

1

Finite Difference Micromagnetic Solvers with the Object Oriented

MicroMagnetic Framework (OOMMF) on Graphics Processing Units

Sidi Fu
1,2

, Weilong Cui
3
, Matthew Hu

2
, Ruinan Chang

1,2
, Michael J. Donahue

4
, and Vitaliy Lomakin

1,2

1
Center for Magnetic Research, University of California, San Diego, CA 92037 USA

2
Department of Electrical and Computer Engineering, University of California, San Diego, CA 92037 USA

3
Department of Electronic Engineering and Computer Science, Peking University, Beijing, 100871 CHINA

4
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA

A micromagnetic solver using the Finite Difference method on a Graphics Processing Unit (GPU) and its integration with the Object

Oriented MicroMagnetic Framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by

the Fast Fourier Transform (FFT) are implemented. The first approach, referred to as the tensor approach, is based on the tensor

spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar

potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for

magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory

consumption and accuracy are provided. The GPU implementation of OOMMF shows up to 32x GPU-CPU speed-up.

Index Terms—Micromagnetics, Graphics Processing Unit, OOMMF, magnetostatics.

I. INTRODUCTION

ICROMAGNETIC solvers for the Landau-Lifshitz-Gilbert

(LLG) equation are important for our ability to analyze

and design many magnetic systems. The two main types of

micromagnetic solvers are based on the Finite Element

method (FEM) [1]-[4] and Finite Difference method (FDM)

[5]-[7]. FEM is flexible for various geometries, while FDMs

often have higher performance for relatively simple structures,

such as thin films. In FDMs, the exchange field is typically

evaluated via the Laplacian operator using finite differences.

The magnetostatic field can be evaluated through several

approaches such as the fast multipole method [8], the non-

uniform grid interpolation method [9], and the Fast Fourier

Transform (FFT) [10]. The last approach is most commonly

used for FDMs. The FFT reduces the computation complexity

from 2()O N

to (log)O N N . With well-developed numerical

libraries [11]-[13], FFTs can be applied to tensor or scalar

potential formulations with associated advantages for each

approach.

The speed limitation of single-core computer systems has

become an obstacle when solving large-scale problems in

micromagnetics and other fields of study. Micromagnetic

solvers for multicore and multi-CPU systems have been

developed, but such systems have limitations in their

performance. Massively parallel Graphics Processing Unit

(GPU) systems have emerged offering ultra-high performance.

A single GPU can match the computation power of a middle-

range CPU cluster, but at a much lower cost and power

consumption. Solvers for the LLG equation on GPUs can be

highly efficient but several important points need be addressed

to fully exploit the computational power of GPU architectures

[7], [14]-[16].

This paper introduces a scalar potential FDM approach

using only one (forward and inverse) scalar FFT and compares

it to a more conventional tensor FDM method. The

computational domain is discretized into a uniform grid of

identical rectangular brick cells and the magnetization is set

inside each cell. The magnetostatic field evaluation is usually

the most time and memory consuming part of the solver. The

tensor approach, most commonly used in the micromagnetics

community, involves superposition integrals with a tensor

integral kernel to directly compute the magnetostatic field.

The scalar approach introduced here involves evaluating the

scalar potential via superposition integrals with a scalar

integral kernel, accompanied with differential operators

evaluated via finite differences. This approach is related to

that of [17]-[19], but it uses scalar charges explicitly, which is

critical to minimize the memory consumption and the number

of FFTs, and it is applicable to 3D structures. The tensor and

scalar potential approaches are compared in terms of their

formulation, implementation on GPUs, accuracy, and

performance results. Approaches for efficiently computing the

exchange field are presented. The paper, then, demonstrates a

GPU implementation of the widely used Object Oriented

Micromagnetic Framework (OOMMF) [5]. The

implementation is such that most of the user-related OOMMF

components are unchanged and only the lower-level modules

are ported to GPU. This allows OOMMF users to run their

models as before but at greater speed. The GPU-accelerated

OOMMF will be made freely available to the micromagnetic

community at the OOMMF web site [20].

II. FORMULATION

A. Landau-Lifshitz-Gilbert equation

This paper is concerned with solving the explicit form of

LLG equation via FDM. In FDMs, the structure of interest is

discretized into identical brick cells (i.e., rectangular prisms).

Each cell can have different material parameters and is

assigned a magnetization state. The discretized LLG equation

reads

 , ,21

i

i eff i i i eff i
t







     
  

m
m H m m H , (1)

M

2

where
im is the normalized magnetization at the center of the

corresponding cell i,  is the gyromagnetic ratio,  is the

Gilbert damping constant, and
effH is the effective field. The

effective field is comprised of the applied (or Zeeman) field

applH , the anisotropy field
anisH , the exchange field

exchH ,

and the self-magnetostatic field
msH . Additional effective field

and torque terms in the LLG equation may be added, e.g. spin

transfer torques [21].

