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A micromagnetic solver using the Finite Difference method on a Graphics Processing Unit (GPU) and its integration with the Object 

Oriented MicroMagnetic Framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by 

the Fast Fourier Transform (FFT) are implemented. The first approach, referred to as the tensor approach, is based on the tensor 

spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar 

potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for 

magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory 

consumption and accuracy are provided. The GPU implementation of OOMMF shows up to 32x GPU-CPU speed-up. 
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I. INTRODUCTION 

ICROMAGNETIC solvers for the Landau-Lifshitz-Gilbert 

(LLG) equation are important for our ability to analyze 

and design many magnetic systems. The two main types of 

micromagnetic solvers are based on the Finite Element 

method (FEM) [1]-[4] and Finite Difference method (FDM) 

[5]-[7]. FEM is flexible for various geometries, while FDMs 

often have higher performance for relatively simple structures, 

such as thin films. In FDMs, the exchange field is typically 

evaluated via the Laplacian operator using finite differences. 

The magnetostatic field can be evaluated through several 

approaches such as the fast multipole method [8], the non-

uniform grid interpolation method [9], and the Fast Fourier 

Transform (FFT) [10]. The last approach is most commonly 

used for FDMs. The FFT reduces the computation complexity 

from 2( )O N
 
to ( log )O N N . With well-developed numerical 

libraries [11]-[13], FFTs can be applied to tensor or scalar 

potential formulations with associated advantages for each 

approach. 

The speed limitation of single-core computer systems has 

become an obstacle when solving large-scale problems in 

micromagnetics and other fields of study. Micromagnetic 

solvers for multicore and multi-CPU systems have been 

developed, but such systems have limitations in their 

performance. Massively parallel Graphics Processing Unit 

(GPU) systems have emerged offering ultra-high performance. 

A single GPU can match the computation power of a middle-

range CPU cluster, but at a much lower cost and power 

consumption. Solvers for the LLG equation on GPUs can be 

highly efficient but several important points need be addressed 

to fully exploit the computational power of GPU architectures 

[7], [14]-[16]. 

This paper introduces a scalar potential FDM approach 

using only one (forward and inverse) scalar FFT and compares 

it to a more conventional tensor FDM method. The 

computational domain is discretized into a uniform grid of 

identical rectangular brick cells and the magnetization is set 

inside each cell. The magnetostatic field evaluation is usually 

the most time and memory consuming part of the solver. The 

tensor approach, most commonly used in the micromagnetics 

community, involves superposition integrals with a tensor 

integral kernel to directly compute the magnetostatic field. 

The scalar approach introduced here involves evaluating the 

scalar potential via superposition integrals with a scalar 

integral kernel, accompanied with differential operators 

evaluated via finite differences. This approach is related to 

that of [17]-[19], but it uses scalar charges explicitly, which is 

critical to minimize the memory consumption and the number 

of FFTs, and it is applicable to 3D structures. The tensor and 

scalar potential approaches are compared in terms of their 

formulation, implementation on GPUs, accuracy, and 

performance results. Approaches for efficiently computing the 

exchange field are presented. The paper, then, demonstrates a 

GPU implementation of the widely used Object Oriented 

Micromagnetic Framework (OOMMF) [5]. The 

implementation is such that most of the user-related OOMMF 

components are unchanged and only the lower-level modules 

are ported to GPU. This allows OOMMF users to run their 

models as before but at greater speed. The GPU-accelerated 

OOMMF will be made freely available to the micromagnetic 

community at the OOMMF web site [20]. 

II. FORMULATION 

A. Landau-Lifshitz-Gilbert equation 

This paper is concerned with solving the explicit form of 

LLG equation via FDM. In FDMs, the structure of interest is 

discretized into identical brick cells (i.e., rectangular prisms). 

Each cell can have different material parameters and is 

assigned a magnetization state. The discretized LLG equation 

reads  
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where 
im  is the normalized magnetization at the center of the 

corresponding cell i,  is the gyromagnetic ratio,  is the 

Gilbert damping constant, and 
effH  is the effective field. The 

effective field is comprised of the applied (or Zeeman) field 

applH , the anisotropy field 
anisH , the exchange field 

exchH , 

and the self-magnetostatic field
msH . Additional effective field 

and torque terms in the LLG equation may be added, e.g. spin 

transfer torques [21]. 

