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ABSTRACT. A Heron quadrilateral is a cyclic quadri
lateral whose area and side lengths are rational. In this 
work, we establish a correspondence between Heron quadri
laterals and a family of elliptic curves of the form y2 = 
3 2x + αx2 − n x. This correspondence generalizes the no

tions of Goins and Maddox who established a similar connec
tion between Heron triangles and elliptic curves. We further 
study this family of elliptic curves, looking at their torsion 
groups and ranks. We also explore their connection with 
congruent numbers, which are the α = 0 case. Congruent 
numbers are positive integers which are the area of a right 
triangle with rational side lengths. 

1. Introduction. A positive integer n is a congruent number if it is 
equal to the area of a right triangle with rational sides. Equivalently, n 

2 2is congruent if the elliptic curve En : y = x3 − n x has positive rank. 
Congruent numbers have been intensively studied, see for example [10], 
[11], [30]. The curves En are closely connected with the problem 
of classifying areas of right rational triangles. Indeed, Koblitz [31], 
used the areas of rational triangles as a motivation for studying elliptic 
curves and modular forms. In [24], Goins and Maddox generalized 
some of Koblitz’s notions ([31, Ch. 1, §2, ex. 3]) by exploring the 
correspondence between positive integers n associated with arbitrary 
triangles (with rational side lengths) which have area n and the family 

2of elliptic curves y = x(x − nτ )(x + nτ−1) for nonzero rational τ . 
Congruent number curves are of course the τ = 1 case. 

In this work, we extend these ideas to show a correspondence 
between cyclic quadrilaterals with rational side lengths and area n 

2(Heron quadrilaterals) and a family of elliptic curves of the form y = 
3 2x + αx2 − n x. We give explicit formulas which show how to construct 

the elliptic curve and some non-trivial points on the curve given the side 
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lengths and area of the quadrilateral. If we set one of the side lengths to 
zero, then the formulas collapse to exactly those of Maddox and Goins. 
We also show the other direction of the correspondence, that is, how to 
find a cyclic quadrilateral which corresponds to a given elliptic curve in 
our family. We call the pair (α, n) a generalized congruent number pair 

2 2if the elliptic curve y = x3 +αx2 −n x has a point of infinite order. We 
similarly call the curve a generalized congruent number elliptic curve. 
The generalized congruent number curves with α = 0 are precisely 
the congruent number curves. Stated in this way, our results relate 
generalized congruent number pairs with cyclic quadrilaterals with area 
n. 

We also study the family of curves defined by the generalized con
gruent number pairs, looking at their torsion groups and ranks. The 
torsion groups are usually T = Z/2Z, although in some cases it is 
Z/2Z × Z/2Z, Z/2Z × Z/4Z or Z/6Z. Studying families of elliptic 
curves with torsion group Z/2Z with high rank has been of much in
terest [2],[9],[32],[33],[38]. The highest known rank for a curve with 
T = Z/2Z is 19, due to Elkies [16]. Fermigier found infinite families 
with rank at least 8 [20, 21, 22]. 

Any elliptic curve with a 2-torsion point may be written in the form 
2 3Eα,β : y = x + αx2 + βx. Special cases of the family of the curves 
2 3E0,β : y = x +βx, and their ranks have been studied by many authors 

including Bremner and Cassels [7], Kudo and Motose [34], Maenishi 
[35], Ono and Ono [39], Izadi, Khoshnam and Nabardi [29], Aguirre 
and Peral [3], Spearman [46, 47], and Hollier, Spearman and Yang 
[26]. The general case was studied by Aguirre, Castaneda, and Peral 
[1] and they found curves of rank 12 and 13. See [16, 17] for tables 
with the highest known ranks for other fixed torsion groups, including 
references to the papers where each curve can be found. 

2 . 
this is the first time in the literature curves of this form have been 
examined. We find many such curves with rank (at least) 10. We also 
construct an infinite family of the Eα,−n with rank at least 5. All 

In this work, the curves we study are of the form Eα,−n We believe 

2 

of these curves arise from cyclic quadrilaterals. Furthermore, in the 
special case with α = 0, we find infinite families of congruent number 
curves with ranks 2 and 3, matching the results of [43], [51], [30]. 

This work is organized as follows. In section 2 we review basic 
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facts about cyclic quadrilaterals. Section 3 details the correspondence 
between cyclic quadrilaterals and the elliptic curves, and includes our 
main result. We examine the torsion groups of the family of elliptic 
curves we study in Section 4. In sections 5 and 6 we find examples of 
congruent number curves with high rank, as well as high rank curves 
from the family Eα,−n We conclude with some examples and data in 2 . 
Section 7. 

2. Cyclic quadrilaterals. A cyclic polygon is one with vertices 
upon which a circle can be circumscribed. Specifically, we will focus 
on cyclic quadrilaterals. Mathematicians have long been interested in 
cyclic quadrilaterals. For example, consider Kummer’s complex con
struction to generate Heron quadrilaterals outlined in [15]. The exis
tence and parametrization of quadrilaterals with rational side lengths 
(and additional conditions) has a long history [4, 14, 15, 25, 27]. 
Buchholz and Macdougall [8] have shown that there exist no nontrivial 
Heron quadrilaterals having the property that the rational side lengths 
form an arithmetic or geometric progression. In [28], (cyclic) Brah
magupta quadrilaterals were used to construct infinite families of el
liptic curves with torsion group Z/2Z × Z/2Z having ranks 4, 5, and 
6. 

A convex quadrilateral is cyclic if and only if its opposite angles are 
supplementary. An example of a quadrilateral which is not cyclic is a 
non-square rhombus. Another characterization of cyclic quadrilaterals 
can be given by Ptolemy’s theorem: if the diagonals have lengths p, q, 
then a convex quadrilateral is cyclic if and only if pq = ac + bd. Given 
four side lengths such that the sum of any three sides is greater than 
the remaining side, there exists a cyclic quadrilateral with these side 
lengths [12],[49]. The area of a cyclic quadrilateral with side lengths 
a, b, c, d can be found using Brahmagupta’s formula 

(s − a)(s − b)(s − c)(s − d), 

where s = (a + b + c + d)/2. Letting d = 0, the formula collapses to 
Heron’s formula for the area of a triangle. It is known that a cyclic 
quadrilateral has maximal area among all quadrilaterals with the same 
side lengths. 

Assume we have a cyclic quadrilateral whose consecutive sides have 
lengths a, b, c, and d, with rational area n. Let θ be the angle between 
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the sides with lengths a and b. Then by considering the Law of Cosines 
and the area formula, we have 

2 + b2 − c2 − d2a 2n 
(2.1) cos θ = and sin θ = . 

2(ab + cd) ab + cd 

3. Cyclic quadrilaterals and elliptic curves. In this section we 
establish a correspondence between cyclic quadrilaterals whose area and 
side lengths are rational and elliptic curves. In [24], the authors created 
a similar correspondence between triangles with rational area and 
elliptic curves, which in some sense were generalizations of congruent 
number curves. We follow the same initial approach. 

We use the notation from the previous section. From equation (2.1), 
we see that both cos θ and sin θ are rational. Set τ to be 

θ sin θ 4n 
τ = tan = = . 