B. Self-Magnetostatic Field

The self-magnetostatic field can be defined as a

superposition integral

'

ms

()
()

4
s

V

r M dV



 


m r

H
r r

. (2)

Two approaches are implemented to compute the

magnetostatic field: the tensor approach and the scalar

potential approach. The tensor approach solves for the

magnetostatic field directly using superpositions with the

tensor integral kernel. The scalar potential approach uses

scalar charges to find the scalar potential, which is used to

compute the field. The tensor approach is most widely used in

micromagnetics, but the scalar potential approach introduced

here has lower computational cost and memory requirements.

1) Tensor Approach

In the tensor formulation the double del operator is moved

under the integral to give

'

ms

1
() ()

4 | |
s

V

M dV


 
    

 
H r m r

r r
. (3)

For numerical implementation, the magnetization is assumed

to be uniform in each discretization cell and the field is

obtained by averaging over the cells:

H
ms,i

= M
s

N
ij
m

j
j=1

N

å ; N
ij

= V
i

-1

S
i

ò
dS

i
dS

j

4p |r
i
- r

j
|S

j
ò , (4)

where
iV is the volume of the of cell i , and

idS and jdS

represent surface integrals over the surfaces of the cells i and

j , respectively. The tensor ijN provides the field generated

by the magnetization in cell j at cell i and can be computed

as outlined in [22].

 The direct cost of computing the magnetostatic field across

the entire simulation via Eq. (4) is 2()O N . However, using

the fact that the discretization is uniform, the summation in

Eq. (4) can be computed via a three-dimensional Fast Fourier

Transform (3D FFT), which reduces the computational cost to

(log)O N N .

 The numerical procedure involves one forward FFT of each

of the ijN tensor components, which is done once during

problem initialization. In each time integration step, the

computations involve forward FFTs of the three vector m

components, products and summations of these components

with the Fourier image of the tensor ijN , and the inverse FFT

of the three vector components of the resulting magnetic field.

The number of operations in the tensor approach per time

step is
13 logc N N , where the constant

1c is related to a single

scalar 3D FFT evaluation. The memory storage is 30N real

numbers. The rate of numerical convergence for decreasing

cell size D is of 2()O D [23], [24].

2) Scalar Potential Approach

In the scalar potential approach the field is evaluated by

finding the volume and surface charges, computing the

potential, and finding the field via finite differences:

 . (5)

Here
M and

M are volume and surface charge densities,

respectively, and the potential is found via the scalar

superposition integrals.

Evaluating the volume charges is a straightforward task. On

the other hand, evaluating the surface charges and the

corresponding scalar potential is more involved. If the

magnetization locations are assigned at the discretization cell

centers, the surface charge locations are shifted by a half-cell

with respect to the volume charges. One simple approach is to

consider the volume and surface charges and their

corresponding potential parts separately [25]. However, while

allowing for reducing the error such an approach would

require evaluating the integrals for the potential twice. The

approach we use is to find the magnetization states at the cell

vertices by averaging over the magnetization states defined in

the centers of the cells surrounding the vertices, i.e.,

() ()

n c nc
i i i c ni

I im m , (6)

where for each vertex ni the summation is over the cells ()c ni i

surrounding this vertex and ()c nI i is the total number of

surrounding cells. The vertex magnetization values are used to

find the surface charges at the vertices at the boundaries.

Specifically, the surface charges are found as a sum of the

surface charges on the surfaces surrounding the vertices (Fig.

1):

Fig. 1. Retrieval of the surface charges at the vertices of cells by averaging

over the surrounding surfaces. Three kinds of surface charges

(
,0sq ,

,1sq ,
,2sq) and the corresponding surface areas are illustrated.

3

, , () () ()()

ˆ()
n s n n s n s ns n

s i s i i i i i i ii i
q M s  m n , (7)

where
ni is the boundary vertex numbers, ()

ˆ
s ni in is the normal

corresponding to the surrounding boundary surface, and ()s ni is

is the areas of the surrounding surfaces. The areas ()s ni is are

taken such that no part of any surface is accounted for more

than once per surface vertex, e.g., if the structure is discretized

into brick cells with the side surface area of s , then

() 4
s ni is s  . The volumetric charges , nv iq corresponding to

the vertices are all found by finite differences. In this approach

the volumetric and surface charges are collocated at the

vertices, which allows lumping them together for the purpose

of computing the scalar potential:

1 4 | |

n

n

n n

n n n

i jn n

N
j self

i i

j i j

q
 




 



r r

r r
 , (8)

where ,n nj v jq q at the interior vertices and , ,n n nj v j s jq q q 

at the boundary vertices. The term
n

self

i represents the self-

term given via the exact integration of the volume and surface

charges corresponding to the effect of the surrounding

surfaces and volumes on the same vertex. The computation

can be made more accurate by considering that the charges

nj
q are spread into volumetric charge densities in cells

centered at the vertex and replacing the factor 1| |
n ni j

r r with

the integral 1() | |
n n n n

jn

j j i j
V

q v dv  r r . This method is not

employed in the numerical tests since it is not the bottleneck

of the accuracy for the scalar potential approach. The

summation in Eq. (8) or the integrals in Eq. (5) can be treated

as three dimension scalar convolutions via FFT. Once the

potentials at the vertices are found, the magnetostatic field is

found by taking finite differences at the centers of the

discretization cells.