B. Self-Magnetostatic Field 

The self-magnetostatic field can be defined as a 

superposition integral  
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Two approaches are implemented to compute the 

magnetostatic field: the tensor approach and the scalar 

potential approach. The tensor approach solves for the 

magnetostatic field directly using superpositions with the 

tensor integral kernel. The scalar potential approach uses 

scalar charges to find the scalar potential, which is used to 

compute the field. The tensor approach is most widely used in 

micromagnetics, but the scalar potential approach introduced 

here has lower computational cost and memory requirements. 

1) Tensor Approach 

In the tensor formulation the double del operator is moved 

under the integral to give 

 
'

ms

1
( ) ( )

4 | |
s

V

M dV


 
    

 
H r m r

r r
. (3) 

For numerical implementation, the magnetization is assumed 

to be uniform in each discretization cell and the field is 

obtained by averaging over the cells: 
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where 
iV  is the volume of the of cell i , and 

idS  and jdS  

represent surface integrals over the surfaces of the cells i  and 

j , respectively. The tensor ijN  provides the field generated 

by the magnetization in cell j  at cell i  and can be computed 

as outlined in [22]. 

 The direct cost of computing the magnetostatic field across 

the entire simulation via Eq. (4) is 2( )O N . However, using 

the fact that the discretization is uniform, the summation in 

Eq. (4) can be computed via a three-dimensional Fast Fourier 

Transform (3D FFT), which reduces the computational cost to 

( log )O N N . 

 The numerical procedure involves one forward FFT of each 

of the ijN  tensor components, which is done once during 

problem initialization. In each time integration step, the 

computations involve forward FFTs of the three vector m  

components, products and summations of these components 

with the Fourier image of the tensor ijN , and the inverse FFT 

of the three vector components of the resulting magnetic field.  

The number of operations in the tensor approach per time 

step is 
13 logc N N , where the constant 

1c  is related to a single 

scalar 3D FFT evaluation. The memory storage is 30N  real 

numbers. The rate of numerical convergence for decreasing 

cell size D is of 2( )O D  [23], [24]. 

2) Scalar Potential Approach 

In the scalar potential approach the field is evaluated by 

finding the volume and surface charges, computing the 

potential, and finding the field via finite differences: 

 . (5) 

Here 
M  and 

M  are volume and surface charge densities, 

respectively, and the potential is found via the scalar 

superposition integrals.  

Evaluating the volume charges is a straightforward task. On 

the other hand, evaluating the surface charges and the 

corresponding scalar potential is more involved. If the 

magnetization locations are assigned at the discretization cell 

centers, the surface charge locations are shifted by a half-cell 

with respect to the volume charges. One simple approach is to 

consider the volume and surface charges and their 

corresponding potential parts separately [25]. However, while 

allowing for reducing the error such an approach would 

require evaluating the integrals for the potential twice. The 

approach we use is to find the magnetization states at the cell 

vertices by averaging over the magnetization states defined in 

the centers of the cells surrounding the vertices, i.e., 

 
( ) ( )

n c nc
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I im m , (6)  

where for each vertex ni  the summation is over the cells ( )c ni i  

surrounding this vertex and ( )c nI i  is the total number of 

surrounding cells. The vertex magnetization values are used to 

find the surface charges at the vertices at the boundaries. 

Specifically, the surface charges are found as a sum of the 

surface charges on the surfaces surrounding the vertices (Fig. 

1): 

 
 
Fig. 1.  Retrieval of the surface charges at the vertices of cells by averaging 

over the surrounding surfaces. Three kinds of surface charges 

(
,0sq ,

,1sq ,
,2sq ) and the corresponding surface areas are illustrated. 
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where 
ni  is the boundary vertex numbers, ( )

ˆ
s ni in  is the normal 

corresponding to the surrounding boundary surface, and ( )s ni is  

is the areas of the surrounding surfaces. The areas ( )s ni is  are 

taken such that no part of any surface is accounted for more 

than once per surface vertex, e.g., if the structure is discretized 

into brick cells with the side surface area of s , then 

( ) 4
s ni is s  . The volumetric charges , nv iq  corresponding to 

the vertices are all found by finite differences. In this approach 

the volumetric and surface charges are collocated at the 

vertices, which allows lumping them together for the purpose 

of computing the scalar potential: 
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where ,n nj v jq q  at the interior vertices and , ,n n nj v j s jq q q   