2 1 + cos θ (a + b)2 − (c − d)2 

Note that 
ab + cd 

τ + τ−1 = 
n 

and 
a2 + b2 − c2 − d2 

τ − τ −1 = − . 
2n 

From (2.1), consider that 

a 2 − 2ab cos θ + b2 = c 2 + 2cd cos θ + d2 , 

so then 
(a − b cos θ)2 + (b2 − d2) sin2 θ = (c + d cos θ)2 . 

Thus, if we set u = a − b cos θ, v = b sin θ, and w = c + d cos θ, then 

2 2 u 2 + (1 − d2/b2)v = w . 

Hence we know there exists a t such that 

u = (1 + d/b)t2 − (1 − d/b), 

v = 2t, 

w = (1 + d/b)t2 + (1 − d/b), 
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in terms of 

b u + w b a + c − (b − d) cos θ 
t = = 

b + d v b + d b sin θ 

(a + c)2 − (b − d)2 

= . 
4n 

Set 
(a + c)2 − (b − d)2 

x1 = nt = ,
4 

(a + c)2 − (b − d)2 

y1 = ax1 = a ,
4 
2 3The point P1 = (x1, y1) is on the curve y = x + αx2 + βx where 

2n a2 + b2 − c2 + d2 2α = + d2 = and β = −n . 
tan θ 2 

We denote this defined cubic equation by Eα,−n2 . The discriminant of 
the curve is 

Δ(Eα,−n2 ) = n 4(a 2b2 + a 2d2 + b2d2 + 2abcd) 

and is nonzero because a, b, c and d are positive. Hence, the cubic does 
indeed define a nonsingular curve. A point P = (x, y) has order 2 if and 
only if y = 0; hence as n   = 0 then y1 = (a/4)(a+b+c−d)(a−b+c+d) = 
0 and so P1 does not have order 2. This construction generalizes 
Goins and Maddox’s technique since setting d = 0, the formulas for 
τ, t, α, β, sin θ, cos θ, (x1, y1) obtained are exactly those in [24]. 

We can easily find other points on the elliptic curve Eα,−n2 . Namely, 
let   

(a + d)2 − (b − c)2 (a + d)2 − (b − c)2 

P2 = (x2, y2) = − , b ,
4 4  

(a + b)2 − (c − d)2 (a + b)2 − (c − d)2 

P3 = (x3, y3) = − , d . 
4 4

Note that a = y1/x1, b = −y2/x2, d = −y3/x3. It can be checked 
that (x1, y1) + (x2, y2) + (x3, y3) = ∞. Furthermore, using the height 
pairing matrix it can be checked that any two of the set of points 
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(x1, y1), (x2, y2), (x3, y3) are linearly independent. So the rank of E is 
generically at least 2. 

Using the addition law, we also have 

2 2−n n y
(3.1) (x, y) + (0, 0) = , , 

x x2 

(3.2) 
2 2)2 2	 2(x + n (x + n2)(x4 + 2αx3 − 6n x2 − 2αn2x + n4)

[2](x, y) = ,	 . 
4y2	 8y3 

In particular 
(ac + bd)2 

x2P1 = ,
4a2
 

(ad + bc)2
 

x2P2 = ,
4b2
 

(ab + cd)2
 

x2P3 = ,
4d2 

from which we can derive the following 

2 2x1 + n
(3.3)	 = ac + bd, 

x1 

x2
2 + n2 

(3.4)	 = −(ad + bc), 
x2 

x3
2 + n2 

= −(ab + cd). 
x3 

Obviously, using the above quantities, we could solve for c, cos θ, sin θ, τ , 
etc. In particular 

2n 2nx3
sin A = = − 2 ,

ab + cd x3 + n2 

2n 2nx2
sin B = = − 2 ,

ad + bc x2 + n2 

and 
2	 2 2a + b2 − c2 − d2 x3(d

2 − α) x3 − n
cos A =	 = 2 = 2 ,

2(ab + cd) x3 + n2 x3 + n2 
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2 2−a + b2 + c2 − d2 x2(α − b2) n2 − x2 cos B = = = .2 22(ad + bc) x2 + n2 x2 + n2 

The correspondence we have illustrated is the main result of this 
work. We note that for every rational value n, there are many cyclic 
quadrilaterals with area n. For example, any rectangle with side lengths 
k and n/k. Still, we find the above correspondence very interesting. 

Theorem 3.1. For every cyclic quadrilateral with rational side lengths 
and area n, there is an elliptic curve 

2 3 2 
2Eα,−n : y = x + αx2 − n x 

with 2 rational points, neither of which has order 2. Conversely, 
given an elliptic curve Eα,−n with positive rank, then there is a cyclic 2 

quadrilateral with area n whose side lenghts are rational (under the 
correspondence given above). 

Proof. Given a cyclic quadrilateral, the above construction shows 
how to construct Eα,−n2 , with points P1 and P2. The points Pi are of 
order 2 if and only if yPi = 0, which implies xPi = 0 as well, since for 
example y1 = ax1. However the x-coordinates are all non-zero, since 
in any quadrilateral (cyclic or not) the largest side length is less than 
the sum of the other three sides. This shows one direction. 

For the converse, we fix a point P1 = (x1, y1) of infinite order (which 
exists since Eα,−n has positive rank). We may replace P1 by −P1 or2 

P1 + (0, 0) (see (3.1)) so that we can take x1, y1 > 0. Set a = y1/x1. 
Then consider the three equations: 

a2 + b2 − c2 + d2 

(3.5) = α, 
2 

1 2(3.6) (a − b − c − d)(a − b + c + d)(a + b − c + d)(a + b + c − d) = −n ,
16 

x1
2 + n2 

ac + bd = . 
x1 

x +n1We set ζ = 
2 2 

, which can be easily shown to be equal to a2 − α + x1 

2n2/x1. Let 

h(x) := (b2 − a 2)x 2 − 2ζbx + (2αa2 + ζ2 − a 4 − a 2b2), 
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and let r be a root of h(x) = 0. It can be checked that a solution to 
the three equations above is given by c = (−br + ζ)/a, and d = r. In 
order for d = r to be rational, the discriminant of h must be a square, 
equivalently 

2C(b, z) : b4 − 2αb2 + (ζ2 − a 4 + 2a 2α) = z . 

We can then express 
aζ ± bz 

c = , 
a2 − b2 

bζ ± az 
d = − . 

a2 − b2 

2This quartic curve C(b, z) is actually birationally equivalent to y = 
x3 + αx2 − n2x. 

Lemma 3.2. The curve C(b, z) is birationally isomorphic to the curve 
2 3 2Eα,−n : y = x + αx2 − n2 x. 

Proof. Note the curve C(b, z) has rational point (−a, ζ). Under the 
transformation f1(b, z) → (b + a, z), we map to the curve 

C1(b, z) : b
4 − 4ab3 + (6a 2 − 2α)b2 + 4a(α − a 2)b + ζ2 , 

with rational point (0, ζ). We now map to a Weierstrass curve by  
f2(b, z) = (x, y) = − 

2 
((3a 2 − α)b2 + 6a(α − a 2)b + 3ζ(z + ζ)),

3b2  4 
b3 
(−aζb3 + ζ(3a 2 − α)b2 + a(z + 3ζ)(α − a 2)b + ζ2(z + ζ) , 

2C2(x, y) : y = x 3+(−4/3α2−8αa2+4a 4−4ζ2)x−16/27α(α2−18αa2+9a 4−9ζ2). 

