12)

whose first variation, taken at constant L,

δR = γδA− L2

2I2
δI − PδV , (13)

leads to the same Euler equation (6) as for the driven drop, since we have L = IΩ in

each case. Thus the equilibrium states for the driven drops and the isolated drops are

the same, although their stability differs, as we describe next.

3 Second Variation

We next describe the stability of the drops in terms of the second variation of their energy

functionals. The equations for the second variation involve the equilibrium shape and its

spatial derivatives, and it is convenient to first re-express the unperturbed shape in terms

of angle/arclength variables to obtain a more tractable version of the stability equations.
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3.1 Angle/Arclength Coordinates on the Drop

The axisymmetric equilibrium shapes can be parametrized in terms of their arclength s

as r = R(s) and z = Z(s), where s = 0 is taken to correspond to the point r = r0. Their

derivatives are given by Rs = cos ψ(s) and Zs = sin ψ(s) for 0 < s < ST , where ψ is the

local tangent angle to the shape and ST is the total arclength of the upper half (z > 0)

of the shape. The Euler equation (6) is then

−γψs = γ
sin ψ

R
+ P +

∆ρΩ2

2
R2, (14)

where the mean curvature is given by K = ψs + sin(ψ)/r. We note that the first integral

(8) can be written in the form

−γ sin ψ =
PR

2
+

∆ρΩ2

8
R3 +

C

R
. (15)

In the spheroidal case with C = 0 this expression can be used to eliminate the singular

term sin(ψ)/R in Eq. (14) to give the alternate expression

−γψs =
P

2
+

3∆ρ Ω2

8
R2, (16)

which is regular at s = 0 where R(0) = 0. On the other hand, since for the toroidal drop

R(0) = r0 > 0 this singularity does not arise in that case and Eq. (14) can be used as

written. In either case the total volume is given by

V = 4π

∫ ST

0

R(s) Z(s) cos ψ(s) ds. (17)

3.2 Body-Fitted Coordinate System

To compute the second variation we employ a body-fitted coordinate system (s, θ, w)

where s is arclength, θ is the azimuthal angle about the rotation axis, and w is distance

measured along the local outward normal to the drop surface. The mapping from (s, θ, w)

to cylindrical coordinates (r, θ, z) is then given by

r = R(s) − w sin ψ(s), z = Z(s) + w cos ψ(s), (18)
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where the outward normal has components (nr, nz) = (− sin ψ, cos ψ) in the r–z plane.

These coordinates are well-defined in a neighborhood of the drop’s surface for small

enough values of |w|. These local coordinates are orthogonal with the line element

dℓ2 = [1 − wψ2
s ]

2 ds2 + [R − w sin ψ]2 dθ2 + dw2, (19)

and the volume element dV = [1−wψ2
s ][R−w sin ψ] ds dθ dw. A perturbation to the drop

can be written in terms of a normal displacement given by a function w = W (s, θ) along

the normal direction, with the unperturbed drop corresponding to the surface w = 0.

The perturbation satisfies Neumann boundary conditions Ws(0, θ) = Ws(ST , θ) = 0.

To compute the first and second variations of the energy functional, we formally

expand the interface displacement in terms of a small parameter ǫ,

W (s, θ, ǫ) = ǫW (1)(s, θ) +
1

2
ǫ2W (2)(s, θ) + ... (20)

The various functionals can written in terms of W (s, θ, ǫ), e.g., F [W ], and similarly

expanded as F [W ] = ǫF (1) + (ǫ2/2)F (2) + ..., giving the results

V(1) = 2

∫ 2π

0

∫ ST

0

RW (1) dθ ds, (21)

V(2) = 2

∫ 2π

0

∫ ST

0

{RW (2) − (Rψs + sin ψ)[W (1)]2} dθ ds, (22)

I(1) = 2∆ρ

∫ 2π

0

∫ ST

0

R3W (1) dθ ds, (23)

I(2) = 2∆ρ

∫ 2π

0

∫ ST

0

{R3W (2) − (R3ψs + 3R2 sin ψ)[W (1)]2} dθ ds, (24)

A(1) = −2

∫ 2π

0

∫ ST

0

W (1)(Rψs + sin ψ) dθ ds, (25)

A(2) = 2

∫ 2π

0

∫ ST

0

{

2ψs sin ψ[W (1)]2 + R[W (1)
s ]2 +

1

R
[W

(1)
θ ]2 − (Rψs + sin ψ)W (2)

}

dθ ds.

(26)
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3.3 Driven Drop

The first variation of the energy functional for the driven drop is then E (1) = γA(1) −
Ω2/2I(1) − PV(1), or

E (1) = 2

∫ 2π

0

∫ ST

0

{

−γ(Rψs + sin ψ) − ∆ρΩ2

2
R3 − PR

}

W (1) dθ ds, (27)

and requiring E (1) = 0 for arbitrary variations W (1) recovers the Euler equation (14).

Similarly, the second variation E (2) is given by

E (2) = 2

∫ 2π

0

∫ ST

0

{[

2γ ψs sin ψ +
∆ρ Ω2

2
[R3ψs + 3 R2 sin ψ] + P (Rψs + sin ψ)

]

[W (1)]2

+ [γR] [W (1)
s ]2 + [

γ

R
] [W

(1)
θ ]2

}

ds dθ (28)

−2

∫ 2π

0

∫ ST

0

{[

γ(R ψs + sin ψ) +
∆ρ Ω2

2
R3 + PR

]

W (2)

}

ds dθ.