at the boundary vertices. The term 
n

self

i  represents the self-

term given via the exact integration of the volume and surface 

charges corresponding to the effect of the surrounding 

surfaces and volumes on the same vertex. The computation 

can be made more accurate by considering that the charges 

nj
q  are spread into volumetric charge densities in cells 

centered at the vertex and replacing the factor 1| |
n ni j

r r  with 

the integral 1( ) | |
n n n n

jn

j j i j
V

q v dv  r r . This method is not 

employed in the numerical tests since it is not the bottleneck 

of the accuracy for the scalar potential approach. The 

summation in Eq. (8) or the integrals in Eq. (5) can be treated 

as three dimension scalar convolutions via FFT. Once the 

potentials at the vertices are found, the magnetostatic field is 

found by taking finite differences at the centers of the 

discretization cells.  

As compared to the tensor approach, the scalar potential 

approach has reduced computational cost and memory 

consumption. In particular, the number of FFTs is reduced 

from 6 to 2, and the memory consumption is reduced by about 

one third. The scalar potential approach here also shows 

similar advantages over the scalar potential approach in [17]-

[19]: the number of FFTs is reduced from 4 to 2, and the 

memory consumption is reduced to about one half. The overall 

accuracy of the scalar potential approach scales quadratically 

with respect to the discretization cell size, similar to the tensor 

approach, although as shown in Sec. IV the tensor approach is 

typically more accurate by a constant factor for the same 

discretization cell size. 

The variables in the scalar potential approach are defined on 

the cell vertices, leading to the problem size of 

( 1)( 1)( 1)x y zn n n   as compared to 
x y zn n n  in the tensor 

approach, where n  denotes the number of cells. This leads to 

noticeable difference in small-scale or reduced dimensionality 

problems, such as magnetic thin films ( 1zn  ). In the latter 

case the scalar potential can be calculated via four 2D FFTs, 

which is only slightly slower than the tensor method (with 

three 2D FFTs). In general, the scalar potential approach is 

appealing for solving large 3D problems. 

C. Other Effective Field Components 

The exchange field in the continuous form is given by 

 2
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where A is the exchange constant. We use the nearest neighbor 

finite difference rule, which for the interior cells reads as  
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where 
iJ  is a list of cells surrounding cell i , and 

ijh  is the 

distance between the center of cells. This rule is modified at 

boundary cells to maintain the boundary conditions on 

n m . The accuracy of the exchange field computation via 

Eq. (10) scales quadratically with respect to the discretization 

cell size, which is the same rate as the accuracy of the 

magnetostatic field [24]. The computation of the exchange 

field involves ( )O N  operations. Its implementation on GPUs 

requires properly addressing the GPU memory and 

computations as outlined in Sec. III. 

The uniaxial anisotropy field with the easy axis in the 

direction of a unit vector k is given by  

  ,

0 ,

2 i

anis i i i i

S i

K

M
 H m k k ,  (11)  

where K is the magneto-crystalline anisotropy energy density, 

and 
sM is the saturation magnetization. Other types of 

anisotropy fields, e.g., second order or cubic anisotropy, can 

be defined. The applied field can be simply assigned to each 

discretization cell as its value at the cell center. The applied 

and anisotropy fields involve only local operations, so their 

operation count is ( )O N , and their numerical implementation 

is trivial. 

III. CUDA IMPLEMENTATION 

The GPU implementation of both tensor and scalar 

approaches is similar in that both methods require evaluating 

superpositions via FFTs and differential operators. 

A. General Implementation Strategy 

The GPU used in this work is Nvidia GeForce GTX 690, 

which has dual GPUs and each GPU has 1536 streaming 

processors. These processors are launched by CUDA threads 

in the CUDA programming environment [26]. A group of 32 

threads executes the same instruction at a given time, which is 

called “atomic” behavior. 

A certain GPU global memory is accessible to all threads. 

For example, a single GPU device of a dual-GPU Nvidia 

GeForce GTX 690 (used in this paper) has 2 GB global 

memory and the Titan X GPU has 12 GB of global memory.  

GPU global memory is separate from CPU memory, so any 

data that needs to be operated on by the GPU has to be 

transferred from the CPU memory. The GPU global memory 

has significant access latency. This latency is minimized by 
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reducing the memory bandwidth. This can be achieved when 

reading a block of data from a continuous set of addresses in 

the memory via so called “coalesced access”.  

