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Spin-orbit coupling in ferromagnets gives rise to the anomalous Hall effect and the anisotropic
magnetoresistance, both of which can be used to create spin-transfer torques in a similar manner
as the spin Hall effect. In this paper we show how these effects can be used to reliably switch
perpendicularly magnetized layers and to move domain walls. A drift-diffusion treatment of the
anomalous Hall effect and the anisotropic magnetoresistance describes the spin currents that flow in
directions perpendicular to the electric field. In systems with two ferromagnetic layers separated by
a spacer layer, an in-plane electric field causes spin currents to be injected from one layer into the
other, creating spin transfer torques. Unlike the related spin Hall effect in non-magnetic materials,
the anomalous Hall effect and the anisotropic magnetoresistance allow control of the orientation of
the injected spins, and hence torques, by changing the direction of the magnetization in the injecting
layer. The torques on one layer show a rich angular dependence as a function of the orientation of the
magnetization in the other layer. The control of the torques afforded by changing the orientation of
the magnetization in a fixed layer makes it possible to reliably switch a perpendicularly magnetized
free layer. Our calculated critical current densities for a representative CoFe/Cu/FePt structure
show that the switching can be efficient for appropriate material choices. Similarly, control of the
magnetization direction can drive domain wall motion, as shown for NiFe/Cu/NiFe structures.

I. INTRODUCTION

The use of spin-orbit coupling to generate spin-transfer
torques [1–5] raises the possibility of new types of devices
and more efficient versions of existing devices. In general,
the spin-orbit coupling in these studies has been provided
by a non-magnetic heavy metal layer such as Pt. Here,
we show that replacing this non-magnetic layer by a fer-
romagnetic layer and a thin spacer layer offers potential
advantages in device design. In existing approaches, spin-
orbit torques [6, 7] typically derive from the spin Hall
effect [8–10] in the bulk of non-magnetic layers or from
spin-orbit torques localized at the interface between such
a layer and a ferromagnetic layer [11–19]. The resulting
torques may lead to more efficient switching of memory
elements [20–24] or domain wall motion [25–31]. Consid-
erable experimental [32–37] and theoretical [38–42] work
has been devoted to characterizing these torques so as to
understand the details of their origin. However, device
design possibilities based on heavy metal layers are some-
what limited by the fact that the form of the torques is
determined by the geometry of the device, that is, the
direction of the current flow and the interface normal.
We show that replacing the non-magnetic heavy metal
by a ferromagnetic layer and a thin spacer layer gives
greater control over the form of the torque because it is

controlled by the direction of the magnetization, which
can be varied, rather than the geometry.

Historically, the earliest spintronic effects, discovered
before the electron was known to have a spin, were the
anisotropic magnetoresistance [43, 44], and the anoma-
lous Hall effect [45–49]. Both of these effects are caused
by spin-orbit coupling, but because of the strong coupling
between spin currents and charge currents in ferromag-
nets, these are typically discussed in terms of the result-
ing charge currents and voltages. Very recently, several
groups [50–54] measured what they described as the in-
verse spin Hall effect in permalloy, a nickel-iron alloy.
This result raises the point that a spin current will always
accompany the charge current caused by the anomalous
Hall effect [10] and the spin current will vary with the an-
gle between the magnetization and the charge current as
in the anisotropic magnetoresistance. We show that both
the anomalous Hall effect and anisotropic magnetoresis-
tance in ferromagnets can be exploited to generate spin
currents and spin transfer torques in much the same way
as the spin Hall effect in non-magnets. In this paper, we
use the expression “spin Hall effect” exclusively for non-
magnetic metals and describe the related spin currents
that occur in ferromagnets as related to the anomalous
Hall effect or the anisotropic magnetoresistance.

The spin Hall effect [8–10] occurs in non-magnetic met-
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als, particularly heavy metals with strong spin-orbit cou-
pling. When an electric field is applied in a particular
direction, a spin current flows in all directions perpen-
dicular to the field with spins oriented perpendicularly
to their flow. That is, for an electric field in the Ê direc-
tion, there is a spin current in every direction ê perpen-
dicular to the electric field ê · Ê = 0 with spins pointing
in the ê × Ê direction. This spin current can be written
in the form Qij = (−~/2e)σSHǫijkEk, where the second
index of the tensor spin current Q refers to the real space
direction of flow and the first index refers to the orien-
tation of the spin that is flowing. E is the electric field,
σSH is the spin Hall conductivity, and ǫijk is the Levi-
Civita symbol. Repeated indices (here k) are summed
over (here summing over k = x, y, z). The spin current
arises through either intrinsic mechanisms [55, 56], that
is through the spin-orbit coupling in the band structure,
or extrinsic mechanisms [57, 58] through the spin-orbit
coupling in the impurity scattering.

The same spin-orbit effects occur in ferromagnets but
are complicated by the exchange potential that gives rise
to spin-split band structures and spin-dependent conduc-
tivities. One complication is that in a ferromagnet any
spin that is transverse to the magnetization precesses
rapidly, so any transverse spin accumulation or spin cur-
rent dephases quickly due to this precession. Thus, it
becomes a very good approximation to treat the spins in
a ferromagnet as parallel or antiparallel to the magneti-
zation. Then, the tensor spin current in a ferromagnet
has spins pointing in the direction of the magnetization
m flowing in the js direction, or Q ∼ m ⊗ js. This fea-
ture plays a crucial role in the results below. It allows
control of the direction of the spins injected into other
layers due to spin-orbit effects simply by changing m.
Such control does not exist with the spin Hall effect in
non-magnetic metals where the direction the spins point
when injected into another layers is n×E, where n is the
interface normal direction.

A second complication is that majority and minority
electrons see very different potentials so the spin-orbit
scattering that gives rise to pure spin currents in non-
magnets gives rise to a charge current as well as a spin
current. This charge current is the current measured in
the anomalous Hall effect, whose direction is given by
m×E. Therefore, the spin current excited by the anoma-
lous Hall effect has spins pointing the m direction flowing
in the m × E direction, that is

Q =
−~

2e
ζσAHm ⊗ m × E

Qij =
−~

2e
ζσAHmiǫjklmkEl. (1)

The anomalous Hall conductivity, σAH, describes the
charge current due to the anomalous Hall effect, the as-
sociated polarization ζ expresses the fact that this charge
current is spin polarized.

The anisotropic magnetoresistance [43, 44] is an ad-

ditional consequence of spin-orbit coupling in ferromag-
nets. In this case, the conductivity of a ferromagnet is
different if the magnetization is along the electric field di-
rection or perpendicular to it. While not typically consid-
ered, the polarization of the conductivity will change in
these two cases. Another consequence of the anisotropy
in the conductivity occurs when the magnetization is at
any angle other than collinear with or perpendicular to
the electric field. For these other orientations of the mag-
netization, the charge current has an additional contri-
bution, which flows in the direction of the magnetization.
This current is frequently described as the planar Hall ef-
fect because for a thin film ferromagnet, an electric field
gives rise to a Hall current (perpendicular to the electric
field) when the magnetization is rotated in the plane of
the film. The charge current direction due to the planar
Hall effect is given by m(m ·E) and again, the spins flow-
ing with that current point the m direction. Then, the
anisotropic magnetoresistance gives rise to a spin current

Q =
−~

2e
ησAMRm ⊗ m(m · E)

Qij =
−~

2e
ησAMRmimjmkEk. (2)

The conductivity, σAMR, describes the difference in the
charge conductivity comparing cases with the magnetic
field parallel and perpendicular to the electric field. The
associated polarization η expresses the fact that this
change in the charge current is spin polarized. The spins
both flow and point along the magnetization.