The latter integrand proportional to W (2) vanishes because of the Euler equation, so that

E (2) is a quadratic functional in the variation W (1). The stability of the system is then

determined by the sign of the second variation. This sign is most easily determined by

diagonalizing the quadratic form, subject to the constraint

0 = V(1) = 2

∫ 2π

0

∫ ST

0

RW (1) dθ ds. (29)

The diagonalization of the quadratic form is equivalent to an eigenvalue problem, which

leads to the Sturm-Liouville equation
{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

W (1) − γ

R

∂

∂s
[RW (1)

s ] − γ

R2

∂2

∂θ2
W (1) = λW (1) + µ,

(30)

where λ is the eigenvalue and µ is a Lagrange multiplier for the volume constraint in

Eq. (29), which must also be enforced. Here we have again used the Euler equation

to simplify the final expression; note that P is absent from this equation. Expanding a

general perturbation in terms of the orthonormal eigenmodes (Wj(s, θ), λj) of the Sturm-

Liouville equation,

W (1)(s, θ) =
∑

j

ajWj(s, θ), (31)
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then produces the diagonalized expression

E (2) = 2
∑

j

λj|aj|2
∫ 2π

0

∫ ST

0

R[Wj(s, θ)]
2 dθ ds. (32)

Here aj is the expansion coefficient of W (1) with respect to the eigenmode Wj,

aj =

∫ 2π

0

∫ ST

0

RW (1)(s, θ)Wj(s, θ) dθ ds.

Stability of the driven drop is obtained, viz. E (2) > 0, if λj is positive for all eigenmodes,

and instability occurs if any eigenvalue λj is negative.

3.4 Isolated Drop

For the isolated drop, the expansion of the Routhian proceeds in a similar fashion, leading

to the second variation

R(2) = γA(2) − L2

2I2
I(2) − PV(2) +

L2

I3
[I(1)]2, (33)

which differs from the expression for E (2) by the latter positive term proportional to

[I(1)]2; here I = L/Ω is the unperturbed moment of inertia. In this case diagonalizing

R(2) leads to an integro-differential eigenvalue problem,

{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

W (1) − γ

R

∂

∂s
[RW (1)

s ] − γ

R2

∂2

∂θ2
W (1)

+2(∆ρ)2

(

L2

I3

)

[R(s)]2
∫ 2π

0

∫ ST

0

[R(s′)]3W (1)(s′, θ) dθ ds′ = λW (1) + µ. (34)

The isolated drop is stable if the eigenvalues λj are positive for all eigenfunctions of

Eq. (34).

Since the coefficients of both Eqs. (30) and (34) are independent of the azimuthal an-

gle θ, normal modes of the form W (1)(s, θ) = w(1)(s) cos nθ are solutions, which reduces

Eq. (30) to an ordinary differential equation (ODE) for the corresponding eigenmodes

w(1)(s). The non-axisymmetric modes with n 6= 0 then automatically satisfy the volume

constraint since the integrals over θ vanish, and the associated Lagrange multiplier µ can
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be taken to vanish. The volume constraint must still be applied for the axisymmetric

modes with n = 0. Similarly Eq. (34) becomes an integro-ordinary-differential equation

that must be solved along with a volume constraint for axisymmetric modes. The equa-

tion for non-axisymmetric modes with n 6= 0 also reduces to an unconstrained ODE, and

the stability problem for non-axisymmetric modes are identical for driven and isolated

drops.

The normal mode solutions can generally be divided into families that are even or

odd about a mid-plane of symmetry at z = 0. As discussed by Brown and Scriven [9],

for the related cases of rotating drops that are held together by self-gravitation it is

known that the drops have reflective symmetry about their equatorial plane [21]. Brown

and Scriven therefore confined their finite element computations to solutions with even

symmetry about z = 0. We have computed normal modes with either even or odd

symmetry, and have found instabilities only for modes with reflective symmetry about

z = 0. There are also neutrally-stable modes with odd symmetry about the equatorial

plane that correspond to simple energy-preserving translations along the z-axis. With

the exception of these translation modes, the modes with odd symmetry about z = 0 are

found to be stable, and so we will confine our discussion to the even modes. The numerical

procedures used to solve these corresponding eigenvalue problems are summarized next.

4 Numerical Techniques

The eigenvalue problems for determining the stability of the rotating drops are intractable

analytically except in special cases, and we have resorted to numerical techniques for

their solution. We have used two complementary approaches. Firstly, a finite difference

discretization of the Sturm-Liouville equations can be used to produce a matrix eigenvalue

problem, which produces N approximate eigenvalues for a system using N mesh points.

Secondly, we have used an ODE solver in tandem with a shooting procedure to compute

individual eigenmodes. The latter procedure is quite accurate provided adequate starting
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values are available to estimate the eigenvalues; we have used the matrix approximation

to furnish the necessary initial guesses. Since the coefficients of the ODE’s involve the

shape of the unperturbed drop, the Euler equations are also solved numerically to provide

the appropriate values at the mesh points of the matrix formulation or at the internal

integration steps of the ODE solver. Some details are provided in Appendix A2 and A3.

5 Numerical Results

We first consider the case of heavier drops rotating in a lighter medium, followed by the

case of drops that are lighter than their surroundings.

5.1 Base States for ∆ρ > 0

The evolution of the axisymmetric drop shapes with ∆ρ > 0 as the rate of rotation Ω is

varied has been described by a number of authors [7, 9]; some examples are illustrated in

Fig. 2. Here we have defined the dimensionless rotation rate Ω∗, the moment of inertia

I∗, and the angular momentum L∗ via

Ω2
∗

=
∆ρ Ω2R3

0

8γ
, I∗ =

I
4∆ρR3

0

, L∗ = I∗Ω∗ (35)

where R0 is the radius of the sphere with equivalent volume, V0 = 4πR3
0/3. For small

rates of rotation the drops are nearly spherical, and as the rate of rotation increases the

drops develop an equatorial bulge while flattening at the poles. The continual decrease

in polar radius eventually produces dimpling of the surface at the pole and the drop

becomes non-convex. The family of spheroidal drops terminates at a point in parameter

space where the polar radius Z0 of the drop vanishes and the drop pinches off at the

poles. There is also a nearby family of toroidal drops which originate near this point in

parameter space; in this case, the inner radius r0 of the torus tends to zero as the “hole”

of the toroid closes up. The pinching of the spheroidal drops and the “healing” of the

toroidal hole are illustrated in the sequences shown in Fig. 2.
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Figure 2: Top: Upper half of spheroidal drop shapes illustrating the
development of equatorial bulge and flattening at the poles. Bottom:
Upper half of toroidal drop shapes showing development of the inner
hole. (a) Ω∗ = 0.600, L∗ = 0.340. (b) Ω∗ = 0.707, L∗ = 0.494. (c)
Ω∗ = 0.754, L∗ = 0.729. (d) Ω∗ = 0.727, L∗ = 0.899. (e) Ω∗ = 0.678,
L∗ = 0.699. (f) Ω∗ = 0.484, L∗ = 0.745.