We now perform a simple linear change of variables f3(x, y) = ( 1 (x −4 
14α/3), y), sending the curve to 8
 

1
(α2 − 2a 2α + a
 2 3C3(x, y) : y = x + αx2 + 4 − ζ2)x. 

4 
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We compute 

2 2n
α2 − 2a 2α + a 4 − ζ2 = α2 − 2a 2α + a 4 − a 2 − α + 2 

x1 

−a2x1 + αx1 − n2 
2= 4n 2x1 

2 2−y1 + αx21 − n x12= 4n 3x1 
2 = −4n . 

2 3 2Thus, C3(x, y) is really just y = x + αx2 − n x. Composing the maps 
f1, f2, and f3, we see the curves are birationally equivalent. D 

We continue the proof of Theorem 3.1. Since Eα,−n2 has positive rank, 
then so does C(b, z). In other words, there are infinitely many rational 
points (b, z) on C(b, z). Given any rational values for (b, z), we can 
then compute c and d. It remains to check that c and d are positive. 

We have an infinite number of choices for b. We will pick a “small” b 
so that the quantity a2 − b2 will be positive. We then want aζ − bz > 0 
and −bζ + az > 0, which will guarantee c, d > 0. Note that when 
b = a, both the line z = (ζ/a)b and the hyperbola z = (aζ)/b 
intersect the curve C(b, z) at the same point (a, ζ). Looking in the first 
quadrant (i.e., where b, z > 0), the line and hyperbola can possibly 
intersect C(b, z) additional times. The line will intersect C(b, z) if 
b2 = (ζ2 + 2a2α − a4)/a2 . The hyperbola will intersect C(b, z) if 

∗b4 +(a2 −2α)b2 +ζ2 = 0. Let r be the minimum positive b-value of any 
intersections of C(b, z) with either the line or hyperbola. Also observe 
that for positive b near b = 0, the value of the hyperbola z = (aζ)/b 
goes to infinity. 

We claim the quartic curve C(b, z) intersects the z-axis. We must 
check that (0, ζ2 − a4 + 2a2α) is a real point on C(b, z), i.e., that 

2 2 2ζ2 −a4 +2a2α > 0. Equivalently, this is α2x1 +4n2(n +a x1 −αx1)) > 
2 2 3 2 2 2 20. Now, since a x = x1 + αx1

2 − n x1 then x = −αx1 + n + a x1.1 1 
2 2 2Substituting this in to the previous equation we have α2x1 + 4n x1, 

and thus ζ2 − a4 + 2a2α > 0. 

We now utilize the above analysis to show how to choose a “small” 
b. Since the curve C(b, z) has positive rank, then it has an infinite 
number of rational points. The curve is obviously symmetric about 



 
 

  

10 F. IZADI, F. KHOSHNAM AND D. MOODY 

the b-axis, and it is easy to check that it does not intersect the b-
axis. Thus the number of connected components (over R) is one. In 
particular, we can conclude there are an infinite number of rational 
points with z > 0. By the density of rational points on positive rank 
curves (see Th. 5 Ch. 11 of [45]), we can choose a rational b0 with 
0 < b0 < E < a (for any E < min{a, ζ2 + 2a2α − a4/a, r∗}) yielding 
a rational point on C(b0, z0). As seen in the analysis above, the point 
(0, ζ2 − a4 + 2a2α) lies beneath the hyperbola z = (aζ)/b and above 
the line z = (ζ/a)b, hence the same is true for (b0, z0). Thus with this 
choice of (b0, z0) (for small enough E), we see that both c and d are 
positive. 

In fact, this argument shows we have an infinite number of possibil
ities for positive b, c, and d. The cyclic quadrilateral with side lengths 
(a, b, c, d) will then correspond to Eα,−n since the equations (3.5) and 2 

(3.6) are satisfied. This completes the proof. D 

We remark that while the proof showing the existence of a cyclic 
quadrilateral is not completely constructive (since we require c, d > 0), 
in practice it is not hard to produce the cyclic quadrilaterals. Start 
with two points P1 and P2, which are not of order 2 (and whose sum is 
P1 + P2 is also not of order 2). Write Pi = (xi, yi), and set a = y1/x1, 
b = −y2/x2. Then set P3 = −P1 − P2 = (x3, y3), and d = −y3/x3. 
By assumption, P3 is not 2-torsion, and hence y3 = 0, so d = 0. By 
replacing Pi by Pi + (0, 0) or −Pi, we can assume x1 > 0, y1 > 0, 
x2 < 0, y2 > 0, and x3 < 0, y3 > 0 so that a, b, and d are positive. 
Then compute c = (x1 + n2/x1 − bd)/a. If we assume the rank of 
Eα,−n is positive, then we will have an infinite number of choices for 2 

P1 and P2. From numerical experiments, we have observed that c, as 
derived above, is usually positive. However, in the case c is negative, 
we can simply replace P1 and/or P2 until c > 0. 

If neither of the points P1, P2 has infinite order, then the cyclic 
quadrilateral must be of a special form. 

Theorem 3.3. If the curve Eα,−n2 arising from a cyclic quadrilateral 
has rank 0 then the associated quadrilateral is either a square, or 
an isosceles trapezoid with three sides equal (a = b = d) such that 
(a + c)(3a − c) is a square. The torsion group is Z/6Z for this rank 0 
case. 
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Proof. We will show in the next section that the torsion group is 
Z/2Z, Z/2Z × Z/2Z, Z/2Z × Z/4Z, or Z/6Z. We already showed that 
P1 does not have order 2, hence the torsion group must be either Z/6Z 
or Z/2Z×Z/4Z. We first handle the case of T = Z/2Z×Z/4Z, showing 
that when the rank is 0, it cannot have come from a cyclic quadrilateral. 

Let the three points of order 2 be denoted (0, 0), T1, and T2. The 
point P1 = (x1, y1) is not a point of order 2, and hence must be a point 
of order 4. By Lemma 4.1, 2P1 = (0, 0), and without loss of generality 
we may take 2P1 = T1. Then the four points which are not of order 2 are 
{P1, −P1, P1 + (0, 0), −P1 + (0, 0)}, and it must be that P2 = (x2, y2) 
is one of these points. If P2 = P1, then a = y1/x1 = y2/x2 = −b, 
a contradiction as a, b > 0. Similarly, if P2 = −P1 + (0, 0) then 
we again end up with a = −b, a contradiction. If P2 = P1 + (0, 0) 
then P3 = −(P1 + P2) = −2P1 + (0, 0) = T1 + (0, 0) = T2, however 
P3 = (x3, y3) is not a point of order 2 since y3 = 0. We can therefore 
conclude that P2 = −P1, but this is likewise a contradiction because 
then P3 = −P1 − P2 = ∞. Thus the torsion group for a rank 0 curve 
Eα,−n2 arising from a cyclic quadrilateral cannot be Z/2Z × Z/4Z. 

So we can assume the torsion group is Z/6Z. If P1 has order 6, 
then the set of all rational points of E is {P1, 2P1, 3P1 = (0, 0), 4P1 = 
P1 + (0, 0), 5P1 = −P1, ∞}. Then 

(a − b − c − d)(a + b − c + d)
P1+(0, 0) = , −a(a − b − c − d)(a + b − c + d) . 

4 

As 2P1 = −4P1, then 

(a − b − c − d)(a + b − c + d)
2P1 = , a(a − b − c − d)(a + b − c + d) . 