The spin currents associated with the anomalous Hall
effect and the anisotropic magnetoresistance can replace
those associated with the spin Hall effect as generators
of torques with advantage of being able to control the
orientation of the spins. Applying an electric field in the
plane of a ferromagnetic layer generates charge and spin
currents flowing perpendicular to it and into adjacent
layers. Thus in a FM/NM/FM film, where FM and NM
refer to ferromagnetic and non-magnetic layers respec-
tively, an in-plane electric field generates spin currents
flowing perpendicularly to the layers. These spin cur-
rents exert torques on the magnetizations in both layers.
The advantage of this approach is the orientation of the
flowing spins can be controlled by varying the directions
of the magnetizations. The goal of this paper is to evalu-
ate these spin transfer torques and show how they may be
advantageous for some device applications. We develop
the drift-diffusion equations in Sec. II and apply them to
the case in which an electric current flows in the plane of
a FM/NM/FM film. Details of the derivation are given
in the Appendices. In Sec. III, we illustrate the angu-
lar dependence of the torque as both magnetizations are
varied and then show how these torques can lead to ef-
fective magnetization switching and domain wall motion.
We summarize our results in Sec. IV.
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II. DERIVATION

In this section we present the drift diffusion equa-
tions in ferromagnets, accounting for the spin-orbit de-
rived contributions to the transport. Since spin com-
ponents transverse to the magnetization rapidly precess
and dephase, they can be neglected. Then, the charge
and spin currents are combinations of the majority and
minority currents carried by spin-s (s =↑, ↓) electrons.
In the presence of the Anomalous Hall (AH) effect and
the anisotropic magnetoresistance (AMR) effect, the spin
current densities are given by

j↑ =
(1 + β)

2

σ

e
∇µ↑ +

(1 + ζ)

2

σAH

e
m × ∇µ↑

+
(1 + η)

2

σAMR

e
m

(

m · ∇µ↑
)

, (3)

j↓ =
(1 − β)

2

σ

e
∇µ↓ +

(1 − ζ)

2

σAH

e
m × ∇µ↓

+
(1 − η)

2

σAMR

e
m

(

m · ∇µ↓
)

, (4)

where the (total) electric current density is j = j↑ + j↓.
The longitudinal conductivity and conductivities due to
the anomalous Hall effect and the anisotropic magnetore-
sistance effect are denoted as σ, σAH, and σAMR, respec-
tively, and their spin polarizations are denoted as β, ζ,
and η respectively. The spin-dependent electro-chemical
potentials are denoted as µs. We define electro-chemical
potential µ̄ and spin accumulation δµ as

µ̄ =
µ↑ + µ↓

2
, δµ =

µ↑ − µ↓

2
. (5)

We emphasize that the ”(longitudinal) spin accumula-
tion” used in Refs. [59–61], which will be used below, is
defined as µ↑ − µ↓, which is twice the magnitude of δµ.
In terms of µ̄ and δµ, we find that

j↑ + j↓ =
σ

e
∇µ̄ + β

σ

e
∇δµ

+
σAH

e
m × ∇µ̄ + ζ

σAH

e
m × ∇δµ (6)

+
σAMR

e
m (m · ∇µ̄) + η

σAMR

e
m (m · ∇δµ) ,

j↑ − j↓ =
σ

e
∇δµ + β

σ

e
∇µ̄

+
σAH

e
m × ∇δµ + ζ

σAH

e
m × ∇µ̄ (7)

+
σAMR

e
m (m · ∇δµ) + η

σAMR

e
m (m · ∇µ̄) .

In terms of these current densities, the tensor spin current
density is Q = − ~

2em ⊗ (j↑ − j↓).

It is tempting to imagine that all three polarizations,
β, ζ, and η are the same, but there is no reason that they
should be. The polarization of the longitudinal conduc-
tivity, β is determined by the spin-dependent densities
of states and particularly the spin-dependent scattering

rates. It is typically between -1 and 1, with negative val-
ues for the rare cases in which the minority conductivity
is higher than the majority. Values approach ±1 for half
metals. Values greater than 1 or less than -1 would imply
that one spin type move backwards. We are not aware
of any such case.

The polarizations, ζ, that of polarization of the anoma-
lous Hall effect and η, that of the anisotropic magnetore-
sistance are not simply related to β. For example, we can
construct several contradictory arguments for the value
of ζ. If we imagine that the anomalous Hall effect were
simply a deflection of all carriers in one direction and that
these carriers then underwent the same spin-dependent
scattering as the longitudinal current, we would guess

that ζ ≈ (1+β)σAH−(1−β)σAH

(1+β)σAH+(1−β)σAH
= β. If on the other hand,

we imagine that the anomalous Hall effect originates from
the spin Hall effect in which different spins are deflected
in opposite directions and then each spin is subject to
the same spin-dependent scattering, we might imagine
that the majority and minority electrons flow in the op-
posite directions but are affected by the same spin depen-
dent scattering as the conductivity. The reversed flow for
the minority electrons essentially inverts the polarization

ζ ≈ (1+β)σAH+(1−β)σAH

(1+β)σAH−(1−β)σAH
= 1/β. In fact, first principles

calculations [62] of the spin polarization of the anomalous
Hall effect give results that vary widely and do not seem
to agree with any simple model. Some of this variabil-
ity can be understood from first principles calculations
[56] of the spin Hall effect, which show that the spin Hall
conductivity depends sensitively on the Fermi level. The
spin-split band structure of ferromagnets can be viewed
in a simple approximation as just a shift in energies of
the bands for one spin relative to the other, or equiva-
lently the two spins see different Fermi energies. In this
case, the minority and majority spins that are deflected
in different directions are deflected by different potentials
and will be deflected in different amounts. Therefore,
part of the polarization ζ of the anomalous Hall current
comes from the energy dependence of the “underlying
spin Hall effect.” Similarly, η, the spin polarization of
the anisotropic magnetoresistance, is determined by the
change in the spin-dependent scattering and as such gives
no expectation to its value.

We are interested in the geometry, illustrated in
Fig. 1(b), in which two ferromagnetic films are sepa-
rated from each other by a thin non-magnetic layer that
allows the magnetizations of the two layers to be ori-
ented independently of each other. We assume that the
interface normals lie in the z-direction and the electric
field is applied in the x-direction. We ignore charge
and spin currents that flow in the y-direction because
they do not couple to anything. In general, an electric
field in the x-direction would give rise to charge cur-
rent flow in the z-direction, but the thin film geometry
treated here prevents that. Except for the applied elec-
tric potential eExx, only the z-components of ∇µ̄ and
∇δµ are non-zero, i.e., ∇(µ̄/e) = Exex + (∂zµ̄/e)ez and
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FIG. 1: (color online) (a) Schematic geometry for spin Hall
effect induced spin transfer torques. In this geometry, the
damping-like torque is with respect to the y-axis, i.e. m×(ŷ×
m (with a smaller field-like torque). (b) Schematic geometry
for anomalous Hall effect induced spin transfer torques. In
this case, the damping-like torque is with respect to the fixed
layer magnetization direction p, i.e. m × (p × m) (with a
smaller field-like torque).

∇(δµ/e) = (∂zδµ/e)ez. The electric field adjusts itself
so that no electric current flows in the z-direction.