The relation between angular rotation rate and angular momentum for the spheroidal

and toroidal drop families is shown in Fig. 3. The angular momentum L of the spheroidal

drops initially increases with rotation rate, but the rotation rate eventually decreases as

the angular momentum continues to increase (see Fig. 3). As the inner radius of the

toroids increases, the angular momentum of the drops initially decreases, then reverses

and increases steadily as the cross section of the toroids becomes more and more circu-

lar. We note that the spheroidal and toroidal families do not merge with one another,

although their curves are very close at their respective terminal points in Fig. 3 near

L∗ = 1.1194. The solution curve for the spheroidal family can actually be smoothly
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Figure 3: Rotation rate Ω∗ versus angular momentum L∗ for the family
of oblate spheroidal drops and toroidal drops. Shapes shown in Fig. 2
are indicated by symbols.

extended to include self-intersecting drops for L∗ > 1.1194 where the polar radius has

become negative (Z(0) < 0). In addition, the boundary conditions differ at s = 0, since

the spheroidal drops have a horizontal tangent there, while the toroidal drops have a

vertical tangent. As a result, as we will see below, the normal modes of the spheroidal

and toroidal modes are not coincident at L∗ = 1.1194.

5.2 Linear Stability of the Oblate Spheroids

The stability of rotating oblate spheroidal drops has been considered previously by a

number of authors, including Chandrasekhar [7], Brown and Scriven [9], and Heine [22];

the latter two papers include the computation of non-axisymmetric solutions that bifur-

cate from the axisymmetric family at specific rotation rates. To validate our numerical
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Figure 4: Linear stability of rotating spheroidal drops. In the upper plot the
points of marginal stability to perturbations with mode number n are shown
on the Ω∗-L∗ oblate spheroidal solution branch. In the middle plot the least
stable values of λ as a function of L∗ are shown for n = 1, 2, 3, 4, and 5 (bottom
to top). The drops are unstable to modes with λ < 0, and the crossing points
where λ = 0 for each n correspond to the symbols shown in the upper plot.
In the lower plot the least stable values of λ for axisymmetric disturbances
(n = 0) are shown for driven and isolated drops. The driven drop is unstable
to an axisymmetric perturbation at the limit point where the spheroidal family
of solutions reaches its largest rotation rate.

procedure, we have reproduced these bifurcation points, which correspond to conditions

of marginal stability (λ = 0) where the energy functional ceases to be a minimum rela-

tive to non-axisymmetric perturbations of a given mode number n. Results are shown

in Fig. 4, where in the upper plot the bifurcation points for perturbations with mode

numbers n = 2, 3, 4 and 5 are indicated on the curve of Ω∗ versus L∗. The numerical

values agree with those given by Brown and Scriven for n = 2, 3, and 4 to three deci-

mal places; they were unable to compute the n = 5 bifurcation because of their use of

spherical coordinates, which preclude the computation of highly-dimpled shapes that are

non-convex relative to the origin. The results for n = 2 also agree with those given by
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Heine to five decimal places; Heine also describes a bifurcation to an n = 6 perturbation

on the extension of the solution curves to self-intersecting drops for L∗ > 1.1194. In

the middle plot of Fig. 4 the values of λ are shown for the first five non-axisymmetric

perturbations. Values of L∗ for which λ is positive correspond to stable modes, while

negative values of λ correspond to instabilities. The points where the curves cross the

axis λ = 0 correspond to the bifurcation points indicated in the upper figure. For n = 2:

Ω∗ = 0.5599, L∗ = 0.3016; for n = 3: Ω∗ = 0.7071, L∗ = 0.4944; for n = 4; Ω∗ = 0.7536,

L∗ = 0.7099; and for n = 5, Ω∗ = 0.7239, L∗ = 1.0235. The rotating drops are also

unstable to a “decentering” perturbation with n = 1. The non-rotating spherical drop

(Ω∗ = 0) is marginally stable (λ = 0) to an arbitrary translation of the drop’s position,

which for small translations corresponds to an n = 1 perturbation of the drop shape.

This mode is destabilized (λ < 0) with finite rotation, where the effects of centripetal

acceleration cause a slightly off-axis drop to drift outwards.

As discussed by Brown and Scriven, the stability of the driven drops (Ω∗ = constant)

and isolated drops (L∗ = constant) to non-axisymmetric perturbations (n > 0) are identi-

cal, since the perturbed moment of inertia vanishes for non-axisymmetric perturbations.

For the case of axisymmetric perturbations (n = 0), the stability results do differ, as

shown in the lower plot in Fig. 4. The driven drop is unstable to an axisymmetric dis-

turbance at the limit point [23] of the solution branch where Ω∗ reaches its maximum

value, with Ω∗ = 0.7540, L∗ = 0.7291. The isolated drop is stable with positive values of

λ that, for each value of L∗, are larger than those for the driven drop, as expected from

Eq. (33). No limit point with respect to L∗ occurs on the solution branch, so there is no

analogous axisymmetric instability for the isolated drop.

5.3 Linear Stability of the Toroids

The linear stability of the toroidal family of rotating drops is shown in Fig. 5. The upper

plot gives the parametric relation between the rotation rate Ω∗ (solid curve) and the

angular momentum L∗ (dashed curve) of the base state as functions of the dimensionless
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Figure 5: Linear stability of rotating toroidal drops. In the upper plot
the rotation rate Ω∗ (solid curve) and angular momentum L∗ (dashed
curve) for the base state are shown as functions of the inner radius
r0. In the middle plot the least stable values of λ as a function of r0

are shown for n = 1, 2, 3, 4, and 5 (bottom to top). In the lower plot
the two least stable values of λ for axisymmetric disturbances (n = 0)
are shown for driven (solid curve) and isolated (dashed curve) toroidal
drops.