4 

Now notice that the ratio of yk/xk for kP1 = (xk, yk) (with k = 
1, 2, 4, 5) is either a or −a. But we have P2 = (x, −bx), which must be 
one of the points P1, 2P1, 4P1, 5P1, and hence we must have a = b (since 
a, b > 0). Using the doubling formula, we have that the x-coordinate 

b2(c+d)2 

of 2P1 is 4b2 , (as a = b) which must equal the x-coordinate of 
P1 + (0, 0) which is (−1/4)(c + d)(2b − c + d). Equating these two x-
coordinates requires (c + d)(b + d)/2 = 0, a contradiction. Thus, if the 
rank is 0 then P1 cannot have order 6. 

The only other possibility is that P1 has order 3. Then necessarily 
Q = P1 + (0, 0) has order 6. The set of all rational points must be 
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{Q = P1 + (0, 0), 2Q = −P1, (0, 0), 4Q = P1, 5Q = −P1 + (0, 0), ∞}. 
Similarly as above, the ratio y/x of the points not equal to (0, 0) or ∞ 
is equal to ±a. Considering P2, we must have b = a. This means that 
Q = ((−1/4)(c + d)(2b − c + d), (b/4)(c + d)(2b − c + d)). Using the 
doubling formula for 2Q, the x-coordinate is (c + d)2/4, which must 
equal the x-coordinate of −P1 = (1/4)(2b + c − d)(c + d). Equating 
these two yields (c + d)(b − d) = 0. Thus a = b = d. Checking the area, 
we see the area will be rational if and only if (a + c)(3a − c) is a square. 

We observe that since any cyclic quadrilateral with two non
consecutive sides equal is a trapezoid, we have an isosceles trapezoid 
(which is not a square) with three sides equal if a = c. If a = c, then 
we have a square, as a cyclic rhombus must be square. 

D 

So we see that when the rank is 0, the cyclic quadrilateral must 
have at least three sides equal. We now examine the converse, which 
is distinguished by whether or not the quadrilateral is a square. 

Theorem 3.4. If the quadrilateral is a square, then the rank is 0, with 
torsion group Z/6Z. 

Proof. If the quadrilateral is a square, i.e., a = b = c = d. Then 
2 3 2 4the curve Eα,−n2 is y = x + a x2 − a x. For any a = 0 we can do a 

change of variables x = a2X, y = a3Y , which shows that this curve is 
isomorphic to E : Y 2 = X3 + X2 − X, which is a curve of rank 0, with 
six torsion points. 
Thus also the curve Eα,−n2 has only 6 rational points. These points are 

2 2 2{O, (0, 0), (a , ±a3), (−a , ±a3)}. The point P = (−a , a3) has exact 
order 6. The rank of Eα,−n is zero. D2 

The rank need not be 0 for isosceles trapezoids with three sides equal. 
Take, for example the quadrilateral with side lengths (13, 13, 23, 13), 
which yields the curve E−11,−2162 . This curve has rank 1, with 
generating point (−196, 1092) and has torsion group Z/6Z. We also 
remark that we can have rank 0 curves Eα,−n2 with torsion group 
Z/2Z × Z/4Z. Take for example α = 7, n = 12. The previous results 
prove that such curves do not correspond with a cyclic quadrilateral. 
If we allow quadrilaterals with d = 0, then it can be shown that these 
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curves come from quadrilaterals with d = 0, i.e. triangles with rational 
area. 

Theorem 3.5. If the quadrilateral is a three-sides-equal trapezoid 
(a, a, c, a), then the torsion group is Z/6Z. 

Proof. If the the quadrilateral is of the form (a, a, c, a), then we have 
1the point ( 1 (a+c)2 , a2(a+c)4) which can be checked has order 3. By 4 16 

Corollary 4.5, we immediately have that the torsion group is Z/6Z. D 

By scaling the sides of a rational cyclic quadrilateral, we can always 
assume that area is an integer N (since we are only considering quadri
laterals with rational area). Using the definition of the generalized 
congruent number elliptic curve and taking into account Theorems 3.3, 
3.4, and 3.5, we can restate Theorem 3.1 in the following way. 

Theorem 3.6. Every non-square and non-three-sides equal trapezoidal 
rational cyclic quadrilateral with area N ∈ N gives rise to a generalized 
congruent number elliptic curve Eα,−N2 with positive rank. Conversely, 
for any integer N and generalized congruent curve Eα,−N2 with positive 
rank, there are infinitely many non-rectangular cyclic quadrilaterals. 

Proof. Given a non-square and non-three-sides equal trapezoidal 
cyclic quadrilateral with side lengths (a, b, c, d) and area n = p/q, 
consider the quadrilateral with side lengths (qa, qb, qc, qd) which has 
area pq ∈ Z. By our correspondence in Theorem 3.1, we can construct 

2 2the curve Eα,−(pq)2 , where α = q2(a + b2 − c + d2)/2. If the curve 
were to have rank 0, then by Theorem 3.3 the quadrilateral would have 
to have 3 sides equal, which it doesn’t. Hence Eα,−(pq)2 has positive 
rank. 

For the converse, given any integer N and α such that Eα,−N2 has 
positive rank, then again by Theorem 3.1 we are able to construct a 
cyclic quadrilateral with area N . As the rank is positive, we have an 
infinite number of choices for P1, P2 in the correspondence, yielding an 
infinite number of cyclic quadrilaterals. If the quadrilateral were to be 
a rectangle, then b = d. Recall d = yP3 /xP3 , where P3 = −(P1 + P2). 
But there are only five points P = (x, y) on E such that y/x = d, so 
we can choose P1, P2 so as to avoid these five points. D 
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We conclude this section by noting there are an infinite number of 
non-rectangular cyclic quadrilaterals with area n, for any rational n. 
Specifically, consider the isosceles trapezoid (which is necessarily cyclic) 
with side lengths (j2 + k2, £, j2 + k2, £ + 2j2 − 2k2), where j > k. The 
height of this trapezoid is 2jk, yielding an area of 2jk(£ + j2 − k2). 

nHence, by choosing £ = 2jk + k2 − j2, the trapezoid will have area n. 

4. Torsion points. In this section, we examine the possible torsion 
groups T for the curve Eα,−n2 , corresponding to a cyclic quadrilateral. 
By a theorem of Mazur [44], the only possible torsion groups over 
Q, E(Q)tors, are Z/nZ for n = 1, 2, . . . , 10, 12 or Z/2Z × Z/2nZ for 
1 ≤ n ≤ 4. The point P2 = (0, 0) has order 2, hence we know the order 
of the torsion group must be even. We will show that the torsion group 
must be Z/2Z, Z/6Z, Z/2Z × Z/2Z, or Z/2Z × Z/4Z. We begin by 
showing T = Z/4Z, Z/8Z, or Z/12Z. 

2Lemma 4.1. There is no point P on the curve Eα,−n such that 
2P = (0, 0). Consequently, the torsion group T = Z/4Z, Z/8Z, or 
Z/12Z. 

Proof. Let P = (x, y) be a point on Eα,−n2 such that 2P = (0, 0). 
By using the formula for doubling a point (see (3.2)), we must have 

2 2)2(x + n
= 0. 

4y2 

2 2However, this is clearly impossible, since x + n > 0. Thus no such 
point P exists. 