As compared to the tensor approach, the scalar potential

approach has reduced computational cost and memory

consumption. In particular, the number of FFTs is reduced

from 6 to 2, and the memory consumption is reduced by about

one third. The scalar potential approach here also shows

similar advantages over the scalar potential approach in [17]-

[19]: the number of FFTs is reduced from 4 to 2, and the

memory consumption is reduced to about one half. The overall

accuracy of the scalar potential approach scales quadratically

with respect to the discretization cell size, similar to the tensor

approach, although as shown in Sec. IV the tensor approach is

typically more accurate by a constant factor for the same

discretization cell size.

The variables in the scalar potential approach are defined on

the cell vertices, leading to the problem size of

(1)(1)(1)x y zn n n   as compared to
x y zn n n in the tensor

approach, where n denotes the number of cells. This leads to

noticeable difference in small-scale or reduced dimensionality

problems, such as magnetic thin films (1zn ). In the latter

case the scalar potential can be calculated via four 2D FFTs,

which is only slightly slower than the tensor method (with

three 2D FFTs). In general, the scalar potential approach is

appealing for solving large 3D problems.

C. Other Effective Field Components

The exchange field in the continuous form is given by

 2

exch

0

2

S

A

M
 H m , (9)

where A is the exchange constant. We use the nearest neighbor

finite difference rule, which for the interior cells reads as

H
exch,i

=
2A

m
0
M

S ,i

(m
j
- m

i
)

h
ij

2
jÎJ

i

å , (10)

where
iJ is a list of cells surrounding cell i , and

ijh is the

distance between the center of cells. This rule is modified at

boundary cells to maintain the boundary conditions on

n m . The accuracy of the exchange field computation via

Eq. (10) scales quadratically with respect to the discretization

cell size, which is the same rate as the accuracy of the

magnetostatic field [24]. The computation of the exchange

field involves ()O N operations. Its implementation on GPUs

requires properly addressing the GPU memory and

computations as outlined in Sec. III.

The uniaxial anisotropy field with the easy axis in the

direction of a unit vector k is given by

  ,

0 ,

2 i

anis i i i i

S i

K

M
 H m k k , (11)

where K is the magneto-crystalline anisotropy energy density,

and
sM is the saturation magnetization. Other types of

anisotropy fields, e.g., second order or cubic anisotropy, can

be defined. The applied field can be simply assigned to each

discretization cell as its value at the cell center. The applied

and anisotropy fields involve only local operations, so their

operation count is ()O N , and their numerical implementation

is trivial.

III. CUDA IMPLEMENTATION

The GPU implementation of both tensor and scalar

approaches is similar in that both methods require evaluating

superpositions via FFTs and differential operators.

A. General Implementation Strategy

The GPU used in this work is Nvidia GeForce GTX 690,

which has dual GPUs and each GPU has 1536 streaming

processors. These processors are launched by CUDA threads

in the CUDA programming environment [26]. A group of 32

threads executes the same instruction at a given time, which is

called “atomic” behavior.

A certain GPU global memory is accessible to all threads.

For example, a single GPU device of a dual-GPU Nvidia

GeForce GTX 690 (used in this paper) has 2 GB global

memory and the Titan X GPU has 12 GB of global memory.

GPU global memory is separate from CPU memory, so any

data that needs to be operated on by the GPU has to be

transferred from the CPU memory. The GPU global memory

has significant access latency. This latency is minimized by

4

reducing the memory bandwidth. This can be achieved when

reading a block of data from a continuous set of addresses in

the memory via so called “coalesced access”.

The GPU also has a category of “shared memory”. Shared

memory is fast on-chip memory and it works as a memory

pool for the threads to share intermediate data. Unlike global

memory, shared memory has low intrinsic latency. However,

access can be slowed by bank conflicts. In Nvidia GPUs, the

shared memory is organized into memory banks. If there are

two threads within one warp trying to access the same bank,

these two accesses have to be serialized. Thus a linear

accessing stride is preferred [26].

B. Evaluating the Superposition Summations

As discussed in Sec. II, 3D FFTs are used for accelerating

the superposition summations in the magnetostatic field

computation. We use the Nvidia cuFFT library. The 3D real-

to-complex Fourier transform and its inverse complex-to-real

Fourier transform are utilized to gain a good GPU-CPU speed-

up while minimizing the GPU memory consumption.

Provided that the GPU memory is limited compared to the

CPU memory, saving memory is important to enable large-

scale problems. This is especially important in the

implementation of the tensor approach for the magnetostatic

field. The GPU memory is mainly consumed by storing the

Green’s function and magnetization or magnetic charge data

in Fourier-transformed space. For N discretization cells, the

storage required for the tensor approach is 30N real numbers,

including 24N for the 3 FFT-extended vector components of

the magnetization and 6N for the FFT-extended tensor; this

storage calculation includes zero padding for the non-cyclic

convolution, symmetries, and the fact that the computation

space is real. The storage of the scalar potential approach in

[17]-[19] is 27N real numbers, including 24N for the 3 FFT-

extended vector components of the magnetization and 3N for

the FFT-extended Green’s function. The memory requirement

for the scalar potential approach presented here is significantly

lower—it is 12N real numbers, including 8N for the FFT-

extended scalar potential, 3N for the magnetization, and N for

the FFT-extended scalar Green’s function. The GPU memory

cost of both the tensor approach and scalar potential approach

can be further reduced by 1/3 or more with the FFT approach

introduced in [27]. Such an improvement would maintain the

fact that the scalar potential approach is more favorable in

terms of computational speed and memory consumption. The

GPU memory consumption is carefully managed by reusing

GPU memory whenever possible, such that extra GPU buffer

is rarely needed. Up to 8M cells and 4M cells can be fit into a

2GB GPU with the scalar potential method and the tensor

method, respectively.