inner radius r0. As the inner radius tends to zero, the rotation rate decreases (over a

short interval), and the angular momentum increases. The opposite is true as the inner

radius becomes large, and there is a maximum value of Ω∗ and a minimum value of L∗ as

r0 varies from zero to infinity. The middle plot shows the lowest eigenvalues for n = 1 to

n = 5 for 0 < r0 < 2.5. For small values of r0 toroidal drops are unstable for all five mode

numbers, but as r0 increases the stability of these modes increase and reach maxima near

r0 = 0.5, where only the first three modes are unstable. With further increases of inner

radius, the modes are all destabilized and the toroidal drop is unstable to higher and

higher mode numbers; the trends indicated for the lowest five modes are also observed

for higher mode numbers n and larger inner radii r0. The lower plot in Fig. 5 shows the

lowest two eigenvalues for axisymmetric modes (n = 0) for the case of driven toroidal

drops (solid curves) and isolated drops (dashed curves). As expected from the previous
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discussion of Eq. (33), the isolated drops are more stable than the driven drops in each

case, although for large values of r0 the eigenvalues become nearly identical. For small

values of r0 the difference is more pronounced. The lowest eigenvalues both become very

large and negative as r0 tends to zero, but the lowest mode for the driven drop remains

slightly unstable for large r0, whereas the isolated drop becomes stable near r0 = 0.5 and

then deceases in magnitude for large r0. The second lowest modes are both stabilized

with increasing r0, although the driven drop is initially unstable for small r0. There

are two axisymmetric, neutrally-stable modes (λ = 0). For the driven drop the neutral

mode corresponds to a limit point on the solution branch in which L∗ is regarded as a

function of Ω∗. For the isolated drop the neutral mode corresponds to a limit point on the

solution branch in which Ω∗ is regarded as a function of L∗. In the top plot in Fig. 5 these

points corresponds to extremal values of Ω∗ and L∗ regarded as functions of r0. These

results indicate that the family of rotating driven toroidal drops is entirely unstable,

both to axisymmetric and non-axisymmetric disturbances, with an increasing number of

non-axisymmetric instabilities with increasing r0. The same is true for non-axisymmetric

disturbances to the isolated drop, although in that case axisymmetric perturbations are

stable for large enough values of r0.

The geometry of the unstable axisymmetric modes is shown in Fig. 6 for a driven

drop with r0 = 0.2, where the perturbed shapes for the lowest two modes are shown

superimposed upon the base state (solid dots). The lowest mode (solid curve) represents

a distortion of the shape that occurs predominantly at small radii, leaving the outer

portion of the drop unaffected. Loosely speaking, this mode represents an instability

driven by a change in the major radius of the torus. The second lowest mode (dashed

curve) represents a perturbation that changes the ellipticity of the cross-section, with

distortions at the inner and outer radii that are accompanied by a distortion of opposite

sign at intermediate radii that preserves the net volume.
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Figure 6: Geometry of the axisymmetric perturbations to the base state (solid
dots) for r0 = 0.2. The lowest mode (solid curve) and the second lowest
mode (dashed curve) are both normalized to give similar displacements at the
inner radius, and the size of the perturbations has been exaggerated for visual
purposes.

5.3.1 Rayleigh Instability Analogy

With increasing values of angular momentum L∗ drops are subject to an increasing

number of non-axisymmetric instabilities; only the most dangerous modes in the first

five families (n = 1, 2, 3, 4, 5) of instabilities are shown in the middle plot of Fig. 5. An

example of a non-axisymmetric instability is shown in Fig. 7, corresponding to the neutral

instability for n = 5 that occurs near r0 = 1.2 in Fig. 5.

For toroidal drops with a large major radius, an interpretation of these high-wavenumber

modes is possible in terms of a classical surface-tension-driven instability. For example

for large values of L∗ the cross-section of the drops become more and more circular, and

the drops increasingly resemble a circular torus. For large values of the effective major

radius of the drop, the non-axisymmetric instabilities are then analogous to the capillary-

driven Rayleigh instabilities [24] of an equivalent cylinder of length 2πRM and radius rm,
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Figure 7: Example of a non-axisymmetric (n = 5) neutral (λ = 0) eigenmode.
Here Ω∗ = 0.37 and L∗ = 1.03; the eigenmode is shown superimposed on
the axisymmetric base state with a large amplitude for visual purposes. The
shape is reminiscent of the evolving toroidal shapes observed by McGraw et
al. shown in Figs. 3 and 4 of Ref. [12].

where RM = (r1 +r0)/2 and rm = (r1−r0)/2 ≪ RM are the major and minor radii of the

torus based on the inner and outer radii r0 and r1. The onset of the Rayleigh instability

occurs for a perturbation whose wavelength λR is equal to the circumference 2πrm of the

cylinder [24]. For an effective cylinder length Lc = 2πRM we therefore anticipate neutral

modes with mode number nR such that nRλR = Lc, or nR = RM/rm. We can readily

compute values for RM and rm from the numerical solution in this regime and compare

this estimate for nR with the numerically-computed values of n that have crossings at

λn = 0. For example, in Fig. 5 the n = 4 mode with L∗ = 0.814 is neutrally stable

(λ4 = 0). For this drop, the computed radii are RM = 1.2706 and rm = 0.4206, which

gives the estimate nR = 3.02. The estimate becomes more accurate for drops with larger

values of RM ; for a drop with L∗ = 1.921 we find RM = 2.7159 and rm = 0.2803, giving

nR = 9.69. The corresponding numerical results show that the perturbation with n = 10
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is neutrally stable under these conditions. Some numerical results are summarized in

Table I. The analytical approximation may also be obtained directly from the Jacobi

equation (30) in this regime: the dominant balance for λ = 0 is found to be

γLV n2

R2
W ≈ γLV ψ2

sW, Ws(0) = Ws(ST ) = 0, (36)

where for the toroidal base state we have R(s) ≈ RM , ST ≈ πrm and ψs ≈ 1/rm. The

resulting eigenmode W (s) is approximately constant, with n2 = R2
M/r2

m as in Rayleigh’s

analysis.

Table I

Large n neutral modes for the toroidal solutions.