Note that if the torsion group were Z/4Z, Z/8Z, or Z/12Z, then 
there would necessarily have to be a point P with 2P = (0, 0), since 
(0, 0) would be the unique point of order 2. As this is not possible, 
then T cannot be any of these three groups. D 

2 .Proposition 4.2. There are no points of order 5 on the curve Eα,−n

Proof. By an old result, an elliptic curve with a rational point of 
order 5 will have its j-invariant of the form (s2 + 10s + 5)3/s for some 
s ∈ Q [23]. Calculating the j-invariant of Eα,−n2 , we must therefore 
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have 
(α2 + 3n2)3 (s2 + 10s + 5)3 

256 = . 
n4(α2 + 4n2) s 

Let w = α2 + 4n2, so that 

(w − n2)3 (s2 + 10s + 5)3 

256 = , 
n4w s
 

2
and write w − n = c(s2 + 10s + 5). Simplifying we obtain the (genus 
0) curve 

3 4 4 4256c s − n 6 − n cs 2 − 10n cs − 5n c = 0, 

with rational point (c, s) = (−n2/32, 9/4). We can parameterize all so
2 8 2 4 n (144n m +24n m+1) 3 20n m+3lutions by c = − 1 , and s = 

4 

32 6n4m+1 4 432n12m3+180n8m2+24n4m+1 . 
2Since α2 = w − 4n = c(s2 + 10s + 5) − 3n2, we can solve for α2 in 

terms of m (and n): 

8 4 8 4n2(720n m2 + 216n m + 17)(144n m2 + 96n m + 11)2 

α2 = − . 
512(6n4m + 1)5 

This equation will have rational solutions if and only if the curve 

2 4 8 4C : z = −2(6n m + 1)(720n m 2 + 216n m + 17) 

has rational points. The curve C is birationally equivalent to the curve 

E : Y 2 = X3 + 76032X − 8183808, 

using the maps   
4(X, Y ) = −8640n m − 1344, 8640z , 

X + 1344 Y 
(m, z) = − , . 

8640n4 8640 

With SAGE, we compute that this curve E has rank 0, with only 
one torsion point (96,0) [48]. This corresponds to having (m, z) = 
(−1/(6n4), 0), which is thus the only rational point on C. However, 
this leads to no rational points on the curve relating α2 and n, m. 
From this we may conclude our initial assumption was not possible. 
Thus, there are no elliptic curves resulting from cyclic quadrilaterals 
with rational area which have a point of order 5. D 
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The previous two lemmas show that if T is cyclic, then T must either 
be Z/2Z or Z/6Z. We now turn to the case when T is not cyclic, i.e., 
T has more than one point of order 2. This will occur precisely when 
2x + αx − n2 = 0 has a rational root, which happens if and only if the 

2discriminant α2 + 4n = a2b2 + a2d2 + b2d2 + 2abcd is a square. 

Lemma 4.3. The torsion group T is not Z/2Z × Z/8Z. 

Proof. Suppose we have a curve with torsion group Z/2Z × Z/8Z. 
Then necessarily we have three 2-torsion points, so we can assume 
2 2x + αx − n = (x + M)(x + N), for some rational M, N = 0. The 

points (0, 0), (−M, 0), and (−N, 0) all have order 2 on Eα,−n By a 2 . 
theorem of Ono [[40],Main Theorem 1], the torsion group of Eα,−n2 

contains Z/2Z × Z/4Z as a subgroup if (i) M and N are both squares, 
or if (ii) −M and N − M are both squares, or if (iii) −N and M − N 
are both squares. We show only case (iii) is possible. 

2Without loss of generality we may take α2 + 4n = r2, (with r > 0) 
1 1and M = (α + r), N = (α − r). For case (i), if M and N are both 2 2 

2squares, then so is MN . However, this is a contradiction as MN = −n
and n > 0. For case (ii), N −M = −r and so cannot be a square (r > 0). 

Therefore we must be in case (iii), and we have both −N and 
2M − N = r squares. If we write −N = j2 for some j, then MN = −n

and so M = −n2/N = n2/j2 , hence M is square. By the second 
4 − v4part of Ono’s theorem, if T = Z/2Z × Z/8Z then M = u and 

2 2 2 4 − v4 2N = −v4, with u + v = w . As M is square then u = z for 
some rational z. This equation is well known to have no non-trivial 

4solutions, i.e. only when M = u4 − v = 0. However, this contradicts 
our initial assumption, and so supposing T = Z/2Z × Z/8Z must have 
been incorrect. 

D 

Lemma 4.4. The torsion group T is not Z/2Z × Z/6Z. 

Proof. It is well known that a curve has a point of order 3 if and 
only if the 3-torsion polynomial ψ3 has a root. For Eα,−n2 , this is 

2ψ3(x) = 3x 4 + 4αx3 − 6n x 2 − n 4 = 0, 
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or equivalently 

(4.1) 3x 4 + 4wx 3 − 6x 2 − 1 = 0, 

where w = α/n. In order to have more than one 2-torsion point, we 
2also must have that α2 + 4n is a square, or equivalently w2 + 4 is a 

4−j2 

square. We may parameterize to find that w can be written w = ,2j 

for some rational j. Substituting this back into (4.1), we see that 

C : 3jx4 + 8x 3 − 2j2 x 3 − 6jx2 − j = 0. 

This is a genus one curve, birationally equivalent to the curve 

E : Y 2 = X3 − 13/3X − 70/27 

via the maps 

2x4 − 6jx3 − 13x2 − 3 x4 + 2jx3 + 6x2 + 1 
(X, Y ) = − , − ,

3x2(x2 + 1) x3(x2 + 1) 

9Y 216Y 
(x, j) = − , − . 

9X2 − 15X − 14 27X3 + 27X2 − 135X − 175 

Using SAGE, we compute the curve E has rank 0, and only the three 2
torsion points (7/3,0),(-2/3,0),(-5/3,0) [48]. Tracing these points back 
through the substitutions, we get no rational points on the curve C 
besides (0, 0). Thus, this torsion group is not possible. D 

Combining the above series of results, we immediately obtain the 
following corollary. 

Corollary 4.5. Given a cyclic quadrilateral with corresponding elliptic 
curve Eα,−n2 , the torsion group must be Z/2Z, Z/6Z, Z/2Z × Z/2Z, 
or Z/2Z × Z/4Z. 

Proof. By Mazur’s theorem, we have a finite list of possible torsion 
groups. We know the torsion group must have order divisible by 2, as 
the point (0, 0) has order 2. Eliminating the various groups from the 
previous four lemmas, we have the result. D 

We note that all four torsion groups are possible. As we previously 
showed, any square will have torsion group Z/6Z. For any m > 2, if we 
let a = m2 − 4 and b = 2m, then the rectangle with side lengths 
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a and b will have torsion group Z/2Z × Z/2Z. This follows since 
2 4 − 4mthe curve is y = x(x + m 2)(x − 4m2 + 16), and hence has 

three points of order 2. For an example of curves with torsion group 
2 2 4Z/2Z × Z/4Z, let α = u4 − 6u v + v and n = 2uv(u2 − v2). Then 

the curve Eα,−n2 will have torsion group Z/2Z × Z/4Z with the point 
2(2uv(u + v)2 , 2uv(u + v2)(u + v)2) having order 4. The most common 

case for a cyclic quadrilateral is Z/2Z. 