C. Differential Operators

The divergence and gradient operators in the scalar

potential approach for magnetostatic field computation, and

the Laplacian operator in the computation of the exchange

field are important differential operators. Provided that our

implementation of the integral operators is sufficiently

efficient, these differential operators may become the

bottleneck if they are not efficiently implemented.

Differential operators are evaluated based on information

from adjacent cells or vertices. Consider the Laplacian

operator evaluation in Eq. (10). Since we use the 6-neighbor

exchange field model to have second order numerical

accuracy, the magnetization data in each cell will be read 6

times through CUDA threads launched for its neighboring

cells. Even with coalesced memory access, the memory

loading is still relatively heavy as compared to the

computational workload. We take advantage of the shared

memory on each streaming multiprocessor to avoid reading

the magnetization data from global memory multiple times.

Through fetching blocks of data from the global to shared

memory, we perform all the following memory loads within

the fast shared memory. Since the blocks of data overlap with

each other by 1 layer of cells, data reuse is enhanced with

larger block sizes. However, the block size is limited by the

size of the shared memory in the GPU. Therefore, the

optimized block size varies among different simulated

geometries. Through the utilization of shared memory, the

speed of the exchange field kernel on GPU is accelerated

about 40%. A similar approach is used for computing the

charges in the scalar potential method.

Another option to implement the exchange field is to

include it in the computation of the magnetostatic field by

adding it to the integral kernel. This is possible because the

finite difference operator can be cast in a convolutional form.

In this approach, the computation of the exchange field does

not add any cost on top of the magnetostatic field computation

[15]. However, we prefer to keep the exchange field as a

separate effective field kernel for three reasons: (i) the

exchange field cannot be integrated with the magnetostatic

field in the scalar potential approach, (ii) a separate exchange

field kernel provides flexibility for implementing implicit time

evolution methods in future OOMMF updates, and (iii)

computing the exchange field separately adds only a small

fraction to the overall computation time (around 10%).

D. Time Evolver

The time evolver is the section of code that implements the

time evolution of the LLG equation. To avoid CPU-GPU data

transfers on every time step, we have implemented the time

evolver on the GPU so that the entire OOMMF simulation

runs on the GPU. The adaptive Euler method and a fixed-time-

step evolver were implemented. The adaptive time evolver

includes error-tracking kernels. The reduction kernel, which

sums up and finds the minimal or maximal values of an array,

is required for numerical error-tracking in the adaptive time

evolver. It is not an easy kernel to implement efficiently on the

GPU because it requires significant data communication

between CUDA threads and it is not compute-intensive. A

highly efficient GPU reduction implementation [28] was

adopted. With this reduction kernel, the global memory is read

via coalesced access to shared memory. The shared memory is

then used for the reduction with serial addressing to avoid

shared memory bank conflicts. In addition, synchronization

among CUDA threads is avoided to the extent possible by

5

taking advantage of the “atomic” behavior of the GPU warps.

This approach results in a highly efficient reduction kernel as

demonstrated in Sec. IV.

E. Other Important Kernels

Evaluating the applied and anisotropy fields at the grid

points does not require any information from other grid points.

This workload can be fully parallelized through the “one

thread per grid cell” approach. The computational complexity

of the applied and anisotropy field evaluations is ()O N . To

reduce the global memory accessing time, magnetization

loading was carefully ordered so that the memory reading was

always coalesced.

IV. TESTING RESULTS AND DISCUSSION

 This section presents computational results of our

implementation of the FDM solver with the scalar potential

and tensor approaches, and also results from the OOMMF

solver. First we validated our numerical results for both

solvers with the µMag standard problem 4 [29] and by

checking domain wall motion in a nanowire. Then, numerical

accuracy and timing results were compared for the two

methods of computing the magnetostatic field. Finally, we

present the timing results from the OOMMF solver running on

a CPU and a GPU. The CPU results were obtained on a

3.5GHz Intel Xeon E5 with 6 cores, while the GPU results

were obtained on a Nvidia Geforce GTX 690 GPU. The CPU-

GPU memory transfers in the micromagnetic solvers occur

only before and after the simulation, and are therefore not

included in the timing results. Unless specified, all the GPU

results presented are from single-precision floating point

operations with an explicit time-stepping method.