Ω∗ L∗ r0 r1 nR n(λn = 0)

0.44442 0.81402 0.85006 1.69117 4 3.02

0.37100 1.02696 1.22376 1.96368 5 4.31

0.30048 1.40510 1.77469 2.41500 7 6.54

0.24672 1.92093 2.43561 2.99616 10 9.69

5.4 Driven Drops for ∆ρ < 0

For a rotating spheroidal drop inside a denser medium (∆ρ < 0) the effective centrifugal

force at the equator is inward, and the drops are elongated at the poles rather than the

equator; we designate the resulting shapes as prolate spheroids. A dimensionless rotation

rate ΩP for the prolate solutions is then defined as

Ω2
P =

−∆ρ Ω2R3
0

8γ
. (37)

We consider only the case of driven drops. An analytic solution in this case was derived by

Rosenthal [33] and Princen [34] in terms of incomplete elliptic integrals and is summarized

in §A1. We have also implemented the previously-described numerical procedure for the

base state in this case as well in order to facilitate the stability calculations.
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Figure 8: Prolate equilibrium shapes (∆ρ < 0) for various rotation
rates ΩP . For increasing polar radii zP , the curves correspond to zP = 1
(the spherical case with equatorial radius rE = 1 and ΩP = L∗ = 0),
zP = 1.1029 (rE = 0.9502, ΩP = 0.4, L∗ = 0.1516), zP = 1.3854 (rE =
0.8299, ΩP = 0.8, L∗ = 0.2361), zP = 1.8176 (rE = 0.6920, ΩP = 1.2,
L∗ = 0.2591), zP = 2.4423 (rE = 0.5680, ΩP = 1.6, L∗ = 0.2557),
zP = 3 (rE = 0.5, ΩP = 2, L∗ = 0.2461).

In Fig. 8 we show the evolution of the prolate spheroidal shapes as the rotation rate

ΩP is increased. For ΩP = 0 the equilibrium is a spherical drop, and with increasing ΩP

the equilibria tend to approximately cylindrical shapes that are terminated by roughly

spherical caps. The equatorial radius rE decreases monotonically and the polar radius

zP increases monotonically with increasing rotation rate, consistent with the imposed

constraint of equal volumes for the family. Some numerical results are given in Table II.

For large rotation rates approximate expressions for the equatorial radius (rA
E) and the

polar radius (zA
tip) can be obtained from an asymptotic evaluation of the elliptic integrals

(see §A1); the corresponding results are also given in Table II.
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Table II

Base state parameters for the prolate spheroidal solutions.

ΩP L∗ rE ztip rA
E zA

tip

0.00000 0.00000 1.00000 1.00000 – –

0.80000 0.236121 0.829926 1.38539 0.857845 1.39306

1.28510 0.259531 0.665097 1.92606 0.665299 1.92607

2.00000 0.246142 0.499979 3.00000 0.499979 3.00000

2.40000 0.236130 0.442774 3.69569 0.442774 3.69569

Numerical calculations for the linear stability of the prolate drops are shown in Fig. 9.

For both axisymmetric perturbations (lower plot) and non-axisymmetric perturbations

(middle plot) the drops are found to be stable (λ ≥ 0). The stationary drop with ΩP = 0

is again neutrally stable (λ = 0) to an n = 1 mode that represents a lateral translation

of the drop. For very large rotation rates the most dangerous axisymmetric mode is

becoming decreasingly stable; the other modes are apparently increasingly stable for

increasing rotation rates.

As the rotation rate increases the drops become quite elongated with cylindrical mid-

sections; it is therefore interesting to consider the possibility of a Rayleigh instability

to axisymmetric perturbations with suitable wavelengths. We note that rotation about

the cylindrical axis is known to stabilize the Rayleigh instability of an infinite cylinder if

∆ρ < 0. For example, Gillis and Kaufman [25]) show that the rotating cylinder is stable

if

R2
Ck2 + n2 − 1 ≥ ∆ρ Ω2 R3

C

γ
, (38)

where RC is the cylinder radius, and k and n are the axial and azimuthal wavenumbers.

Axisymmetric modes (n = 0) are stable for disturbances with R2
Ck2 ≥ 1 + ∆ρ Ω2 R3

C/γ,

so that for ∆ρ > 0 the range of stable wavenumbers k decreases with increasing rate

of rotation, and for ∆ρ < 0 this range increases with increasing rate of rotation. If

∆ρ Ω2 R3
C/γ < −1 all wavenumbers are stable to axisymmetric modes. Non-axisymmetric

modes with n ≥ 1 are also stable for all wavenumbers if ∆ρ < 0.
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Figure 9: Linear stability of rotating prolate drops. In the upper plot
the angular momentum L∗ of the base state is given as a function of the
rotation rate ΩP ; solid dots correspond to the shapes given in Fig. 8.
In the middle plot the least stable values of λ as a function of ΩP are
shown for non-axisymmetric perturbations with n = 1, 2, 3, 4, and 5
(bottom to top). In the lower plot the two least stable values of λ for
axisymmetric disturbances (n = 0) are shown.

The result (38) can also be obtained directly from the Sturm-Liouville equation (30)

by setting ψ = −π/2, s = z, R = RC , and µ = 0, giving

−
{

1 +
∆ρ Ω2 R3

C

γ

}

W1 + (k2R2
C + n2)W1 =

(

γλ

R2
C

)

W1, (39)

where we have expressed the eigenmode as W (1)(s, θ) = W1 exp(ikz + inθ). The volume

constraint (29) with ST = 2π/k is identically satisfied for W (1)(s, θ) of this form. The

stability condition in Eq. (38) is thus equivalent to our stability condition λ ≥ 0.

An example is shown in Fig. 10, where a (quite stable) higher-order axisymmetric

eigenmode is shown superimposed on the prolate solution with Ωp = 2. The equatorial

radius is rE ≈ 0.5 R0, and the prolate solution is elongated enough that near its midsec-
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Figure 10: Prolate spheroidal solution for ΩP = 2. The upper half of a
cross-section of the base state is shown as the solid curve, and a high-
order stable eigenmode is shown as the dashed curve. The amplitude
of the eigenmode has been exaggerated for visual purposes.

tion (r ∼ rE) the eigenmode is approximately sinusoidal with a computed wavelength of

2π/k = 0.6124R0. If we take RC = rE the cylindrical relation (39) then gives the result

γλ/R2
0 = 117.40, which compares well with the computed result γλ/R2

0 = 117.47 that is

obtained for the prolate spheroid with Ωp = 2.