In a particular ferromagnetic layer, we can solve
Eqs. (6) and (7) together with the diffusion equation [63]

∂2

∂z2
(µ↑ − µ↓) =

µ↑ − µ↓

ℓ2sf
, (8)

where ℓsf is the spin diffusion length. In Appendix A, we
give the details the derivation of these solutions. Here
we highlight some of the key steps. Forcing the charge
current in the z-direction to be zero dictates that the spin
current in the z-direction have the form

j↑z − j↓z = σ̃EEx +
σ̃δµ

2eℓsf

(

Aez/ℓsf − Be−z/ℓsf
)

, (9)

where the constants A and B are to be determined in
Appendix A. The spin current is given in terms of two
effective conductivities σ̃E and σ̃δµ. The former essen-
tially gives the spin current that would result in a bulk
material in response to a field in the x-direction in which
the transverse charge current were constrained to be zero.
The latter gives the spin current in response to a spin ac-
cumulation, including the corrections due to the charge

current itself being zero. The effective conductivities are

σ̃E =
(βσ + ησAMRm2

z)(σAHmy − σAMRmzmx)

σ + σAMRm2
z

− (ζσAHmy − ησAMRmzmx) , (10)

and

σ̃δµ = σ + σAMRm2
z

−
(

βσ + ησAMRm2
z

)

(

βσ + ησAMRm2
z

σ + σAMRm2
z

)

.(11)

While the effective conductivities appear complicated,
σ̃E simplifies considerably in certain limits and gives
simple illustrations of the main results of this paper.
If the anisotropic magnetoresistance can be neglected,
σ̃E → (β − ζ)myσAH. Thus, there is a spin current
whenever the magnetization has a component along the
y-direction, Qiz ∼ mimy. This means that by tilting the
magnetization out-of-plane, it is possible to get an out-
of-plane component of the spins flowing into the other
layer, something not achievable with the spin Hall effect
in non-magnetic materials. This feature is illustrated in
Fig 1(b). The factor of (β − ζ) arises from two con-
tributions, the term proportional to ζ is directly from
the polarized current accompanying the anomalous Hall
current. The term proportional to β comes from the po-
larization of the “counter-flow” current that cancels the
anomalous Hall current.

When the anomalous Hall effect can be neglected,
σ̃E → (η − β)mxmzσAMR

σ
σ+σAMRm2

z
. This expression

is more complicated than that for the anomalous Hall
effect above because the anisotropic magnetoresistance
affects the conductivity in the z-direction as captured
by the last factor in this expression. As with the pre-
vious case, an out-of plane component of the magnetiza-
tion gives an out-of-plane component to the spin current,
Qiz ∼ mimxmz. As with the previous case, the factor of
(η−β) appears from the polarized current due to the pla-
nar Hall effect and the counter-flow current that cancels
the charge current of the planar Hall effect.

Computing the torques on both layers requires find-
ing the spin accumulation and spin current throughout
the structure. The spin current at the F1/N interface
is given in terms of the spin accumulation at the F1/N
interface and interface conductances [59–61]. The spin
accumulation is found by applying appropriate bound-
ary conditions to µ̄ and δµ as described in Appendix A.
For a magnetic layer with interface (1) at z = 0 and
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interface (2) at z = d, we have

σ̃δµ(µ↑ − µ↓) =
−2eℓsf

sinh(d/ℓsf)

×
[

(

j(1)
sz − σ̃EEx

)

cosh

(

z − d

ℓsf

)

−
(

j(2)
sz − σ̃EEx

)

cosh

(

z

ℓsf

)

]

,(12)

where j
(i)
s is j↑ − j↓ at the interface of the normal metal

with ferromagnet i. The spin current is then

QF1→N
s =

1

4π

[

(1 − γ2)g

2
m · (µF1

− µN)m

−grm × (µN × m) − giµN × m] .

(13)

Here g = and γ are the dimensionless interface conduc-
tance and its spin polarization, respectively, which is re-
lated to to the interface resistance r via r = (h/e2)S/g
with h/e2 ≈ 25.9 kΩ. The cross section area is denoted
as S. The real and imaginary parts of the mixing conduc-
tance are denoted as gr and gi, respectively. Note that
the charge chemical potential does not appear because
the fact that the charge current across the interface is
zero allows us to relate the chemical potential difference
to the longitudinal spin chemical potential difference and
eliminate the former from the equation for the spin cur-
rent.

The solutions of the spin accumulations in each fer-
romagnetic layer and the boundary conditions allow us
to write the spin current in each ferromagnetic layer in
terms of just the spin accumulation in the non-magnetic
layer

QF1→N
s =

~g∗

2eg′sd
tanh

(

d1

2ℓsf

)

σ̃EExSm

− 1

4π

[

g∗
(

m · µN

)

m

+grm × (µN × m) + giµN × m
]

, (14)

where g∗ is defined as

1

g∗
=

2

(1 − γ2)g
+

1

g′sd tanh(d1/ℓsf)
, (15)

and

g′sd
S

=
hσ̃δµ

2e2ℓsf
. (16)

Similarly, the spin current at the F2/N interface is given

by

QF2→N
s = − ~g∗

2eg′sd
tanh

(

d2

2ℓsf

)

σ̃EExSp

− 1

4π
[g∗ (p · µN)p

+grp × (µN × p) + giµN × p] .

(17)

In the structure in Fig 1, we separate the two ferro-
magnetic layers by a thin non-magnetic layer. We assume
that this layer effectively breaks the exchange coupling
between the two ferromagnetic layers. We also assume
that it is still thinner than its mean free path and spin
diffusion length, so that spin current injected at one in-
terface transmits unchanged to the other interface. These
assumptions imply that the spin current and spin accu-
mulation in the spacer layer can be treated as constant.
This condition means that QF1→N

s + QF2→N
s = 0, from

which µN can be determined. Then, the spin torque act-
ing on m is obtained from

T =

(

dm

dt

)

st

=
γ0

µ0MsV
m ×

(

QF1→N
s × m

)

, (18)

where µ0 is the magnetic constant and, γ0, Ms, and V are
the gyromagnetic ratio, saturation magnetization, and
volume of F1, respectively.

Further progress requires taking these solutions for
both ferromagnetic layers and solving for the spin ac-
cumulation in the non-magnetic layer. In general, the
resulting torque can be written in the form

T =
γ0~Ex

2eµ0Msd1
(19)

[

σd
eff(m,p)m × (p × m) + σf

eff(m,p)p × m
]

The superscripts on the effective conductivities refer to
the damping-like, d, and field-like, f , components of the
torque. However, a key point of this paper is that these
damping-like and field-like torques are defined with re-
spect to the orientation of the magnetization in the other
layer, here p, and not as for the spin Hall effect, the di-
rection Ê× n̂, where n̂ is the interface normal. See Fig. 1
for the comparison. The effective conductivities depend
strongly on the directions of the magnetizations, m and
p. In particular, they inherit the strong orientational de-
pendence from σ̃E. When the imaginary part of the mix-
ing conductance can be neglected, the field-like torque
vanishes. The spin torque acting on p is obtained in a
similar way. In Appendix B, we show how to compute
the torques numerically for the general case and show
some analytic forms for some special cases. In the next
section, we present numerical results and investigate the
consequences of these torques on switching and domain
wall motion.

The derivation in this section is done using the drift-
diffusion approach, as is typically used in the analysis of
experiments using the spin Hall effect to generate spin
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transfer torques. This approximation does not capture
the in-plane giant magnetoresistance effect because, in
the absence of spin-orbit effects, the drift-diffusion ap-
proximation is not able to describe a spin current flow-
ing from layer to layer when the applied electric field is
in the plane. The simplest calculation to capture the
current-in-plane giant magnetoresistance is based on the
Boltzmann equation [64]. When applied to the spin Hall
effect and resulting torques [38], calculations based on
the Boltzmann equation qualitatively but not quantita-
tively agree with those based on the drift diffusion ap-
proach. The drift-diffusion approach does not even quali-
tatively capture the consequences of interfacial spin-orbit
coupling. For the present calculations, we also expect
that the present approximation would qualitatively but
not quantitatively agree with calculations based on the
Boltzmann equation.

For the case of in-plane giant magnetoresistance with-
out spin-orbit coupling, the Boltzmann equation does de-
scribe spins flowing from each layer to the other. How-
ever, there is no net spin flow perpendicular to the layers.
The perpendicular spin current due to electrons moving
with the electric field cancels that due to electrons mov-
ing opposite to it. Thus in both drift-diffusion calcu-
lations and Boltzmann equation calculations, there are
no spin-transfer torques in the absence of spin-orbit cou-
pling.

The drift-diffusion approach has not yet been formu-
lated in a way that can treat interfacial spin-orbit cou-
pling and so we neglect such contributions here. Inclu-
sion of interfacial spin-orbit coupling in the Boltzmann
equation [38] can lead to large field-like torques, which
can have large effects on the magnetization dynamics.
In the present approach, all field-like torques arise from
the imaginary part of the mixing conductance, which is
expected to be small for interfaces between Cu and 3d
transition metal ferromagnets. We find that these contri-
butions do not play an important role in the calculations
presented below.