It turns out that if the cyclic quadrilateral is a non-square rectangle, 
we can rule out two of the possible torsion groups. 

Proposition 4.6. The elliptic curve arising from a rectangle has a 
point of order 3 if and only if the rectangle is actually a square. 

Proof. By Theorem 3.4, if we begin with a square, the torsion group 
is Z/6Z. For the converse, suppose we have a curve (arising from 
a rectangle) which has a point of order 3. The curve equation is 
2 3 2 −ay = x +b2x 2b2x. Under the isomorphism (x, y) → (b2x, b3y), this 

2 3is the curve y = x + x2 − Cx, where C = (a/b)2 . The three-torsion 
polynomial for this curve is 

Ψ3 = 3x 4 + 4x 3 − 6Cx2 − C2 , 

and so under our assumption of having a point of order 3, there exists 
a rational x satisfying Ψ3(x) = 0. Solving for C, in terms of x, we find 

C = x −3x ± 2 3x2 + x . 

2We can parameterize rational solutions of 3x + x being a square by 
x = (m − 2)2/(m2 − 3). This makes C either 

(7m − 12)(m − 2)3 

C1 = − ,
(m2 − 3)2 

or 
m(m − 2)3 

C2 = . 
(m2 − 3)2 

3Now, substituting these values into x + x2 − Cx, we obtain that both 
(3m − 5)2(m − 2)4/(m2 − 3)3 and (m − 1)2(m − 2)4/(m2 − 3)3 must be 
squares, or equivalently m2 − 3 must be a square. We can parameterize 
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the rational solutions of m2 − 3 being square by 

t2 − t + 1 
m = 2 . 

t2 − 1 

We substitute this value of m in for C1, and C2, obtaining 

(t2 − 7t + 13)(t − 2)3 

C1 = 16	 ,
(t2 − 4t + 1)4 

(t − 2)3(t2 − t + 1) 
C2 = −16	 . 

(t2 − 4t + 1)4 

Recall that C = (a/b)2 is a square, and hence both C1 and C2 must be 
as well, leading to the equations 

2 z	1 = (t − 2)(t2 − 7t + 13), 

2 z = −(t − 2)(t2 − t + 1).2 

These are both elliptic curves, for which it can be checked that each 
has rank 0, and exactly 6 torsion points [48]. These are (t, z1) = 
(2, 0), (3, ±1), (5, ±3) and (t, z2) = (2, 0), (1, ±1), (−1, ±3). Substitut
ing these values of t in and calculating C1 and C2, we find that they 
lead to C1 = 1 or 0, and the same holds true for C2. Thus C = 0 or 
1, which means that a/b = 0 or a/b = 1. As we are assuming ab = 0, 
then a = b and we have a square. D 

Corollary 4.7. Given a non-square rectangle with sides a and b, then 
T = Z/2Z or T = Z/2Z × Z/2Z. We get the latter group if and only if 

24a + b2 is a square. 

Proof. The only torsion group we need to show is not possible is 
T = Z/2Z × Z/4Z. Assume that Eα,−n2 (Q)tors contains T . As there 

2are three points of order 2, we must necessarily have 4a + b2 is equal 
2to a square, say r . Then a theorem of Ono [[40], Main Theorem 1], 

implies that 
i) b( −b+r ) and b( −b−r ) are both squares, or 2 2 

ii) −b( −b+r ) and −br are both squares, or 2 

iii) −b( −b−r ) and br are both squares. 2 
For (i), 

( 
−b + r 

2 
)b = r 2 

1, ( 
−b − r 

2 
)b = r 2 

2. 
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2 2Therefore we have −b2 = r1 + r which is contradiction. For ii), as 2 
b > 0 and we can take r > 0, then −br is not a square. For iii), if √ 

2b2 4br = b b2 + 4a2 = s2, then b4 + 4a = s . We may rewrite this as 
(2a/b)2 = (s/b)4 − 1, since b > 0. The only rational points on the curve 
are (±1, 0), and as we can assume s > 0, then it must be that s/b = 1. 
However, if s = b, then we have 4a2b2 = 0, a contradiction. 

The corollary now follows immediately from the previous results in 
this section. D 

5. Congruent numbers. Recall a congruent number is an integer n 
which is the area of a right triangle with rational sides. It is well known 

2 2that n is congruent if and only if the elliptic curve y = x3 − n x has 
a rational point P , which is not of order 2. These congruent curves 
are a subset of our curves Eα,−n2 , with α = 0. If the point P has 
infinite order, then by the main result of this paper, we can construct 
a cyclic quadrilateral with area n, and side lengths (a, b, c, d) such that 
2 + b2 2a + d2 = c . Note by setting d = 0, we get the correspondence 

between congruent numbers and elliptic curves just mentioned. In this 
sense, Theorem 3.1 provides a generalization of this congruent number 
– elliptic curve connection. This gives us the following corollary. 

Corollary 5.1. An integer n is congruent if and only if there is a 
cyclic quadrilateral with area n, and rational side lengths (a, b, c, d) with 
2 + b2 2a + d2 = c . 

This characterization of congruent numbers can be added to the 
list of the many other known characterizations of congruent numbers. 
Several of these are given in Koblitz’s book [31]. Given an integer 
n, it is a well-known open problem to determine whether or not n is 
congruent. A partial answer is given by Tunnell’s theorem, which gives 
an easily testable criterion for determining if a number is congruent. 
However, this result relies on the unproven Birch and Swinnerton-Dyer 

2 2Conjecture for curves of the form y = x3 − n x. The criterion involves 
counting the number of integral solutions (x, y, z) to a few Diophantine 

2 2equations of the form ax + by2 + cz = n. See [50] for more details. 

In the remainder of this section, we give infinite families of con
gruent number elliptic curves with (at least) rank three. Searching 
for families of congruent curves with high rank has been done before 
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[18],[19],[42],[43],[51]. Currently, the best known results are a few 
infinite families with rank at least 3 [30],[43], and several individual 
curves with rank 7 [51]. 

5.1. A family of congruent number elliptic curves with rank at 
2 2 +d2least 3. In order for n to be congruent, we need α = a +b2 −c = 

0. It is known ([5], Page 79), that we can parameterize the solutions 
2 2 2 2 2 2 2of a + b2 − c + d2 = 0 by a = p + q2 − r , b = 2pr, c = p + q + r , 

and d = 2qr. By scaling, we can assume that r = 1. The condition 
that the quadrilateral have rational area is then that 

2 2 2(p + q + 1)(p + q 2 − p + q)(p + q − 1)(p + q + p − q) 

is a square. To simplify a bit, we require both 

(p + q − 1)(p + q + 1) = (p + q)2 − 1 

2 2 2 2(p + q 2 − p + q)(p + q + p − q) = (p + q 2)2 − (p − q)2 

to be squares. From the first of these equations, we can parameterize 
21 z +1the solutions by p + q = . We note the bottom expression will 2 z 

2z +1be a square if p = q, thus we have p = q = . We can scale the 4z 
2 zresulting sides by 4 z2+1 so that the area of the resulting quadrilateral 

is n = z(z − 1)(z + 1). From our correspondence, we have the following 
2 2points on the curve y = x3 − n x: 

P1 = 
1
(z 2 + 1)2 , 

1
(z 2 + 1)(z 2 + 2z − 1)(z 2 − 2z − 1) ,

4 8 

P2 = −z(z − 1)2 , 2z 2(z − 1)2 . 