A. Validation

1) µMag Standard Problem 4

The µMag standard problem 4 is designed to simulate the

dynamic magnetization process by considering the

magnetization reversal in a thin film having dimensions 500

nm x 125 nm x 3 nm (see the µMag website [29], [30]). This

problem includes exchange, self-magnetostatic, and applied

fields, but the magneto-crystalline anisotropy is zero. The

equilibrium S-state initial magnetization configuration is

reversed by applying one of two fields; in Prob. 4a the applied

field is µ0Hx = −24.6 mT, µ0Hy = 4.3 mT, µ0Hz = 0.0 mT,

while Prob. 4b uses µ0Hx = −35.5mT, µ0Hy = −6.3 mT, µ0Hz =

0.0 mT. The discretization size for this test was chosen to be

2.5 nm x 2.5 nm x 3 nm. Single-precision floating point was

used to obtain the best GPU performance. Both the tensor

approach with adaptive Euler time evolver and scalar

approaches were used.

As required by the standard problem, the (x, y, z)

components of the spatially averaged magnetization as a

function of time from S-state to the equilibrium (the first 1 ns)

and the snapshot of magnetization when the averaged Mx

reaches zero for the first time are shown in Fig. 2 and Fig. 3.

In Figs. 2 and 3 The results obtained via the tensor approach

were indistinguishable visually with the reference case and,

therefore, we refer to them as reference results. We can find

that the results obtained via the scalar approach are in

agreement with the reference results. Some of the differences

are due to some numerical difference between the

magnetostatic fields obtained via the tensor and scalar

methods (see Sec. IV.B).

2) Domain Wall Motion

Another test example is a nanowire with size 6.4 µm x 20

nm x 20 nm simulated with the tensor approach. A head-to-

head domain wall is initialized at the center of the nanowire.

An external field µ0Hx = -35.5 mT is applied to the nanowire

so that the domain wall is expected to be driven in the –x

Fig. 3. The dynamics of averaged magnetization and a snapshot of the

magnetization when averaged Mx first becomes zero, as specified by µMag
standard problem 4b. In the top figure, results from our solver are marked by

colored symbols, while the reference results are solid black lines.

Fig. 2. The dynamics of averaged magnetization and a snapshot of the
magnetization when averaged Mx first becomes zero, as specified by µMag

standard problem 4a. In the top figure, the results from our solver are marked

by colored symbols, while the reference results are solid black lines.

6

direction according to the following equation [31]

extv H






 , (12)

where 1 2 2 1 2

0(1 2)sA K M    is the domain wall width

and
extH is the magnitude of external field. We used  =

2.211e5 m/As,  = 0.5, A = 1.3e-11 J/m,
sM = 8e5 A/m and K

= 1.0e5 J/m
3
, which led to an estimated velocity of 63.56

nm/ns.

Fig. 4 shows snapshots of the moving domain wall.

According to our test results using the tensor approach, the

speed of the domain wall is 69.06 nm/ns. The simulated result

is in close agreement to the predicted results.

B. Finite Difference Solver on GPU

1) Accuracy Analysis

Fig. 5 compares the accuracy of the magnetostatic field

evaluation via the scalar potential and tensor approaches. In

Fig. 5(a), which shows the accuracy of the magnetostatic field

evaluation, we discretize a fixed-size cube (49 nm × 49 nm ×

49 nm) into an increasing number of brick cells. The

magnetization state ˆ zM z was chosen so that both volume

and surface charge densities exist

(21A/mM   , 49A/mM  when 49z  nm, else 0M ).

For this case the magnetostatic field can be found analytically.

The error was defined as

2

ms,i ms,i

2

ms,i

N num ana

i

N ana

i

Error







H H

H
 . (13)

The “num” and “ana” in Eq. (13) are for “numerical method”

and “analytical method” respectively.

Figure 5(b) shows the accuracy of the magnetization states

obtained via the FDM solvers with the scalar potential and

tensor approaches for the magnetostatic field. A fixed size

cube (100 nm × 100 nm × 100nm) was discretized into an

increasing number of brick cells. The magnetic parameters (

= 2.211e5 m/As,  = 0.5, A = 4.91e-11 J/m,
sM = 7.96e5

A/m and K = 3.98e4 J/m3) were chosen to form a vortex

magnetization state at equilibrium, which was sampled at

uniformly distributed locations to evaluate the accuracy. The

error was defined as in Eq. (13), with the magnetostatic field

replaced with the magnetization and the analytical field

replaced by the magnetization obtained as an “asymptotic”

numerical solution for a very fine discretization.

From Fig. 5 it is evident that both the scalar potential and

tensor approaches have quadratic convergence. The tensor

approach is more accurate by a factor because it avoids the

approximation of charges at the boundaries and the numerical

derivative operations in the superposition integrals. The

reduced accuracy makes the tensor approach faster for the

same error level. However, the overall micromagnetic solver

error is determined not only by magnetostatics but also e.g. by

exchange, which may have a higher error, especially for

irregularly shaped structures. In such cases, the scalar

potential approach is appealing because of its faster

performance and smaller memory consumption, especially for

large-scale problems. We further note that the magnetostatic

and exchange fields can be calculated on different grids with

different cell sizes. This approach allows reducing the error of

the magnetostatic field calculation (by reducing the

corresponding cell size) without reducing the time step related

to the cell size used for the exchange field calculation [32].