III. RESULTS

A. Angular dependence of torques

While the full solution of the torque for a general model
is quite complicated, it can be qualitatively understood
much more simply. Using the parameters in Table I, we
compute the torque for a variety of magnetization direc-
tions for two 5 nm thick NiFe layers and plot them in
Fig. 2. For simplicity, we consider two cases, σAMR = 0
and σAH = 0, so we can show the effect of each sep-
arately. In the limit that both are much less than σ,
the two contributions should add. Very little informa-
tion is available about the parameters, ζ and η describ-
ing the polarization of the anomalous Hall effect and the
anisotropic magnetoresistance. Calculated values for im-
purities in Fe have an approximate range of -0.5 to 2.0

NiFe CoFeB FePt units

ρ 122 a 300 b 390 c Ωnm

β 0.7 a 0.56 b 0.40 d

r 0.5 a 0.5 b 0.5 kΩnm2

γ 0.7 a 0.83 b 0.83

gr/S 10.0 e 10.0 10.0 nm−2

gi/S 1.0 0.0 0.0 nm−2

ℓsf 5.5 a 4.5 f 5.0 d nm

σAH/σ 0.001 g 0.0 0.015 c

σAMR/σ 0.06 h 0.0 0.0147 i

ζ 5 0 1.5

η 0.9 0 -0.1

Ms 0.86 j 0.456 k MA/m

HK 0.0 0.569 k MA/m

γ0 0.23206 0.23206 Mm/(A s)

α 0.01 j 0.01

TABLE I: Default material parameters. Parameters are
chosen to approximate Ni80Fe20 (Permalloy), CoFeB and
FePt, but some values are not well known. In particular,
η and ζ are unknown to our knowledge and so we have cho-
sen representative values. Values for parameters are taken
from (a) Ref. [65], (b) Ref. [66] (c) Ref. [67], (d) Ref. [68],
(e) Ref. [69] (f) Ref. [70], (g) Ref. [71], (h) Ref. [72],
(i) Ref. [73], (j) Ref. [74], (k) Ref. [75], (l) Ref. [76] where
indicated and estimated where not indicated.

[62]. For NiFe, Miao et al. [50] report a spin Hall angle
of 0.005. Combined with the reported anomalous Hall
angle of 0.001 [71], gives a value of ζ = 5. The rest of the
values for ζ and η in Table I have been taken from the
range found by Zimmermann et al. [62]. These values are
plausible and illustrate the important physics of such ef-
fects, but further measurements are needed to determine
actual values.

Consider first the case in which there is only the
anomalous Hall effect. We have assumed that the imagi-
nary part of the mixing conductance is much less than the
real part, so any field-like torque that is present is also
much smaller than the damping-like contribution. The
discussion in Sec. I that σ̃E (β − ζ)pyσAH for the spin
current due to the fixed layer with its magnetization in
the p direction, gives guidance for the approximate an-
gular dependence of the torque. Since the spins in the
spin current point in the p direction, the damping-like
torque varies like pym× (p×m). When the magnetiza-
tion is along the y-axis, the torque has the same angular
dependence as the spin Hall effect as seen in the heavy
(red) curves of Fig. 2(e-j). That is, a damping-like torque
with respect to the y-axis. In this case, the out-of-plane
torque, Tz, (heavy red curve in Fig. 2(g)) is essentially
zero when the magnetization is rotated in plane.

As the fixed layer magnetization is rotated out of plane
(light (green) and dashed (blue) curves in Fig. 2(e-j)),
the torque remains damping-like, pym × (p × m), but
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FIG. 2: (color online) Angular dependence of spin transfer torques. Panels (a) through (d) show the directions of the magneti-
zations in each column. The gray projected circles indicate the plane of rotation of the free layer magnetization, m. For panels
(a) and (c) the plane of rotation is the x − y plane, starting at x̂ and for panels (b) and (d) it is the y − z plane starting at
ẑ . The arrows in panels (a-d) indicate the three directions of the fixed layer magnetization, p for the panels in each column
(online, the colors correspond to the colors of the curves in the panels below). These are at θ = 90◦, 60◦, and 30◦ for all four
panels and φ = 90◦ for (a) and (b) and φ = 45◦ for (c) and (d). Panels (e-j) give the torques for the anomalous Hall effect with
the anisotropic magnetoresistance set to zero and panels (k-p) the other way around. In each of the panels (e-p) the heavy
(red) lines give the torque for θ = 90◦, light (green) lines for θ = 60◦ and dashed (blue) for θ = 30◦. Rows (e,h,k,n), (f,i,l,o),
and (g,j,m,p) give the x, y, and z components of the torque respectively. For all calculations, the current density is 1011 A/m2.

it develops an out-of-plane component, Tz, even when
the magnetization is rotated in plane, (light (green) and
dashed (blue) curves in Fig. 2(g). This breaks the sym-
metry between m = ±ẑ, making it possible to reliably
switch the magnetization, as discussed in the next sec-
tion. However, as the polarizer magnetization is rotated
toward the pole, the total size of the torque goes to zero
because py goes to zero when pz → ±1.

When the anomalous Hall effect is absent and the
anisotropic magnetoresistance is present (Fig. 2(k-p)),
the angular dependence is slightly more complicated. Re-
call from Sec. I that σ̃E → (η − β)pxpzσAMR

σ
σ+σAMRp2

z

when the anomalous Hall effect is absent. If σAMR/σ ≪
1, the last factor can be neglected. In that case, the
damping-like torque varies like pxpzm × (p × m). The
spin current flows along the magnetization direction, so
unless pz 6= 0 there is no spin current flow into the free
layer. Thus, the torque is zero when the fixed layer mag-

netization is in-plane (heavy (red) curves in Fig. 2(k-p)).
Otherwise, it has roughly a damping-like form with re-
spect to the fixed layer magnetization. For the values of
parameters we have assumed, there are deviations from
the simple m×(p×m) behavior expected when the spin-
orbit effects are weak.

B. Magnetic Switching

One advantage of spin-orbit effects in ferromagnets, as
compared to the spin Hall effect, is that the control over
the direction of the incident spin current allows for the
excitation of magnetization dynamics that cannot be ex-
cited by the spin Hall effect. An example of such dynam-
ics is a switching of a perpendicularly magnetized free
layer in the absence of an external field. In this section,
we analytically compute the critical current for switching
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a perpendicular magnetization in F1 due to the anoma-
lous Hall effect and anisotropic magnetoresistance effect
in F2. We verify the behavior by direct numerical simu-
lation of the Landau-Lifshitz-Gilbert (LLG) equation.

For illustrative purposes, we simplify the generally
complex dependence on relative angle of the magneti-
zations seen in Eq. (B18) by treating a special case. We
assume that F1 has neither the anomalous Hall effect
nor the anisotropic magnetoresistance, i.e., σAH(F1) =
σAMR(F1) = 0, whereas F2 has both. The magnetization
of F1, m, can move freely, whereas that of F2, p, points
to an arbitrary fixed direction. The values of the pa-
rameters are taken from CoFeB free (F1) layer and FePt
pinned (F2) layer, and summarized in Table I.

The LLG equation for the magnetization in F1, with
the spin torque, Eq. (19), is

dm

dt
= − γ0m × H + αm × dm

dt

+
γ0~

2eµ0Msd1
Exσd

effm × (p × m) ,
(20)

where α is the Gilbert damping constant, and σd
eff is given

by (see also Appendix B)

σd
eff =

tanh[d2/(2ℓF2

sf )]gr(F1)g
∗
F2

(p)σ̃E(F2)(p)

g′sd(F2)
(p)(gr(F1) + g∗F2

(p))[1 − λ1λ2(p)(m · p)2]
.