The GPU also has a category of “shared memory”. Shared 

memory is fast on-chip memory and it works as a memory 

pool for the threads to share intermediate data. Unlike global 

memory, shared memory has low intrinsic latency. However, 

access can be slowed by bank conflicts. In Nvidia GPUs, the 

shared memory is organized into memory banks. If there are 

two threads within one warp trying to access the same bank, 

these two accesses have to be serialized. Thus a linear 

accessing stride is preferred [26]. 

B. Evaluating the Superposition Summations 

As discussed in Sec. II, 3D FFTs are used for accelerating 

the superposition summations in the magnetostatic field 

computation. We use the Nvidia cuFFT library. The 3D real-

to-complex Fourier transform and its inverse complex-to-real 

Fourier transform are utilized to gain a good GPU-CPU speed-

up while minimizing the GPU memory consumption.  

Provided that the GPU memory is limited compared to the 

CPU memory, saving memory is important to enable large-

scale problems. This is especially important in the 

implementation of the tensor approach for the magnetostatic 

field. The GPU memory is mainly consumed by storing the 

Green’s function and magnetization or magnetic charge data 

in Fourier-transformed space. For N discretization cells, the 

storage required for the tensor approach is 30N  real numbers, 

including 24N for the 3 FFT-extended vector components of 

the magnetization and 6N  for the FFT-extended tensor; this 

storage calculation includes zero padding for the non-cyclic 

convolution, symmetries, and the fact that the computation 

space is real. The storage of the scalar potential approach in 

[17]-[19] is 27N  real numbers, including 24N for the 3 FFT-

extended vector components of the magnetization and 3N  for 

the FFT-extended Green’s function. The memory requirement 

for the scalar potential approach presented here is significantly 

lower—it is 12N  real numbers, including 8N for the FFT-

extended scalar potential, 3N for the magnetization, and N for 

the FFT-extended scalar Green’s function. The GPU memory 

cost of both the tensor approach and scalar potential approach 

can be further reduced by 1/3 or more with the FFT approach 

introduced in [27]. Such an improvement would maintain the 

fact that the scalar potential approach is more favorable in 

terms of computational speed and memory consumption. The 

GPU memory consumption is carefully managed by reusing 

GPU memory whenever possible, such that extra GPU buffer 

is rarely needed. Up to 8M cells and 4M cells can be fit into a 

2GB GPU with the scalar potential method and the tensor 

method, respectively. 

C. Differential Operators 

The divergence and gradient operators in the scalar 

potential approach for magnetostatic field computation, and 

the Laplacian operator in the computation of the exchange 

field are important differential operators. Provided that our 

implementation of the integral operators is sufficiently 

efficient, these differential operators may become the 

bottleneck if they are not efficiently implemented. 

Differential operators are evaluated based on information 

from adjacent cells or vertices. Consider the Laplacian 

operator evaluation in Eq. (10). Since we use the 6-neighbor 

exchange field model to have second order numerical 

accuracy, the magnetization data in each cell will be read 6 

times through CUDA threads launched for its neighboring 

cells. Even with coalesced memory access, the memory 

loading is still relatively heavy as compared to the 

computational workload. We take advantage of the shared 

memory on each streaming multiprocessor to avoid reading 

the magnetization data from global memory multiple times. 

Through fetching blocks of data from the global to shared 

memory, we perform all the following memory loads within 

the fast shared memory. Since the blocks of data overlap with 

each other by 1 layer of cells, data reuse is enhanced with 

larger block sizes. However, the block size is limited by the 

size of the shared memory in the GPU. Therefore, the 

optimized block size varies among different simulated 

geometries. Through the utilization of shared memory, the 

speed of the exchange field kernel on GPU is accelerated 

about 40%. A similar approach is used for computing the 

charges in the scalar potential method.  

Another option to implement the exchange field is to 

include it in the computation of the magnetostatic field by 

adding it to the integral kernel. This is possible because the 

finite difference operator can be cast in a convolutional form. 

In this approach, the computation of the exchange field does 

not add any cost on top of the magnetostatic field computation 

[15]. However, we prefer to keep the exchange field as a 

separate effective field kernel for three reasons: (i) the 

exchange field cannot be integrated with the magnetostatic 

field in the scalar potential approach, (ii) a separate exchange 

field kernel provides flexibility for implementing implicit time 

evolution methods in future OOMMF updates, and (iii) 

computing the exchange field separately adds only a small 

fraction to the overall computation time (around 10%). 