6 Discussion

We have computed solutions for axisymmetric equilibrium shapes of spheroidal and

toroidal drops or bubbles that correspond to extrema of an energy functional containing

surface energy and rotational energy contributions, subject to a volume constraint. Ex-

amination of the second variation of the energy functional then determines whether the
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drops are stable, representing energy minima, or instead represent unstable saddle points

or energy maxima. An alternate approach is to determine the linear stability of equi-

librium shapes by solving the hydrodynamic equations of motion as given by Newton’s

law, which provides a dynamical growth rate for normal mode solutions. For example,

Pairam and Fernández-Nieves ([11], see also [26]) are able to interpret their experimental

observations of the breakup of toroidal drops by comparing with the theoretical results

of Tomotika [27] for the fastest-growing instability of a cylindrical thread of viscous liq-

uid surrounded by another viscous fluid. A number of other authors have discussed the

dynamic instability of toroidal drops based on approximate base states that are assumed

to have circular cross sections [28, 29], or have observed or simulated the temporal evolu-

tion of arbitrary (non-equilibrium) toroidal shapes [13, 26, 30, 31]. Our approach focuses

on the accurate computation of bifurcation points for self-consistent equilibrium shapes.

As discussed by Brown and Scriven [9], the role of viscosity in determining the linear

stability of rotating drops by solving the hydrodynamic governing equations can lead

to subtle distinctions between “ordinary stability” and “secular instability,” wherein an

equilibrium that is stable according to the inviscid equations of motion is destabilized by

the inclusion of viscous effects [6, 32]. The stability results that we compute based on

energy minimization correspond to the viscous case in this context.
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8 Appendix

A1 Elliptic Integral Formulation for Prolate Spheroids

For spheroidal solutions, the explicit first integral of the Euler equation (8) has a vanishing

constant of integration. The oblate spheroidal solution, for ∆ρ > 0, was obtained in terms

of elliptic integrals by Chandrasekhar [7], and for the prolate spheroidal solution, for

∆ρ < 0, by Rosenthal [33] and Princen [34]. Here we summarize the solution for the

prolate spheroid to obtain the asymptotic solution used in Table II.

Evaluating Eq. (8) at r = r1 where ψ = −π/2 so that fr → −∞ gives

1 =
Pr1

2γ
+ Σ, Σ =

∆ρ Ω2 r3
1

8γ
, (A1)

where Σ is a dimensionless rotation rate used by Chandrasekhar [7], who then goes on

to obtain solutions for Σ > 0 which correspond to the oblate spheroid. Here we consider

the range −1/2 < Σ < 0, corresponding to solutions for the prolate spheroid. The

dimensionless rotation rates Σ and ΩP are related by Σ = −(r1/R0)
3Ω2

P .

Scaling by the equatorial radius, with r̄ = r/r1, the first integral can now be expressed

as
fr̄

√

1 + f 2
r̄

= (1 − Σ)r̄ + Σ r̄3, (A2)

which can be solved for fr̄ and integrated to give

f(r̄) =

∫ 1

r̄

y(1 − Σ + Σy2)

[1 − y2(1 − Σ + Σy2)2]1/2
dy. (A3)

Another change of variables to x = y2, with dx = 2y dy, gives

f(r̄) =
1

2

∫ 1

r̄2

(1 − Σ + Σx) dx
√

[1 − x(1 − Σ + Σ x)2]
. (A4)

In the integral above, the argument of the radical can be simplified as Σ2(c − x)(b −
x)(a − x) where

a =
(Σ − 2) − [Σ(Σ − 4)]1/2

2Σ
, b =

(Σ − 2) + [Σ(Σ − 4)]1/2

2Σ
, c = 1. (A5)
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For −1/2 < Σ < 0, the roots are all real with 1 < b < a.

Therefore, Eq. (A4) can be rewritten as

f(r̄) =
1

2|Σ|

∫ 1

r̄2

(1 − Σ + Σx) dx

[(1 − x)(b − x)(a − x)]1/2
=

(1 − Σ)

2|Σ| S0 −
1

2
S1. (A6)

where

S0 =

∫ 1

r̄2

dx

[(1 − x)(b − x)(a − x)]1/2
, (A7)

S1 =

∫ 1

r̄2

x dx

[(1 − x)(b − x)(a − x)]1/2
. (A8)

The volume of the prolate spheroid also has an analytical expression given by

V = π (1 − Σ) J1 + π Σ J2, (A9)

where

J1 = −S1

Σ
, J2 =

2

3Σ2
+ (1 − Σ)2 S0

3Σ3
+

4(1 − Σ)S1

3Σ2
. (A10)

From Gradshteyn and Ryzhik [35], with a > b > 1 > r̄2, the integrals S0 and S1 can

be expressed in terms of incomplete elliptic integrals,

S0 =
2√

a − 1
F (φ, k), (A11)

S1 =
2√

a − 1
{F (φ, k) + (a − 1)E(φ, k)} − 2

[

(a − r̄2)(1 − r̄2)

(b − r̄2)

]1/2

. (A12)

Here F (φ, k) and E(φ, k) are the incomplete elliptic integrals of the first and second kind

respectively given by

F (φ, k) =

∫ φ

0

dθ
√

1 − k2 sin2 θ
, E(φ, k) =

∫ φ

0

√

1 − k2 sin2 θ dθ (A13)

where

sin2 φ =
1 − r̄2

b − r̄2
, k2 =

a − b

a − 1
. (A14)

The parameter k is the elliptic modulus or eccentricity that must satisfy 0 < k2 < 1

and φ is called the argument of the normal elliptic integral and is usually taken to be

0 < φ < π/2.
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Therefore by inverting Eq. (A14) and recalling that z̄ = f(r̄), we have the parametric

representation

r̄(φ) =

√

1 − b sin2 φ

1 − sin2 φ
, (A15)

and

z̄(φ) =
(1 − Σ)

2|Σ| S0(φ) − 1

2
S1(φ), (A16)

for 0 ≤ φ ≤ φM , with sin2 φM = 1/b. A numerical solution of these parametric represen-

tations was used to validate the numerical base state calculations shown in Fig. 8.