(21)
We introduce the parameter λk (k = 1, 2), which char-
acterizes the dependence of the spin torque strength on
the relative angle of the magnetizations,

λk =
gr(Fk) − g∗Fk

gr(Fk′ ) + g∗Fk

, (22)

where (k, k′) = (1, 2) or (2, 1). We emphasize that
g′sd(F2)

(p), g∗F2
(p), λ2(p), and σ̃E(F2)(p) depend on the

direction of p, according to their definition, Eqs. (10),
(11), (15), (16), and (22). On the other hand, λ1 is in-
dependent of m because the F1 layer does not show the
anomalous Hall effect nor anisotropic magnetoresistance
effect.

We assume that F1 is a perpendicular magnet with an
anisotropy field given by H = (0, 0, (HK−Ms)mz), where
HK is the perpendicular anisotropy field. In the absence
of an electric field Ex, the free layer magnetization is
stable along the perpendicular axis. We assume that it
starts along the z-axis, i.e., m = ẑ. In the presence of the
spin torque, the magnetization is destabilized, and starts
to precess around the z-axis. Assuming that mz ≃ 1 and
|mx|, |my| ≪ 1, we can linearize the LLG equation (see
Appendix C) and determine the critical current

jcrit = − 2αeµ0Msd1(HK − Ms)

~ tanh[d2/(2ℓF2

sf )]

×
(1 − λ1λ2p

2
z)

2g′sd(F2)
(gr(F1) + g∗F2

)σF2

(1 − λ1λ2)pzg∗F2
gr(F1)σ̃E(F2)

.

(23)
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FIG. 3: (color online) Magnetization dynamics due to the
anomalous Hall effect. Panel (a) shows the geometry. The
trajectories obtained by numerically solving the LLG equation
(20) are shown in (b) for j = 0.9× jc and (c) for j = 1.5× jc.

Using Eq. (23), we can estimate the critical current
for field-free switching of perpendicular layers. As an
example, let us assume that F2 has the anomalous Hall
effect only, i.e., σAH(F2) 6= 0 and σAMR(F2) = 0. In this
case, σ̃E(F2) is (βF2

− ζF2
)pyσAH(F2) and Eq. (23) can

be simplified to Eq. (C3). We choose the pinned layer

magnetization to be p = (0, 1/
√

2, 1/
√

2) and take the
parameter values given in Table I. For 10 nm of FePt,
which can be fixed in a partially out of plane configura-
tion, as a polarizer and 1 nm of CoFeB, with perpendic-
ular anisotropy, as a free layer, we find a critical current
of 1.0×1012 A/m2 from Eq. (23). In Fig. 3, we show the
magnetization dynamics obtained by numerically solving
the LLG equation (20) for the electric current densities
of (a) j = 0.9 × jc and (b) j = 1.5 × jc, respectively.
The magnetization stays near the initial direction in (a),
whereas in (b), it switches the direction to m = −ẑ,
showing the validity of Eq. (23).
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Figure 4 shows the switching current as a function
of the orientation of the fixed layer magnetization p =
(sin(θfixed) cos(φfixed), sin(θfixed) sin(φfixed), cos(θfixed))
from Eq. (23), and verified by numerical simulation of
the LLG equation. The three panels show switching due
to the anomalous Hall effect and anisotropic magnetore-
sistance separately and combined. For the parameters
chosen here, given in Table I, the anomalous Hall effect
is more efficient. The figure shows that the most efficient
switching occurs when the polarizer magnetization is
close to perpendicular (θfixed ≈ 30◦). The efficiency
is determined by a competition between two effects.
One effect is the efficiency of the spins at destabilizing
the magnetization toward reversal. Spins injected per-
pendicular to the stable magnetization direction exert
the greatest torque, but since they enhance precession
only over half a period and suppress it over the other,
they do not destabilize the magnetization. Electrons
with moments antiparallel to the magnetization exert
no torque, but when the magnetization fluctuates, they
exert a torque that destabilizes the magnetization over
the whole precession period. When the critical current
is large enough, they overcome the damping and any
fluctuations get magnified, leading to reversal. The
counterbalancing effect is that when the pinned layer
magnetization is collinear with the magnetization, it is
also collinear with the film normal and the injected spin
current goes to zero. So, the most efficient switching
occurs with the pinned layer magnetization close to nor-
mal but not all the way there (θfixed ≈ 30◦), maximizing
the total perpendicular component of the injected spins.
Switching due to the anomalous Hall effect and that due
to anisotropic magnetoresistance depend differently on
the azimuthal angle so for some orientations of the fixed
layer magnetization, they compete, but for others they
cooperate to reduce the critical current.

The critical current is minimized at an optimal direc-
tion of p. Because of complex dependences of σ̃E and σ̃δµ

on the magnetization direction, as shown in Eqs. (10)
and (11), it is difficult to derive a formula of this optimal
direction. However, for the F2 with the anomalous Hall
effect only, we can derive the analytical formula of the
optimum direction of p; see Appendix C 1. The result,
for this set of parameters is θfixed = 31.6◦, φfixed = 90◦.

We can compare these results with the magnetization
switching assisted by the spin Hall effect. In the spin
Hall effect, spin current polarized along the ŷ direction
is injected to the free layer. This situation is similar to
a special case of switching by spin-orbit effects in fer-
romagnets in which the pinned layer magnetization is
in the ŷ direction. It is useful to consider a general-
ized situation with the fixed layer magnetization in the
yz-plane, φfixed = 90◦ with no anisotropic magnetore-
sistance. Then, σ̃E simplifies and Eq. (23) has the fac-
tor pypz in the denominator as seen in Eq. (C3). This
factor implies that jAH

c diverges when p points to the
z-direction (py = 0 and pz = 1) because the anoma-
lous Hall effect does not induce spin current along the z-
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FIG. 4: (color online) Critical currents for a CoFeB free layer
and FePt fixed layer as a function of the fixed layer magne-
tization direction. The contours are chosen uniformly in the
inverse critical current, the contour where the critical currents
diverge is labeled ±∞. In panel (a), we assume that the po-
larizer has anomalous Hall effect (AHE) but no anisotropic
magnetoresistance (AMR). In panel (b), we assume it has the
AMR but no AHE, and in panel (c) we assume it has both.
Dark (blue) regions indicate regions with low critical for one
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low critical currents for the other direction. At the equator
(θfixed = 90◦), the critical currents diverge for all three cases,
however, for the case with only AMR [panel (b)], the sign
does not change as θfixed is varied near that point, but for the
other two cases it does.
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direction when py = 0. The critical current also diverges
when p points to the y-direction (py = 1 and pz = 0) be-
cause the spin-transfer torque never overcomes the damp-
ing torque as needed to enhance precession. This is the
equivalent of switching by the spin Hall effect. While the
spin-transfer torque can excite magnetization dynamics,
when the fixed layer magnetization is along ŷ it does not
overcome the damping and does not cause precession to
become unstable.

It is possible to excite dynamics in perpendicularly
magnetized samples with the spin Hall effect (or the
anomalous Hall effect with p = ŷ) as shown by Lee
et al. [23]. In fact, they demonstrate that it is possi-
ble to switch the magnetization. However, the switch-
ing they observe is not due to the spin transfer torque
overcoming the damping, but rather is due to a large
amplitude excitation due to the rapid onset of the cur-
rent and hence torque. However, since nothing in the
system breaks the symmetry between up and down, such
switching is extremely sensitive to pulse duration and
current amplitude. Lee et al. [23] demonstrate such sen-
sitivity in Fig. 1(b) of their paper. They derive an ana-
lytic form, Eq. (5), for the critical current that is inde-
pendent of the damping parameter. This independence
indicates that the switching mechanism is precessional,
rather than due to overcoming damping. To switch the
magnetization direction without such sensitivity, an in-
plane magnetic field slightly tilted to the z-direction has
been used experimentally [77]. The switching mechanism
due to the anomalous Hall effect with a fixed layer with
an out-of-plane component to the magnetization has the
advantage of being largely independent of the current
density or pulse duration for currents above the critical
current. Another advantage is that the external field is
unnecessary to switch the magnetization. It can also be
significantly lower when the damping parameter is small,
as is desirable in many magnetic devices.