2) Speed Comparison

The timing results of computing the magnetization time

evaluation via the GPU and CPU implementations of

OOMMF are shown in Table I. The computation of

magnetostatic field, anisotropy field, exchange field and

applied field are included. The CPU OOMMF code was

compiled with all possible optimization flags to achieve the

maximal performance for best comparison. (Note, however,

Fig. 4. Snapshots of domain wall in the nanowire at T = 3.40 ns, T = 4.08 ns

and T = 4.76 ns, from top to down, respectively. The length-scale is also

shown.

Fig. 5. The numerical error in the GPU implementation for a) magnetostatic

field and b) Finite Difference solver with scalar potential and tensor
approaches as a function of the discretized grid cell size. Both methods show

quadratic convergence.

a)

b)

7

that all OOMMF results are with double-precision floating

point operations, because OOMMF does not support single-

precision operation. The GPU results in Table I are for single-

precision operations. GPU results with double-precision

operations are presented in Table II.) We considered cubic

magnetic domains with different number of discretized cells as

test cases. The number of cells in each dimension ranges from

16 to 128. One can see that the GPU OOMMF code has an

increasing speed-up with respect to the total number of cells as

compared to the CPU code. The increasing speed-up is

because the GPU still has enough parallelization power for the

problem scale we considered. The absolute performance is

also high. In particular, for a problem with 2 million grid cells,

compared to the time of 1322.9 ms by single-core CPU

OOMMF, the GPU running time per single time step are 17.4

ms and 35.2 ms with the scalar and tensor approaches,

respectively. This corresponds to a 76.2x and 37.5x GPU-CPU

speed-up. The CPU OOMMF running on 6 cores has the

parallelization efficiency of 41%-55%. In particular, the for a

problem with 2 million grid cells, the computational time of

OOMMF on 6 cores is 401.82 ms.

Fig. 6 compares the speed of the GPU version of the solver

implemented with scalar and tensor approaches. The running

time per time step of both methods follows (log)O N N trend.

We can also observe that the speed of the scalar approach is

higher. At the points where cuFFT has highest efficiency on

the GPU, e.g. 8
3
, 16

3
, 32

3
, 64

3
, 128

3
, the scalar approach is

about 2x faster. The speed-up is higher at other points because

cuFFT is working with a lower efficiency at these points,

which leads to a higher weight of the FFT as compared to the

other parts of the code. Since cuFFT performs better when the

transformed array sizes are composed of small prime factors,

such as 2, 3, 5 and 7, we zero-pad the array to these sizes. As a

result, a smooth timing performance is achieved (Fig. 6). The

presented implementation allows fitting up to 4M cells in 2GB

GPU memory. Currently GPUs with 12 GB memory are

available, which would allow problems up to 24M cells.

C. OOMMF on GPU

Next we present full simulation results of OOMMF

implemented on GPU. The magnetostatic field is computed

using the tensor approach for all cases. The CPU results are

double-precision because OOMMF does not support single-

precision operation. The GPU results are given for single- and

double-precision.

1) Single Precision Performance

Fig. 7 shows the timing results of the OOMMF adaptive

Euler solver using single-precision for the GPU computations

and double-precision for the CPU computations. There is a

difference in the simulation time of OOMMF running on CPU

versus GPU, but both also show a step-like behavior in the

simulation time. The steps occur when the number of cells in

each dimension surpasses a power of two, i.e. 16, 32, 64. This

occurs because OOMMF pads the FFT array to a power of

two. For example, when the number of grid cells is 33, the

FFT array is padded to 128 although a size of only 2x33-1 =

65 is necessary for the computation. With this padding

strategy, the FFT computation always stays at its best

performance, whereas there are some unnecessary

computations during the simulation.

Fig. 7 also breaks down the time spent on the magnetostatic

field computation on GPU. This time is very close to the

computational time of the entire OOMMF solver on GPU

when the total number of discretized cells is large enough.

This reflects the fact that in our implementation kernels other

than the magnetostatic field are subdominant. One can also

observe that the computational time for the magnetostatic field

has higher weight at the points with sizes that are not powers

of two. This further verifies that the FFT computations take

most of the computational time when the FFT array is padded

to a power of two.

Fig. 7. Run time per time step for OOMMF on CPU and GPU as a function

of the number of discretization cells N. The time for the magnetostatic field
computation on the GPU is also included. Significant performance

improvement is observed. The computation for the magnetostatic field takes

most of the run time in the GPU implementation.

Fig. 6. Run time on the GPU per time step for the scalar potential and tensor
methods as a function of the number of discretization cells N. The time

scales as O(NlogN) for both approaches but the scalar potential approach is

about two times faster.

TABLE I
TIMING RESULTS OF FINITE DIFFERENCE SOLVER WITH FIXED TIME STEPPING

N

OOMMF Finite Difference Solver

1 core

(ms)

6 cores

(ms)

Scalar

(ms)

Speed

-up

Tensor

(ms)

Speed

-up

4K 1.63 0.66 0.13 12.9 0.14 11.8

32K 14.11 5.12 0.34 41.4 0.60 23.7

256K 155.3 48.71 2.16 71.8 4.30 36.1

2M 1323 401.8 17.36 76.2 35.2 37.5

8

Fig. 8 shows the GPU-CPU speed-up, demonstrating the

speed-up increase with the number of discretized cells. The

efficiency increase is due to the fact that multiple GPU

streaming processors can be utilized more efficiently for larger

problems and the memory access time is hidden by the

computations to a larger extent. In the same figure, limitations

of speed-ups by multi-core CPU is observed.