Approximate results for the tip position (r = 0, z = ztip) can be obtained in the

high rotation limit, which corresponds to Σ → −1/2. In this limit b → 1, k2 → 1,

and φ = φM → π/2, and asymptotic expansions of the incomplete elliptic integrals are

possible [36]. For Σ = −1/2 + ǫ we have used the approximations

F (φM(ǫ), k(ǫ)) ≈ 1

2
log

(

18

ǫ

)

− ln(2 +
√

3), E(φ, k) ≈ 1. (A17)

Using these expressions in Eq. (A11) and Eq. (A12) to evaluate Eq. (A15) and Eq. (A16)

gives the approxixmate results shown in Table II.

A2 Matrix Solution

Discretization of the Sturm-Liouville equations for the driven drop using centered differ-

ences on a uniform grid with N mesh points produces a standard matrix eigenproblem

that can be solved with conventional techniques for the non-axisymmetric case with

n > 0, since the volume constraint is automatically satisfied. The corresponding problem

for the axisymmetric case with n = 0 is more complicated since the volume constraint

needs to be satisfied explicitly, which couples the eigenvalue equations with a linear equa-

tion that results from applying a quadrature formula to Eq. (29). We sketch an approach

to this problem based on work by Golub [37].

We write the approximation to an eigenmode as wT = (w1, ..., wN), where “T” denotes

the matrix transpose. We define a discrete inner product

< u,v >=
R1u1v1

2
+ R2u2v2 + ... + RN−1uN−1vN−1 +

RNuNvN

2
(A18)
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based on the trapezoidal quadrature rule for an integrand R(s)u(s)v(s). The constraint

in Eq. (29) is then approximated by < 1,w >= 0, where 1 is the constant vector with

1T = (1, ..., 1). The discrete approximation to the second variation can be written in the

form E(2) =< w, Hw >, where H is the finite difference approximation to the Sturm-

Liouville operator on the left hand side of Eq. (30); H is a tridiagonal matrix with

< u, Hv >=< Hu,v >. If we let hT = (R1/2, R2, ..., RN−1, RN/2), then we may also

write < 1,w >= hTw as a conventional matrix inner product. The constraint equation

is then treated by introducing an explicit projection onto the subspace < 1,w >= 0,

defined by the matrix

P = I − 1hT

hT1
, (A19)

where I is the identity matrix and the outer product 1hT is a rank-one matrix. P satisfies

P1 = 0 and Pw = 0 if < 1,w >= 0, and is symmetric with respect to the inner product:

< u, Pv >=< Pu,v >, with P
2 = P.

The diagonalization of E(2) on the subspace < 1,w >= 0 is achieved by comput-

ing the N normal modes wj that satisfy the conventional symmetric eigenvalue problem

P
T
HPwj = λjwj. We note that since P1 = 0, the vector 1 is an eigenmode corresponding

to λ = 0. The remaining modes are orthogonal to 1 and so satisfy the constraint

< 1,wj >= 0, with Pwj = wj. For these modes E(2)[wj] =< wj, Hwj >=< Pwj, HPwj >=

< wj, P
T
HPwj >= λj < wj,wj >, which diagonalizes the discrete second variation,

E(2)[
∑

ajwj] =
∑

λj|aj|2 < wj,wj >. We note that by using the explicit expression

(A19) for P, the eigenvalue problem P
T
HPwj = λjwj can be re-written as

Hwj = λjwj +

[

hT
Hwj

hT1

]

1, (A20)

if < 1,w >= 0, which is a discrete version of Eq. (30) with (hT
Hwj)/(h

T1) providing a

discrete approximation to the Lagrange multiplier µj.

For the non-axisymmetric isolated drop, the discretization of Eq. (34) using centered

differences for the differential operator and a quadrature formula for the integral oper-

ator produces a dense matrix rather than a tridiagonal matrix, but this problem is still
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amenable to solution with a conventional eigensolver. For the axisymmetric problem

the volume constraint is treated by subspace projection in the same manner as for the

driven drop, and the resulting diagonalization again allows the stability of the drop to

be determined from the signs of the eigenvalues of the corresponding normal modes.

A3 ODE Solution

A shooting procedure can be used to compute numerical solutions for the unperturbed

drop, and to solve the associated stability problem. For a given value of Ω, the base state

can be computed by solving the system of ODE’s

Rs = cos ψ, (A21)

Zs = sin ψ, (A22)

γψs = −γ sin(ψ)/R − P − ∆ρ Ω2

2
R2, (A23)

Vs = 4πR(s)Z(s) cos ψ, (A24)

Ys = 4π∆ρ [R(s)]3Z(s) cos ψ. (A25)

(A26)

to determine the drop shape r = R(s) and z = Z(s) for 0 < s < ST , and the Lagrange

multiplier P for the volume constraint. Here V (s) and Y (s) are introduced in order to

facilitate computation of the drop’s volume V (ST ) and moment of inertia I = Y (ST ).

For the shooting procedure in the spheroidal case appropriate initial conditions at

s = 0 are R(0) = 0, Z(0) = Z0, ψ(0) = 0, V (0) = 0, and Y (0) = 0, where Z0

is the (unknown) polar radius at r = 0. At the equator R(ST ) = r1, Z(ST ) = 0,

and ψ(ST ) = −π/2. The shooting procedure uses provisional values of Z0 and P , and

integrates from s = 0 until a value s = ST where Z(ST ) = 0. The desired conditions

ψ(ST ) = −π/2 and V (ST ) = V0 will generally not be satisfied with this choice of Z0 and

P , so these values are updated by a root solver that drives ψ(ST ) and V (ST ) to their

required values. Upon convergence we also then have values for the equatorial radius

R(ST ) = r1, the moment of inertia I = Y (ST ), and the angular momentum L = IΩ.
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For the toroidal case we have R(0) = r0 and R(ST ) = r1, with Z(0) = Z(ST ) = 0,

and ψ(0) = π/2 = −ψ(ST ). In this case we instead start with provisional values for R(0)

and P , and iterate on these values until ψ(ST ) = −π/2 and V (ST ) = V0.

To solve the stability problem for the non-axisymmetric driven drop we append the

equation

γwss = −γ
cos ψ

R
ws +

{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

w − γ
n2

R2
w − λw, (A27)

with initial conditions w(0) = 1, ws(0) = 0. Provisional values of λ are used to drive

ws(ST ) to zero, so that the perturbation has the correct Neumann boundary conditions.