C. Domain wall motion

The spin-orbit torques generated by ferromagnets can
also be useful to displace in-plane magnetic domain walls,
which we illustrate through two simple examples. We
first consider the spin-valve illustrated in Fig. 5(a), with
an in-plane domain wall in the free layer F1 and a uni-
form polarizer p = (0, py, pz) in the fixed layer F2. Due
to the spin orbit effects in F2, a torque is generated on
F1 that has the form : T = τso(m,p) m × (m × p). To
study the effect of this torque we consider a 1D model
[78] of a transverse wall profile with a domain wall width
∆. The magnetization in the free layer, with the domain
wall, is subject to a spin current from a fixed layer below.
This spin current will cause a small tilting of the mag-
netization away from the long axis in all of the domains
and will cause motion of the domain wall. We neglect the
small tilting of the domains to get the following equations
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FIG. 5: (color online) (a) Schematic of the spin valve with
a transverse in-plane wall and a fixed uniform polarizer. (b)
Out-of-plane tilt angle of domain wall and (c) Domain wall
velocity as a function of the out-of-plane angle θ of the po-
larizer. Calculations are done for 10 nm Py for a polarizer
layer, 1 nm Py for a free layer, and a charge current density
of 2 × 1011 A/m2.

for the domain wall dynamics:

φ̇ +
α

∆
q̇ = τsopz cos φ − τsopy sin φ (24)

q̇

∆
− αφ̇ = γ0Hk sinφ cos φ (25)

Here q is the domain wall position, φ the out-of-plane
tilt angle and Hk the shape anisotropy. At equilibrium
in the absence of spin torques, φ is equal to zero and the
domain wall lies in plane.

In the regime below Walker breakdown, the wall moves
with a constant tilt angle and a steady velocity. Assum-
ing the tilt is small, sinφ ≪ 1,

φ =
τsopz

αγ0Hk + τsopy

q̇AH =
∆

α
τsopz

αγ0Hk

αγ0Hk + τsopy
(26)

Since αγ0Hk ≫ τso for typical values of the current den-
sity, the out-of-plane tilt is indeed small. The domain
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wall moves steadily only if the generated spin torque has
a component along the z-direction. This is not the case
of the torque generated by pure spin Hall effect in a non-
magnetic heavy metal, in which case the domain wall
does not move [79]. On the other hand, the spin-orbit
torques generated by a ferromagnet can have components
along both the z and y directions when the polarizer
is tilted out-of-plane. If, as we did in the last section,
we consider the case of the torque generated by just the
anomalous Hall effect in F2, then

τAH =
γ0~

2eµ0Ms

tanh[d2/(2ℓsf)]

d1

g∗gr

g′sd(gr + g∗)

1

1 − λ2(m · p)2
(β − ζ)σAHExpy (27)

This behavior is shown in Fig. 5, in which we treat the
motion for the case with the anomalous Hall effect and
anisotropic magnetoresistance in both layers. However,
since we assume the magnetization lies in the y−z plane,
the anisotropic magnetoresistance plays a negligible role.
Fig. 5 shows a relatively large domain wall velocity for a
modest charge current density of 2 × 1011 A/m2 and a
very small out of plane tilt of less than a degree.

In the proposed spin-valve system, the current flowing
in the ferromagnet F1 through the domain wall will also
give rise to the more familiar (intralayer) adiabatic and
non-adiabatic spin-transfer torques on the domain wall,
these can enhance or oppose the effect of the spin-orbit
torques. In comparison, the domain wall velocity induced
by these intralayer torques is :

q̇na =
1

α

γ0~

2eµ0Ms
PβnaσEx (28)

where P ≈ β is the current polarization and βna the pro-
portionality factor between the non-adiabatic and adia-
batic torques. The ratio of the velocities is

q̇AH

q̇na
≈ ∆

d1
pypzF

(β − ζ)σAH

Pβnaσ
, (29)

where F is a series of factors (see Eq. (27) of order one.
The ratio of material factors (last factor on the RHS) is
not well known. In NiFe the ratio appears to be close to
one [50]. If that ratio is one or more and a judicious choice
is made for the orientation of the fixed layer, we expect
the domain wall will be mainly driven by the anomalous
Hall torque because the wall width is typically much big-
ger than the layer thickness ∆/d > 10 for most systems
[80].

The other system we consider is the coupled domain
wall system shown in Fig. 6(a). In the case of a fixed
polarizer F2 and a free layer F1, F2 can exert a torque
on F1. But if F2 is no longer fixed, F1 can also induce a
torque on F2. If the magnetic configuration is well cho-
sen, these reciprocal torques can add and enhance mag-
netization dynamics of the coupled system. This is the
case for the double domain wall system with anti-parallel
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FIG. 6: (color on-line) (a) Schematic of the spin valve in
anti-parallel configuration with two domain walls, one in each
layer. Micromagnetic simulations [81] of (b) the coupled do-
main wall system showing in blue the positive z component
of the magnetization and (c) fringing field in the middle of a
transverse domain wall from an isolated thin film wire. (d)
Maximum out-of-plane tilt angle φ of the magnetization in
the domain wall determined from micromagnetic simulations
as a function of the spacer thickness.

configuration shown in Fig. 6.
If both magnetic layers are unpinned, the domain walls

in each layer are strongly coupled. Domain walls in wires
with opposite in-plane magnetizations tilt out of plane
significantly due to the dipolar interaction between them,
as shown in Fig.6. In transverse domain walls in iso-
lated wires, the magnetization is largely in-plane, but the
structure of the wall is very asymmetric from side to side.
This asymmetry leads to fringing fields that have strong
out-of-plane components, as shown in Fig.6(c). When
two wires are stacked on top of one another, these fring-
ing fields cause the magnetization in the domain walls to
tilt out of plane. Fig.6(b) shows that the in-plane compo-



12

nents of the magnetization in the two walls are opposite,
so that the out-of-plane components of the are in the
same direction. Thus, in equilibrium, one domain wall
has the out-of-plane tilt angle φ0, and the other π − φ0

so that the out-of-plane component is in the same direc-
tion and the in-plane directions are opposite. This con-
figuration is illustrated in the micromagnetic simulations
in Fig. 6(b) where blue shows the out-of-plane compo-
nent of the magnetization [81]. As the spacer thickness
tNM decreases, the dipolar fields on each domain wall in-
crease, and the maximum out-of-plane tilt angle increases
as shown in Fig. 6(d), reaching values close to 15◦ for
spacer thicknesses typical of synthetic antiferromagnets.

In this configuration, the domain wall in F2 polarizes
the domain wall in F1 (and reciprocally), and we can
replace py and pz respectively by − cos φ and sinφ in
Eq. (24). For small angle deviations from the equilibrium
configuration, this immediately leads to

q̇AH =
∆

α
τso sin(2φ0) (30)

Due to the particular symmetry of the anomalous Hall
effect torques, the domain wall in F2 acquires the same
velocity: the motion of the coupled domain wall system
is self-sustained. For small spacer thicknesses, the tilt
angle is large, and velocities comparable to the single
wall system with a uniform tilted fixed polarizer can be
reached.

IV. SUMMARY

In this paper we develop a drift-diffusion approach to
treat transport effects of spin-orbit coupling in ferromag-

nets. These include the anomalous Hall effect and the
anisotropic magnetoresistance. In addition to the trans-
verse charge currents that arise due to these effects, there
are concomitant spin currents. These spin currents flow
perpendicularly to the electric field, and so can be in-
jected into layers perpendicular to the electrical current
flow. When these other layers are ferromagnets with
magnetizations that are not aligned with the original
layer, they create spin transfer torques. Unlike the re-
lated spin Hall effect in non-magnetic materials, the fer-
romagnetic spin-orbit effects allow some control of the
orientation of the injected spins. This control arises be-
cause the flowing spins in a ferromagnet are collinear with
the magnetization. Changing the orientation of the mag-
netization changes the direction of the spins injected into
other layers.