2) Double Precision Performance

We also tested double-precision computations. The double-

precision results are shown in Table II. We find that using the

GTX690 the double-precision performance is 2.0x – 3.5x

slower than single-precision. It is interesting to note that the

number of double-precision streaming processors on the

GTX690 GPU we used is 24x fewer than single-precision

processors. The comparatively smaller reduction of the

double-precision performance indicates that the FFT

computations that dominate the overall cost are memory

access latency limited. Indeed, the memory access time for a

given number of double-precision accesses is about twice that

for the same number of single-precision accesses. The

reduction in the computational speed for the double-precision

case is closer to 1/2 as explained by memory bandwidth and

not 1/24 as would be explained by the number of streaming

processors.

V. CONCLUSIONS

This paper presents a GPU-based FDM solver for the LLG

equation in a micromagnetic context. Two approaches for

computing the magnetostatic field were implemented. The

first more conventional approach uses tensor products without

evaluating differential operators. The second approach,

presented for the first time, proceeds in three steps: the

computation of volume and collocated surface charges,

evaluating the magnetic scalar potential, and finding the field

via the gradient of the scalar potential. Both approaches use

FFTs for computing the resulting superposition summations,

resulting in a computational cost of (log)O N N . Both

approaches for computing the magnetostatic field as well as

the computation of all other LLG solver components were

implemented on GPU. It is demonstrated that with proper

implementation, the computational time for the exchange field

can be substantially lower than that for the magnetostatic field,

which is critical for the scalar potential approach and for

future implicit time integration schemes.

The developed codes were integrated with the OOMMF

simulator [5]. The integration is mostly seamless to the user in

that the OOMMF interface remains the same and only the

internal kernels were GPU-accelerated. The developed

implementation shows an up to 32x GPU-CPU speed-up as

compared to a fully optimized CPU version of OOMMF. The

GPU version of the OOMMF code will be made available to

the broad community of users at the OOMMF web site [20],

providing opportunities to accelerate scientific research in

magnetics. Future code updates will include options for

different magnetostatic field approaches and new physics as

well as further speed increases and increases to accessible

problem sizes.

ACKNOWLEDGEMENT

Support from the National Institute of Standards and

Technology (NIST) is gratefully acknowledged.

DISCLAIMER

The mention of specific products, trademarks, or brand

names is for purposes of identification only. Such mention is

not to be interpreted in any way as an endorsement or

certification of such products or brands by the National

Institute of Standards and Technology. All trademarks

mentioned herein belong to their respective owners.

REFERENCES

[1] R. Chang, S. Li, M. Lubarda, B. Livshitz, and V. Lomakin, “FastMag:

Fast micromagnetic simulator for complex magnetic structures,”
Journal of Applied Physics, vol. 109, pp. 07D358, 2011.

[2] FEMME, A Multiscale Micromagnetic Finite Element Package, 2007.

[3] A. Kakay, E. Westphal, and R. Hertel, “Speedup of FEM
micromagnetic simulations with graphical processing units," IEEE

Transactions on Magnets, vol. 46, issue. 6, pp. 2303, 2010.

[4] C. Abert, L. Exl, F. Bruckner, A. Drews, D. Suess, “Magnum.fe: A
micromagnetic finite-element simulation code based on FEniCS",

Journal of Magnetism and Magnetic Materials, vol. 345, pp. 29–35,

2013.
[5] M.J. Donahue and D.G. Porter, OOMMF User's Guide, Version 1.0,

Interagency Report NISTIR 6376, National Institute of Standards and

Technology, Gaithersburg, MD, 1999..
[6] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-

Sanchez, B. Van Waeyenberge, “The design and verification of

MuMax3”, AIP Advances, vol. 4, pp. 107133, 2014.
[7] “MicroMagnum." http://micromagnum.informatik.uni-hamburg.de/.

[8] L. Greengard, R. Vladimir. "A fast algorithm for particle simulations."

Journal of computational physics, vol. 73, issue 2, pp. 325-348, 1987.

Fig. 8. GPU and multi-core CPU speed-up of OOMMF implementation as a
function of the number of discretization cells N. An increase in the speed-up

with N is observed.

TABLE II
TIMING RESULTS OF OOMMF SOLVER

N

OOMMF

CPU

1 core

(ms)

CPU

6 cores

(ms)

GPU

Single

prec (ms)

Speed

-up

GPU

Double

prec (ms)

Speed

-up

4K 1.63 0.66 0.84 2.0 1.61 1.3

32K 14.11 5.12 1.37 10.3 2.69 5.2

256K 155.3 48.71 5.67 27.4 16.62 9.4

2M 1323 401.8 41.96 31.5 136.9 9.7

9

[9] A. Boag, B. Livshitz. "Adaptive nonuniform-grid (NG) algorithm for

fast capacitance extraction." Microwave Theory and Techniques, IEEE
Transactions on, Issue 54, vol. 9, pp. 3565-3570, 2006.