D. Time Evolver 

The time evolver is the section of code that implements the 

time evolution of the LLG equation. To avoid CPU-GPU data 

transfers on every time step, we have implemented the time 

evolver on the GPU so that the entire OOMMF simulation 

runs on the GPU. The adaptive Euler method and a fixed-time-

step evolver were implemented. The adaptive time evolver 

includes error-tracking kernels. The reduction kernel, which 

sums up and finds the minimal or maximal values of an array, 

is required for numerical error-tracking in the adaptive time 

evolver. It is not an easy kernel to implement efficiently on the 

GPU because it requires significant data communication 

between CUDA threads and it is not compute-intensive. A 

highly efficient GPU reduction implementation [28] was 

adopted. With this reduction kernel, the global memory is read 

via coalesced access to shared memory. The shared memory is 

then used for the reduction with serial addressing to avoid 

shared memory bank conflicts. In addition, synchronization 

among CUDA threads is avoided to the extent possible by 
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taking advantage of the “atomic” behavior of the GPU warps. 

This approach results in a highly efficient reduction kernel as 

demonstrated in Sec. IV. 

E. Other Important Kernels 

Evaluating the applied and anisotropy fields at the grid 

points does not require any information from other grid points. 

This workload can be fully parallelized through the “one 

thread per grid cell” approach. The computational complexity 

of the applied and anisotropy field evaluations is ( )O N . To 

reduce the global memory accessing time, magnetization 

loading was carefully ordered so that the memory reading was 

always coalesced. 

IV. TESTING RESULTS AND DISCUSSION 

 This section presents computational results of our 

implementation of the FDM solver with the scalar potential 

and tensor approaches, and also results from the OOMMF 

solver. First we validated our numerical results for both 

solvers with the µMag standard problem 4 [29] and by 

checking domain wall motion in a nanowire. Then, numerical 

accuracy and timing results were compared for the two 

methods of computing the magnetostatic field. Finally, we 

present the timing results from the OOMMF solver running on 

a CPU and a GPU. The CPU results were obtained on a 

3.5GHz Intel Xeon E5 with 6 cores, while the GPU results 

were obtained on a Nvidia Geforce GTX 690 GPU. The CPU-

GPU memory transfers in the micromagnetic solvers occur 

only before and after the simulation, and are therefore not 

included in the timing results. Unless specified, all the GPU 

results presented are from single-precision floating point 

operations with an explicit time-stepping method. 

A. Validation 

1) µMag Standard Problem 4 

The µMag standard problem 4 is designed to simulate the 

dynamic magnetization process by considering the 

magnetization reversal in a thin film having dimensions 500 

nm x 125 nm x 3 nm (see the µMag website [29], [30]). This 

problem includes exchange, self-magnetostatic, and applied 

fields, but the magneto-crystalline anisotropy is zero. The 

equilibrium S-state initial magnetization configuration is 

reversed by applying one of two fields; in Prob. 4a the applied 

field is µ0Hx = −24.6 mT, µ0Hy = 4.3 mT, µ0Hz = 0.0 mT, 

while Prob. 4b uses µ0Hx = −35.5mT, µ0Hy = −6.3 mT, µ0Hz = 

0.0 mT. The discretization size for this test was chosen to be 

2.5 nm x 2.5 nm x 3 nm. Single-precision floating point was 

used to obtain the best GPU performance. Both the tensor 

approach with adaptive Euler time evolver and scalar 

approaches were used. 

As required by the standard problem, the (x, y, z) 

components of the spatially averaged magnetization as a 

function of time from S-state to the equilibrium (the first 1 ns) 

and the snapshot of magnetization when the averaged Mx 

reaches zero for the first time are shown in Fig. 2 and Fig. 3. 

In Figs. 2 and 3 The results obtained via the tensor approach 

were indistinguishable visually with the reference case and, 

therefore, we refer to them as reference results. We can find 

that the results obtained via the scalar approach are in 

agreement with the reference results. Some of the differences 

are due to some numerical difference between the 

magnetostatic fields obtained via the tensor and scalar 

methods (see Sec. IV.B). 

 

 

2) Domain Wall Motion 

Another test example is a nanowire with size 6.4 µm x 20 

nm x 20 nm simulated with the tensor approach. A head-to-

head domain wall is initialized at the center of the nanowire. 