We compute the torques due to current flow for two fer-
romagnet layers separated by a thin non-magnetic layer.
The control of the direction of the injected spins makes
it is possible to switch perpendicularly magnetized layers
more easily because of the possibility of an out-of-plane
component of the torque. We also show that such torques
make it possible to switch in-plane magnetized layers via
propagation of transverse/vortex walls and can efficiently
induce dynamics in coupled magnetic systems, e.g. cou-
pled transverse domain walls.
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Appendix A: Solution of electro-chemical potential and spin accumulation

The x and z-components of Eq. (6) are explicitly given terms of µ̄ and δµ by

jx = σEx +
σAH

e
(∂zµ̄)my + σAMR

[

Exmx +
1

e
(∂zµ̄)mz

]

mx + ζ
σAH

e
(∂zδµ)my + η

σAMR

e
(∂zδµ)mzmx, (A1)

jz =
σ

e
∂zµ̄ − σAHExmy + σAMR

[

Exmx +
1

e
(∂zµ̄)mz

]

mz + β
σ

e
∂zδµ + η

σAMR

e
(∂zδµ)m2

z. (A2)

The continuity equation for electric current in steady state, ∇ · j = ∂zjz = 0, requires (σ + σAMRm2
z)µ̄ + (βσ +

ησAMRm2
z)δµ = Cz + D + F (x), where C and D are the integral constants whereas F (x) ∝ eExx. The condition

jz = 0 implies C = e(σAHmz − σAMRmzmx)Ex, whereas the other integral constant D corresponds to a shift of the
chemical potential, µshift. Then, the electro-chemical potential is

µ̄ = µshift + eExx +

(

σAHmy − σAMRmzmx

σ + σAMRm2
z

)

eExz − 1

2

(

βσ + ησAMRm2
z

σ + σAMRm2
z

)

(

µ↑ − µ↓
)

. (A3)
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We assume that the spin accumulation obeys the diffusion equation, Eq. (8). The solution can be expressed as
µ↑ − µ↓ = Aez/ℓsf + Be−z/ℓsf . Two integral constants, A and B, are determined as follows. Using Eq. (A3), the
z-component of Eq. (7) is Eq. (9) and the spin current is −[~/(2e)](j↑z − j↓z ). When the ferromagnet lies in the region

0 ≤ z ≤ d, and the spin current densities at z = 0 and d are given by j
(1)
sz and j

(2)
sz , respectively, the integral constants,

A and B are determined as

σ̃δµ

2eℓsf
A =

1

2 sinh(d/ℓsf)

[

j(1)
sz e−d/ℓsf − j(2)

sz − σ̃E

(

1 − e−d/ℓsf
)

Ex

]

, (A4)

σ̃δµ

2eℓsf
B =

1

2 sinh(d/ℓsf)

[

j(1)
sz ed/ℓsf − j(2)

sz + σ̃E

(

ed/ℓsf − 1
)

Ex

]

. (A5)

These give Eq. (12). In the geometry shown in Fig. 1, the spin current at the F/N interface is −m · QF1→N
s or

p · QF2→N
s , and it is zero at the outer boundaries. Using these boundary conditions, Eq. (13) can be rewritten as

Eq. (14). Note that (j↑z − j↓z ) satisfies

e
∂(j↑z − j↓z )

∂z
=

(σ + σAMRm2
z)

2 − (βσ + ησAMRm2
z)

2

(σ + σAMRm2
z)

(µ↑ − µ↓)

2ℓ2sf
, (A6)

which becomes [e/(1 − β2)σ]∂(j↑z − j↓z )/∂z = δµ/ℓ2sf in the absence of the AMR effect, reproducing the diffusion
equation in Ref. [63].

Appendix B: Details of the Calculation

The spin current is calculated from Eqs. (14) and (17) by assuming the conservation of the spin current inside the
N layer, i.e., QF1→N

s + QF2→N
s = 0. This condition leads to the following equations to determine the components of

µN;

M







µx

µy

µz






= −

4π~g∗F2
(p)

2eg′sd(F2)
(p)

tanh

(

d2

2ℓF2

sf

)

σ̃E(F2)(p)ExS







px

py

pz






+

4π~g∗F1
(m)

2eg′sd(F1)
(m)

tanh

(

d1

2ℓF1

sf

)

σ̃E(F1)(m)ExS







mx

my

mz






.

(B1)
Here, the components of the 3 × 3 matrix M are given by

M1,1 = g∗F1
m2

x + gr(F1)

(

1 − m2
x

)

+ g∗F2
p2

x + gr(F2)

(

1 − p2
x

)

, (B2)

M1,2 =
(

g∗F1
− gr(F1)

)

mxmy + gi(F1)mz +
(

g∗F2
− gr(F2)

)

pxpy + gi(F2)pz, (B3)

M1,3 =
(

g∗F1
− gr(F1)

)

mzmx − gi(F1)my +
(

g∗F2
− gr(F2)

)

pzpx − gi(F2)py, (B4)

M2,1 =
(

g∗F1
− gr(F1)

)

mxmy − gi(F1)mz +
(

g∗F2
− gr(F2)

)

pxpy − gi(F2)pz, (B5)

M2,2 = g∗F1
m2

y + gr(F1)

(

1 − m2
y

)

+ g∗F2
p2

y + gr(F2)

(

1 − p2
y

)

, (B6)

M2,3 =
(

g∗F1
− gr(F1)

)

mymz + gi(F1)mx +
(

g∗F2
− gr(F2)

)

pypz + gi(F2)px, (B7)

M3,1 =
(

g∗F1
− gr(F1)

)

mzmx + gi(F1)my +
(

g∗F2
− gr(F2)

)

pzpx + gi(F2)py, (B8)

M3,2 =
(

g∗F1
− gr(F1)

)

mymz − gi(F1)mx +
(

g∗F2
− gr(F2)

)

pypz − gi(F2)px, (B9)

M3,3 = g∗F1
m2

z + gr(F1)

(

1 − m2
z

)

+ g∗F2
p2

z + gr(F2)

(

1 − p2
z

)

. (B10)

The solution of µN = (µx, µy, µz) can be obtained by calculating the inverse of M. In Eq. (B1), we added ”(p)”
and ”(m)” after g∗, g′sd, and σ̃E to emphasize that these quantities depend explicitly on the magnetization direction
through Eqs. (10), (11), (15), and (16). From µ we evaluate the spin currents, Eqs. (14) and (17). The LLG equations
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for m and p are, respectively, given by

dm

dt
= −γ0m × H +

γ0

µ0MsV
m ×

(

QF1→N
s × m

)

+ αm × dm

dt
, (B11)

dp

dt
= −γ0p × H +

γ0

µ0MsV
p ×

(

QF2→N
s × p

)

+ αp × dp

dt
, (B12)

where γ0 and α are the gyromagnetic ratio and Gilbert damping constant, respectively. The volume is V .