It can be checked that P1 = −2P2, hence we only have a rank 1 family. 
A natural approach to finding more rational points on this curve is to 
look for factors B of n(z) such that B −n(z)2/B is square. Note that if 

1 x3 = 2z2(z + 1), then x3 − n2/x3 = (3z − 1)(z + 1)2 . Thus we can set 2 
1 z = (2t2 + 1) to obtain a square. It can be checked (by specializing) 3 

4that our new point with x-coordinate 2z2(z + 1) = (t2 + 2)(2t2 + 1) 27 
is linearly independent from P1 (or P2). 

We now repeat the process, with (after scaling) 

n = 3(t − 1)(t + 1)(t2 + 2)(2t2 + 1). 
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With x4 = −3(t−1)(t+1)(t2 +2)2, then we will obtain another rational 
w 2−1point if t2 + 1 is a square. We again parameterize by setting t = .2w 

Checking the factors of n, we did not find any new independent points 
on the curve. 

We summarize the above results. The cyclic quadrilateral with side 
lengths 

1 (w8 − 12w6 − 34w4 − 12w2 + 1)(w8 + 12w6 − 34w4 + 12w2 + 1 
a = ,

2 w(w8 + 38w4 + 1) 

b = d = 12w(w 4 + 1), 

1 w16 + 364w12 + 2022w8 + 364w4 + 1 
c = 

2 w(w8 + 38w4 + 1) 
, 

has area 

n = 6(w 2 + 2w − 1)(w 2 − 2w − 1)(w 4 + 1)(w 4 + 6w 2 + 1). 

2The resulting congruent curve y2 = x3 − n x has three independent 
points with the following x-coordinates 

x1 = −6(w 4 + 1)(w 2 + 2w − 1)2(w 2 − 2w − 1)2 , 

3 (w4 + 1)2(w4 + 6w2 + 1) 
x2 = ,

16 w6 

3 (w2 + 2w − 1)(w2 − 2w − 1)(w4 + 6w2 + 1)2 

x3 = − . 
64 w6 

The points being independent can be checked by specialization – for 
instance, when w = 2, the height pairing matrix has determinant 
43.6831845338168 as computed by SAGE. This family has been pre
viously discovered in [43]. We also note that for w = 14/9 (or 
w = 5/23, 23/5, 9/14 which all yield the same curve) we obtain a rank 
6 curve. 

5.2. Other families of rank 3 congruent number curves. We 
can find other families with rank 3 using the same technique illustrated 
in the previous subsection. For example, instead of selecting the 
particular x4, if we had instead chosen x4 = 6(t − 1)(t + 1)(2t2 + 1)2 , 
then x4 will lead to a rational point if 10t4 − 2t2 − 8 is a square. 

2The equation C : s = 10t4 − 2t2 − 8 has the rational point (2, 12), 
and hence is an elliptic curve. There is a birational transformation 
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2from C to the curve E : y = x3 + 58x2 + 1440x + 12960, given by 
t = −(x + 36)/x, s = 36y/x2 . The curve E has rank 1, with generator 
P = (−12, 48). As we have an infinite number of points on E, then we 
get an infinite number of congruent number curves with 3 independent 
points. Specifically, given (x, y) on C, let t = −(x + 36)/x, then x4 as 
defined above will give a rational point on the congruent number curve. 

If we start with other parameterizations for (a, b, c, d), it is not hard 
to find other families of congruent number elliptic curves with rank (at 
least) 3 using the same techniques. As a final example, let 

a = (t + 1)(t − 1)(1 + 5t + t2)(1 − 5t + t2), 

1 
b = − (−2 + t))(−1 + 2t)(1 + 2t)(2 + t)(t − 1)(t + 1),

3 

13 − 61t2 + 177t4 − 61t6 + 13t8 

c = − ,
3(t − 1)(t + 1) 

(1 + t + t2)(1 − t + t2)(2 + t)(1 + 2t)(−1 + 2t)(−2 + t)
d = − . 

(t − 1)(t + 1) 

The area of the cyclic quadrilateral is then 

n = 2t(2 + t)(1 + 2t)(−1 + 2t)(−2 + t)(t2 + 1)(t4 + 7t2 + 1). 

The points arising from the x-coordinates 

x1 = (1 + t2)2(t4 + 7t2 + 1)2 

2)2 x2 = −(9(t + 2))(1 + 2t)(1 − 2t)(2 − t)t2(1 + t

are linearly independent. If we set 

x3 = −2t(1 − 2t)2(2 − t)2(1 + t2)(t4 + 7t2 + 1) 

then this will be a point provided that 5t4 + 35t2 + 5 is a square. This 
is birationally equivalent to the elliptic curve E : y2 − 20xy − 1200y = 
x3 + 55x2 − 4500x − 247500, which has rank 1. Specifically, given a 
point (x, y), let t = (30x + 1650)/y − 2, leading us to obtain a third 
point. Specializing, we see we get an infinite family of rank 3 congruent 
number curves, arising from the infinite number of points on E. 

Both of the examples given in this subsection are new, meaning they 
have not appeared in the literature before. We find it not too difficult 
to generate a large number of rank 2 families, which will have a third 
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independent point arising from an associated elliptic curve with positive 
rank. We did not find any unconditional rank 3 family besides the one 
given in the previous subsection, nor did we find a family with rank 4. 
These families could be useful in a new search for congruent curves with 
high rank. The search performed in [51] used a rank 2 family, and it 
is possible that new families could lead to more congruent curves with 
high rank. 

6. High rank curves with torsion group Z/2Z. In this section, 
we look for infinite families of curves corresponding to cyclic quadri
laterals with high rank, as well as specific curves in these families with 
high rank. The family of curves Eα,−n is a subset of the more general 2 

family of elliptic curves with a 2-torsion point. Studying families of el
liptic curves with torsion group Z/2Z with high rank has been of much 
interest, as described in the introduction. The highest known rank for 
a curve with T = Z/2Z is 19, due to Elkies [16]. For infinite families, 
Fermigier found some with rank at least 8. We use our correspondence 
to find an infinite family with rank 5, and specific curves with ranks as 
high as 10 (see Table 1 in Section 7). 

6.1. An infinite family with rank at least 4. A quadrilateral with 
side lengths (a, c +2, c, a + 2) will have rational area if a(a + 2)c(c + 2) 
is square. We parameterize the solutions of a(a + 2) being a square 
by a = −u2/(2u − 2), and similarly set c = v2/(2v + 2). By using 
the same technique as described in Section 5.1, we find that x3 = 
2u v(u − 1)(v + 1)(v + 2) will be the x-coordinate of a rational point if 

4 3 2 2 
v = − 1 u −4u +20u −32u+16−z . We clear denominators, and repeat the 8 (u−1)2 

procedure to obtain the following family of rank (at least) 4. 

Set 

4 4 4 2 2 2 3α = u w 2+4w 4−8w u+4w u 2+8w 2−16w u+12w u 2+4−8u+4u 2−4w u , 

n 2 = (w 4 − 1)2 u 2(u − 2)2(u − 1)2 . 