[10] K. Fabian, A. Kirchner, W. Williams, F. Heider, T. Leibl, A. Huber.

"Three dimensional micromagnetic calculations for magnetite using
FFT." Geophysical Journal International, vol. 124, issue 1, pp. 89-104,

1996.

[11] M. Frigo and S.G. Johnson, "The Design and Implementation of
FFTW3," Proceedings of the IEEE, vol. 93, Issue 2, pp. 216–231, 2005.

[12] Intel Corp. http://software.intel.com/en-us/intel-mkl/.

[13] CUDA CUFFT Library, Version 5.5. NVIDIA Corp., 2013.
[14] T.Sato, Y. Nakatani. "Fast micromagnetic simulation of vortex core

motion by GPU." Journal of the Magnetics Society of Japan, vol. 35,

Issue 3, pp. 163-170, 2011.
[15] A. Vansteenkiste, and B. Van de Wiele, “MuMax: a new high-

performance micromagnetic simulation tool.” Jounal of Magnetism and

Magnetic Materials, Vol. 323, Issue 21, pp. 2585-2591, 2011.
[16] S. Fu, R. Chang, S. Couture, M. Menarini, M.A. Escobar, M. Kuteifan,

M. Lubarda, D. Gabay and V. Lomakin, “Micromagnetics on high-

performance workstation and mobile computational platforms”, Journal
of Applied Physics, vol. 117, no. 17, p. 17E517, 2015.

[17] B. Van de Wiele , F. Olyslager, L. Dupre, D. De Zutter, “On the

accuracy of FFT based magnetostatic field evaluation schemes in
micromagnetic hysteresis modeling,” Journal of Magnetism and

Magnetic Materials, vol. 322, issue 4, pp. 469-476, 2010.

[18] R.D. McMichael, M.J. Donahue, D.G. Porter, J. Eicke, "Comparison of
magnetostatic field calculation methods on two-dimensional square grids

as applied to a micromagnetic standard problem," Journal of Applied
Physics, vol.85, Issue.8, pp. 5816-5818, 1999.

[19] C. Abert, G. Selke, B. Kruger, A. Drews, “A Fast Finite-Difference

Method for Micromagnetics Using the Magnetic Scalar Potential,” IEEE
Transactions on Magnetics, vol. 48, Issue 3, pp. 1105–1109, 2012.

[20] “The Object Oriented MicroMagnetic Framework (OOMMF) project at

ITL/NIST”, http://math.nist.gov/oommf/.
[21] Z. Li, S. Zhang. "Magnetization dynamics with a spin-transfer torque."

Physical Review B, vol. 68, issue. 2, pp. 024404, 2003.

[22] A.J. Newell, J. Andrew, W. Williams, and D.J. David, "A generalization
of the demagnetizing tensor for nonuniform magnetization." Journal of

Geophysical Research, Solid Earth (1978–2012) vol. 98, no. B6, pp.

9551-9555, 1993.
[23] C. Abert, E. Lukas, G. Selke, A. Drews, T. Schrefl. "Numerical methods

for the stray-field calculation: A comparison of recently developed

algorithms." Journal of Magnetism and Magnetic Materials, vol. 326, pp
176-185, 2013.

[24] J.E. Miltat, M.J. Donahue, "Numerical micromagnetics: Finite

difference methods." Handbook of magnetism and advanced magnetic
materials, 2007.

[25] K. Ramstöck, T. Leibl, and A. Hubert. "Optimizing stray field

computations in finite-element micromagnetics." Journal of magnetism
and magnetic materials, vol. 135, issue 1, pp. 97-110, 1994.

[26] Nvidia, CUDA C Programming Guide, version 5.5, 2013.

[27] M.J. Donahue, "Parallelizing a micromagnetic program for use on multi-
processor shared memory computers." IEEE Transactions on Magnetics,

vol. 45, Issue 10, pp. 3923-3925, 2009.

[28] M. Harris, “Optimizing parallel reduction in CUDA”, Nvidia Developer
Technology 2, Nvidia Corp., 2007.

[29] muMAG Micromagnetic Modeling Activity Group,

http://www.ctcms.nist.gov/~rdm/mumag.org.html.
[30] L. D. Buda, I. L. Prejbeanu, M. Demand, U. Ebels and K. Ounadjela,

“Vortex states stability in circular Co(0001) dots”, The 8th Joint

Magnetism and Magnetic Materials - Intermag Conference Proceedings,
2001.

[31] G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J.L. Erskine,

“Dynamics of field-driven domain-wall propagation in ferromagnetic
nanowires”, Nature Materials, vol. 4, pp. 741-744, 2005.

[32] S. Fu, L. Xu, V. Lomakin, A. Torabi, B. Lengsfield, "Modeling

Perpendicular Magnetic Multilayered Oxide Media with Discretized
Magnetic Layers,", Magnetics, IEEE Transactions on, vol. 51, no.11,

pp.1-4, 2015.