1. Special cases for the spin torque

Although it is possible to solve Eq. (B1) analytically for an arbitrary magnetization alignment, the solution looks
complicated. However, relatively simple analytical formulas can be obtained in some special cases. In this section,
we discuss such cases. Note that Eq. (B1) comes from the conservation law for spin current inside the normal metal
layer, QF1→N

s + QF2→N
s = 0, which can be written as

g∗F1
(m · µN)m + gr(F1)m × (µN × m) + gi(F1)µN × m

+ g∗F2
(p · µN)p + gr(F2)p × (µN × p) + gi(F2)µN × p

= s1m − s2p,

(B13)

where sk = [4π~g∗Fk
/(2eg′sd(Fk))] tanh[dk/(2ℓFk

sf )]σ̃E(Fk)ExS (k = 1, 2): see Eq. (B1). We expand µN as

µN = amm + bmm × p + cmm × (p × m) . (B14)

Substituting this expression into Eq. (B13), and using the simplification gi = 0, the coefficients am, bm, and cm are

am =
[(gr(F1) + g∗F2

) + (gr(F2) − g∗F2
)(m · p)2]s1 − (gr(F1) + gr(F2))m · ps2

(gr(F1) + g∗F2
)(gr(F2) + g∗F1

) − (gr(F1) − g∗F1
)(gr(F2) − g∗F2

)(m · p)2
, (B15)

bm = 0, (B16)

cm =
(gr(F2) − g∗F2

)m · ps1 − (gr(F2) + g∗F1
)s2

(gr(F1) + g∗F2
)(gr(F2) + g∗F1

) − (gr(F1) − g∗F1
)(gr(F2) − g∗F2

)(m · p)2
. (B17)

The spin torque acting on the magnetization of the F1 layer, m, is [γ0/(µ0MsV )]m × (QF1→N
s × m) =

−[γ0gr/(4πµ0MsV )]m× (µN ×m). Then, the coefficient cm and its direction m× (p×m) gives the spin torque. The
explicit form of the spin torque acting on m is

dm

dt
=

γ0~Ex

2eµ0M1d1
gr(F1)

m × (p × m)

1 − λ1(m)λ2(p)(m · p)2

×
{

g∗F2
(p) tanh[d2/(2ℓF2)]σ̃E(F2)(p)

g′sd(F2)
(p)[gr(F1) + g∗F2

(p)]
−

λ2g
∗
F1

(m) tanh[d1/(2ℓF1)]σ̃E(F1)(m)

g′sd(F1)
(m)[gr(F2) + g∗F1

(p)]
m · p

}

,

(B18)

where λk is defined by Eq. (22). Note that the conductance g∗ and g′sd, and therefore λ, depend on not only the
material parameters but also the magnetization direction when the anisotropic magnetoresistance effect is finite; see
Eqs. (11), (15), and (16). Also, σ̃E depends on the magnetization direction, as shown in Eq. (10). Therefore, we
add ”(m)” or ”(p)” after g∗Fk

, gsd(Fk), σ̃E(Fk), and λk to emphasize the fact that these depend on the magnetization
direction, m or p. Similarly, the spin torque acting on the magnetization of the F2 layer is given by

dp

dt
= − γ0~Ex

2eµ0M2d2
gr(F2)

p × (m × p)

1 − λ1(m)λ2(p)(m · p)2

×
{

g∗F1
(m) tanh[d1/(2ℓF1)]σ̃E(F1)(m)

g′sd(F1)
(m)[gr(F2) + g∗F1

(m)]
−

λ1g
∗
F2

(p) tanh[d2/(2ℓF2)]σ̃E(F2)(p)

g′sd(F2)
(p)[gr(F1) + g∗F2

(m)]
m · p

}

,

(B19)
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These formulas can be simplified in the absence of the anisotropic magnetoresistance effect, which we show in the
following sections.

a. When σAMR = 0 and only the F2 has an anomalous Hall effect

In the absence of the anisotropic magnetoresistance effect, i.e., σAMR = 0, g∗, g′sd, and λ become independent from
the magnetization directions. In this section, we also assume that the material parameters are identical between two
ferromagnets, for simplicity. In this case, many of the derived parameters become independent of the layer and we
suppress those indices.

Since σ̃E of the F1 layer is zero and that of the F2 layer is σ̃E(F2) = (β − ζ)σAHpy. The conductance gsd, Eq. (16),

and g∗, Eq. (15), are independent of the magnetization direction because σ̃δµ = (1 − β2)σ is independent of the
magnetization direction. Then, from Eq. (B18), the spin torque acting on m is

dm

dt
=

γ0~

2eMsd

g∗gr(β − ζ) tanh[d/(2ℓsf)]σAHEx

g′sd(gr + g∗)
py

m × (p × m)

1 − λ2(m · p)2
. (B20)

Similarly, the spin torque acting on the F2 layer, p, is obtained from Eq. (B19) as

dp

dt
=

γ0~

2eµ0Msd

g∗gr(β − ζ) tanh[d/(2ℓsf)]σAHEx

g′sd(gr + g∗)
pyλm · p p × (m × p)

1 − λ2(m · p)2
. (B21)

b. When σAMR = 0 and both the F1 and F2 layers show the anomalous Hall effect

In this case, σ̃E of the F1 and F2 layers are given by (β − ζ)σmy and (β − ζ)σpy, respectively. The spin torques
acting on m and p are obtained from Eqs. (B18) and (B19) as

dm

dt
=

γ0~

2eµ0Msd

g∗gr(β − ζ) tanh[d/(2ℓsf)]σAHEx

g′sd(gr + g∗)

[

py − myλm · p
1 − λ2(m · p)2

]

m × (p × m) . (B22)

dp

dt
=

γ0~

2eµ0Msd

g∗gr(β − ζ) tanh[d/(2ℓsf)]σAHEx

g′sd(gr + g∗)

[

pyλm · p − my

1 − λ2(m · p)2

]

p × (m × p) . (B23)

Appendix C: Linearized LLG equation

Linearizing the LLG equation, Eq. (20) gives

1

γ0

d

dt

(

mx

my

)

+ C

(

mx

my

)

=
~ tanh[d2/(2ℓF2

sf )]Ex

2eµ0Msd1

g∗F2
gr(F1)σ̃E(F2)

g′sd(F2)
(gr(F1) + g∗F2

)

1

1 − λ1λ2p2
z

(

px

py

)

. (C1)

The coefficient matrix C is given by

C =

(

α(HK − Ms) (HK − Ms)

−(HK − Ms) α(HK − Ms)

)

+
~ tanh[d2/(2ℓF2

sf )]Ex

2eµ0Msd1

g∗F2
gr(F1)σ̃E(F2)

g′sd(F2)
(gr(F1) + g∗F2

)





[1−λ1λ2(p
2

z+2p2

x)]pz

(1−λ1λ2p2
z)2 − 2λ1λ2pxpypz

(1−λ1λ2p2
z)2

− 2λ1λ2pxpypz

(1−λ1λ2p2
z)2

[1−λ1λ2(p
2

z+2p2

y)]pz

(1−λ1λ2p2
z)2



 . (C2)

The solutions of Eq. (C1) can be expressed as superpositions of exp{γ0[±i
√

det[C] − (Tr[C]/2)2 − Tr[C]/2]t}. When
the real part of the exponent (∝ −γ0Tr[C]t) is positive (negative), the amplitude of mx and my increases (decrease)
with time. Then, we define the critical electric field to excite the magnetization dynamics by the condition Tr[C] = 0.
In terms of the current density j = σEx, the critical current density is given by Eq. (23).
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1. Optimum direction of p to minimize Eq. (23)

When the polarizing layer has only the anomalous Hall effect and no anisotropic magnetoresistance, the critical
current, Eq. (23) becomes

jAH
crit = −2αeµ0Msd1(HK − Ms)

~ tanh[d2/(2ℓF2

sf )]
×

(1 − λ1λ2p
2
z)

2g′sd(F2)
(gr(F1) + g∗F2

)σF2

(βF2
− ζF2

)(1 − λ1λ2)pypzg∗F2
gr(F1)σAH(F2)

. (C3)

This is proportional to

jAH
crit ∝

(1 − λ1λ2p
2
z)

2

pypz
, (C4)

where λk is independent of the magnetization direction in this case. Then, jAH
crit is minimized when the polar angle

θfixed is given by

θfixed = tan−1

[
√

λ1λ2 + 2 −
√

(3λ1λ2 − 2)2 + 8λ1λ2

3λ1λ2 − 2 +
√

(3λ1λ2 − 2)2 + 8λ1λ2

]

. (C5)

For the parameters shown in Fig. 4, the optimum angle is estimated to be θfixed = 31.6◦.
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