Initial guesses for λ are obtained from the matrix solution.

For the axisymmetric drop we append the equations

γwss = −γ
cos ψ

R
ws +

{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

w (A28)

−γ
n2

R2
w − λw − µ,

V (1)
s = 4πR(s)w(s), (A29)

with initial conditions w(0) = 1, ws(0) = 0, and V (1)(0) = 0. Provisional values of λ and

µ are used to drive ws(ST ) and V (1)(ST ) to zero, so that the perturbation has the correct

Neumann boundary conditions and satisfies the volume constraint. Initial guesses for

λ and µ are obtained from the matrix solution. For the spheroidal case, to avoid the

singularity at s = 0 in Eq. (A28) we compute a series solution for small s (see Appendix

A4), and start the numerical integration at a small positive value of s using values from

the series solution.

For the isolated non-axisymmetric drop, the integro-differential equation (34) is con-

verted to an ODE by replacing the integral term by an auxiliary variable during the

shooting procedure. We set

B = 4π(∆ρ)2

(

L2

I3

)
∫ ST

0

[R(s)]3w(s) dθ ds (A30)
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and append ODE’s of the form

γwss = −γ
cos ψ

R
ws +

{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

w (A31)

+B[R(s)]2 − γ
n2

R2
w − λw,

Y (1)
s = 4π(∆ρ)2

(

L2

I3

)

R3w. (A32)

With the initial conditions w(0) = 1, ws(0) = 0, and Y (1)(0) = 0, we solve the ODEs and

then iterate on λ and B to obtain ws(ST ) = 0 and Y (1)(ST ) = B.

Similarly, for the axisymmetric isolated drop we solve

γwss = −γ
cos ψ

R
ws +

{

−γ ψ2
s − γ

sin2 ψ

R2
+ ∆ρ Ω2 R2 sin ψ

R

}

w (A33)

+B[R(s)]2 − λw − µ,

V (1)
s = 4πRw, (A34)

Y (1)
s = 4π(∆ρ)2

(

L2

I3

)

R3w. (A35)

With the initial conditions w(0) = 1, ws(0) = 0, V (1)(0) = 0, and Y (1)(0) = 0, we iterate

on λ, µ, and B to obtain ws(ST ) = 0, V (1)(ST ) = 0, and Y (1)(ST ) = B.

A4 Taylor Series Expansions

For the spheroidal solutions, there is a singularity in the appended Sturm-Liouville equa-

tion Eq. (A28) where the arclength s = 0 at r0 = 0. The singular terms are avoided by

employing a Taylor series expansions for the base state R(s), Z(s) and ψ(s) about s = 0,

given by

R(s) = s − P 2

24
s3 +

[

P 4

1920
− PΩ2

10

]

s5 +

[

− P 6

322560
+

11P 3Ω2

1680
− Ω4

14

]

s7 + O(s9),(A36)

Z(s) = Z0 −
P

4
s2 +

[

P 3

192
− Ω2

4

]

s4 +

[

7P 2Ω2

240
− P 5

23040

]

s6 + O(s8), (A37)

ψ(s) = −P

2
s − Ω2s3 +

P 2Ω2

20
s5 +

[

−P 4Ω2

840
+

3PΩ4

35

]

s7 + O(s9), (A38)

which were found by solving the differential equations (A21)–(A23) with the appropriate

initial conditions at s = 0.
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The perturbation is expanded as

W (s) = w0 sα(1 + w2 s2 + w4 s4 + ...), (A39)

where the coefficients of the odd powers of s are found to be zero due to symmetry. The

remaining coefficients are determined by the method of Frobenius as follows.

Firstly, the non-axisymmetric drop, n ≥ 1 is considered. Here, the Sturm-Liouville

equation Eq. (A27) at leading order in s gives an indicial equation for α with solution

α = ±n. For regularity of solution, α = n is chosen. Solving for additional terms in the

perturbation series at O(sn) gives

w2 =
1

48(n + 1)

[

P 2(n + 3)(n − 2) − 12λ
]

, (A40)

w4 =
1

23040(n + 1)(n + 2)

[

720 λ2 − 120 λP 2(n2 + n − 5) (A41)

+P 4(5n4 + 22n3 − 29n2 − 46n + 120) + 576P Ω2(n + 1)(n2 + 2n − 40)
]

.

For the axisymmetric drop, n = 0, there is the additional volume constraint. There-

fore, the perturbed solution has a particular inhomogeneous solution proportional to the

Lagrange multiplier µ in addition to the homogeneous solution such that

W (s) = w0s
α(1 + w2s

2 + w4s
4 + ...) + µ(d2s

2 + d4s
4 + d6s

6 + ...). (A42)

The coefficients w2 and w4 are as in Eq. (A40) with n = 0 and the terms proportional to

µ are given by

d2 = −1/4, d4 = (3λ + P 2)/192, d6 = (10944P Ω2 − P 4 − 45 λP 2 − 90 λ2)/207360.

(A43)

For this case, the expansions for R(s) and W (s) are used to get the necessary series

expansion for the volume of the drop

V (s) =

∫ s

0

R(s) W (s) ds

= µ [−s4/16 + (λ + P 2) s6/384 + ...] + w0 [s2/2 − (λ/4 + P 2/6) s4/4 (A44)

+ (30λ2 + 45 λP 2 + 16 P 4 − 1152P Ω2) s6/11520 + ...].
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For the axisymmetric isolated drop, the perturbed solution gets an additional inho-

mogeneous term due to the constant angular momentum constraint so that

W (s) = w0 sα(1 + w2s
2 + w4s

4 + ...) + µ (d2 s2 + d4 s4 + d6 s6 + ...) + β(b4 s4...). (A45)

Since the leading order of the additional term is found to be O(s4), retaining only one

term is sufficient for this additional series, with

β b4 =
πB Ω2

2I . (A46)

Here B is the integral term Eq. (A30) from the integro-differential Sturm-Liouville equa-

tion and the coefficients w2 and w4 remain as in Eq. (A40) and Eq. (A41) with n = 0.
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