2Let the curve Eu,w be defined with this value of α and n . Then 

x1 = −(w − 1)2(w + 1)2 u 2(u − 1), 

2 x2 = −u w 2(u − 2)2 , 

x3 = −4(w 2 + 1)2(u − 1)2 , 
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are all rational x-coordinates of points on Eu,w. If we further set 
w = (m2 + 2(u − 1)(u2 − 2u + 4)m + 8(u − 1)2)/((u − 1)m2 − 8(u − 1)3), 
then 

x4 = (w 4 − 1)u 2(u − 1) 

will also be a rational x-coordinate of a point on the curve. We 
performed a computer search to find elliptic curves in the family Eu,w 

with high rank, and found hundreds of curves with rank 9 and several 
curves with rank 10 (see Table 1). We remark that other families could 
be similarly constructed if we begin with different side lengths. Also 
note that the curves Eu,−w and Eu,1/w both are equivalent to the curve 
Eu,w. 

6.2. A family with rank at least 5. We conclude this section with 
a subfamily with rank 5. We search for a fifth point P5, which will be 
rational if a certain quartic equation in m is a square. Specifically, let 
x5 = −x4 = −u2(u − 1)(w4 − 1). To yield a rational point, we need 
that the quartic (in m) 

3(3u 2 − 6u + 4)2 m 4 + 4(u − 1)(u 2 − 2u + 4)(u 4 − 4u 3 + 12u 2 − 16u + 8)m 
2+ 4(u − 1)2(u 8 − 8u 7 + 40u 6 − 128u 5 + 268u 4 − 368u 3 + 400u 2 − 320u + 128)m 

+ 32(u − 1)3(u 2 − 2u + 4)(u 4 − 4u 3 + 12u 2 − 16u + 8)m + 64(u − 1)4(3u 2 − 6u + 4)2 , 

4is square. As the coefficient of m is square, we may use a technique 
attributed to Fermat ([15], p. 639) to solve for m in terms of u so that 
the resulting equation is square. A short calculation finds 

4(u − 1)(u8 − 8u7 + 34u6 − 92u5 + 178u4 − 248u3 + 232u2 − 128u + 32) 
m = − . 

(u2 − 2u + 4)(3u2 − 6u + 4)2 

Thus, we have a parameterized family with 5 rational points. Spe
cializing (at u = 3 for example), shows the five points are linearly 
independent, and hence the rank of this family is at least five. 

We performed a computer search for high rank curves in the rank 
5 family, but the search was not nearly as successful as for the Eu,w 

family since the size of the coefficients were so large. Note that this 
rank 5 family is a subset of the Eu,w family anyhow. 

7. Examples and Data. Our starting point for examples of high 
rank curve is the family of elliptic curves with rank at least 4 from 
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Section 6.1. We use the sieving method based on Mestre-Nagao sums  p − 1 
S(N, E) = (1 − ) log(p). 

|E(Fp)|
p≤N,p prime 

(see [36, 37]). For curves with large values of S(N, E), we compute the 
Selmer rank, which is a well-known upper bound for the rank. Specifi
cally we searched for curves E that satisfied the bounds S(523, E) > 20 
and S(1979, E) > 28. We combine this information with the conjec
tural parity for the rank. 
Finally, we try to compute the rank and find generators for the best 
candidates for large rank. We have implemented this procedure in 
SAGE [48] and PARI [41], using Cremona’s program mwrank [13], for 
the computation of rank and Selmer rank. In the following table, we 
present examples of the curves we found with rank 10. 

Finally, in Table 2 we present examples of cyclic quadrilaterals with 
rational area n and associated elliptic curves for positive integers n up 
to 50. For a given n, there are many cyclic quadrilaterals that we could 
use, however we chose ones which had numerators and denominators 
relatively small. Note the rank for all these curves is at least 2. 

Table 1. High rank curves in the family Eu,w from Section 6.1 

u w rank 

-84/11 29/14 10 
-63/22 97/5 10 
-62/81 32/9 10 
-60/77 22/3 10 
-53/77 31/5 10 
-47/27 45/7 10 
-32/77 49/25 10 
7/11 3161/4679 10 
9/25 6091/19600 10 
63/85 5/97 10 
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Table 2. Transformation from Eα,−n2 to cyclic quadrilateral. 

n α rank [a, b, c, d] 
1 5/2 2 [5/6, 1, 5/6, 2] 
2 1/9 2 [1/3, 4/3, 8/3, 7/3] 
3 3 2 [3, 1/2, 4, 3/2] 
4 10 2 [5/3, 2, 5/3, 4] 
5 1/9 2 [1/3, 7/3, 13/3, 11/3] 
6 9/40 3 [1,12/5, 2813/680, 447/136] 
7 -7/18 2 [4/3, 7/2, 9/2, 7/3] 
8 1/4 2 [1/2, 7/2, 31/6, 23/6] 
9 -5/4 2 [2, 5/2, 5, 7/2] 
10 1 2 [1, 4, 16/3, 11/3] 
11 1/4 2 [1/2, 13/6, 127/15, 41/5] 
12 46 2 [1,6,3,8] 
13 829/4 2 [1/4, 16, 13/4, 13] 
14 1/4 2 [1/2, 2, 34/3, 67/6] 
15 15 2 [4, 3/2, 5, 15/2] 
16 40 2 [10/3, 4, 10/3, 8] 
17 4 2 [2, 106/39, 8017/1092, 199/28] 
18 1 2 [1, 4, 8, 7] 
19 1 2 [1, 17/2, 91/10, 17/5] 
20 7 2 [4, 7, 22/3, 5/3] 
21 1/4 2 [1/2, 15/2, 9, 5] 
22 -149/3 2 [3,20/3,40/3,5] 
23 4 3 [2/5, 2, 383/20, 77/4] 
24 9/10 3 [2, 24/5, 2813/340, 447/68] 
25 4/9 2 [2/3, 58/3, 233/12, 23/12] 
26 64 2 [8, 5, 7/3, 20/3] 
27 8/5 2 [12/5, 176/35, 597/70, 67/10] 
28 -14/9 2 [8/3, 7, 9, 14/3] 
29 -1/5 2 [437/120, 569/56, 682639/62160, 1139/592] 
30 4 2 [2, 6, 9, 7] 
31 4/9 2 [2/3, 1069/24, 32427/728, 66/91] 
32 1 2 [1, 7, 31/3, 23/3] 
33 -7/4 2 [2, 41/10, 58/5, 21/2] 
34 2 2 [19/6, 311/36, 352771/35460, 25291/5910] 
35 385/9 2 [7/3, 35/3, 9, 5] 
36 -5 2 [4, 5, 10, 7] 
37 -4/3 2 [5/6, 9/2, 175/12, 55/4] 
38 4/9 2 [2/3, 17/3, 197/15, 178/15] 
39 333/2 2 [9/2, 15, 7/2, 10] 
40 -3 2 [7/3, 6, 34/3, 9] 
41 4/9 3 [2/3, 98/15, 1427/110, 247/22] 
42 1 3 [1,9,12,8] 
43 -8/9 3 [104/15, 32/3, 5387/420, 79/84] 
44 -2/3 3 [10/21, 5, 353/21, 16] 
45 1 2 [1,7,13,11] 
46 1/4 2 [1/2, 65/2, 2867/88, 205/88] 
47 4 2 [2/7, 2, 1727/42, 247/6] 
48 184 2 [2, 16, 6, 12] 
49 245/6 2 [35/6, 7, 35/6, 14] 
50 25/9 2 [5/3, 20/3, 40/3, 35/3] 
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