An external field µ0Hx = -35.5 mT is applied to the nanowire 

so that the domain wall is expected to be driven in the –x 

 
 

Fig. 3.  The dynamics of averaged magnetization and a snapshot of the 

magnetization when averaged Mx first becomes zero, as specified by µMag 
standard problem 4b. In the top figure, results from our solver are marked by 

colored symbols, while the reference results are solid black lines. 

 
Fig. 2.  The dynamics of averaged magnetization and a snapshot of the 
magnetization when averaged Mx first becomes zero, as specified by µMag 

standard problem 4a. In the top figure, the results from our solver are marked 

by colored symbols, while the reference results are solid black lines. 
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direction according to the following equation [31] 

                               
extv H






      ,                               (12) 

where 1 2 2 1 2

0( 1 2 )sA K M     is the domain wall width 

and 
extH is the magnitude of external field. We used  = 

2.211e5 m/As,  = 0.5, A = 1.3e-11 J/m, 
sM = 8e5 A/m and K 

= 1.0e5 J/m
3
, which led to an estimated velocity of 63.56 

nm/ns.  

Fig. 4 shows snapshots of the moving domain wall. 

According to our test results using the tensor approach, the 

speed of the domain wall is 69.06 nm/ns. The simulated result 

is in close agreement to the predicted results. 

B. Finite Difference Solver on GPU 

1) Accuracy Analysis 

Fig. 5 compares the accuracy of the magnetostatic field 

evaluation via the scalar potential and tensor approaches. In 

Fig. 5(a), which shows the accuracy of the magnetostatic field 

evaluation, we discretize a fixed-size cube (49 nm × 49 nm × 

49 nm) into an increasing number of brick cells. The 

magnetization state ˆ zM z  was chosen so that both volume 

and surface charge densities exist 

( 21A/mM   , 49A/mM   when 49z  nm, else 0M  ). 

For this case the magnetostatic field can be found analytically. 

The error was defined as 
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H H
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The “num” and “ana” in Eq. (13) are for “numerical method” 

and “analytical method” respectively. 

Figure 5(b) shows the accuracy of the magnetization states 

obtained via the FDM solvers with the scalar potential and 

tensor approaches for the magnetostatic field. A fixed size 

cube (100 nm × 100 nm × 100nm) was discretized into an 

increasing number of brick cells. The magnetic parameters (   

= 2.211e5 m/As,   = 0.5, A = 4.91e-11 J/m, 
sM  = 7.96e5 

A/m and K = 3.98e4 J/m3) were chosen to form a vortex 

magnetization state at equilibrium, which was sampled at 

uniformly distributed locations to evaluate the accuracy. The 

error was defined as in Eq. (13), with the magnetostatic field 

replaced with the magnetization and the analytical field 

replaced by the magnetization obtained as an “asymptotic” 

numerical solution for a very fine discretization. 

From Fig. 5 it is evident that both the scalar potential and 

tensor approaches have quadratic convergence. The tensor 

approach is more accurate by a factor because it avoids the 

approximation of charges at the boundaries and the numerical 

derivative operations in the superposition integrals. The 

reduced accuracy makes the tensor approach faster for the 

same error level. However, the overall micromagnetic solver 

error is determined not only by magnetostatics but also e.g. by 

exchange, which may have a higher error, especially for 

irregularly shaped structures. In such cases, the scalar 

potential approach is appealing because of its faster 

performance and smaller memory consumption, especially for 

large-scale problems. We further note that the magnetostatic 

and exchange fields can be calculated on different grids with 

different cell sizes. This approach allows reducing the error of 

the magnetostatic field calculation (by reducing the 

corresponding cell size) without reducing the time step related 

to the cell size used for the exchange field calculation [32]. 

2) Speed Comparison 

The timing results of computing the magnetization time 

evaluation via the GPU and CPU implementations of 

OOMMF are shown in Table I. The computation of 

magnetostatic field, anisotropy field, exchange field and 

applied field are included. The CPU OOMMF code was 

compiled with all possible optimization flags to achieve the 

maximal performance for best comparison. (Note, however, 

 
Fig. 4.  Snapshots of domain wall in the nanowire at T = 3.40 ns, T = 4.08 ns 

and T = 4.76 ns, from top to down, respectively. The length-scale is also 

shown. 

 

 
Fig. 5.  The numerical error in the GPU implementation for a) magnetostatic 

field and b) Finite Difference solver with scalar potential and tensor 
approaches as a function of the discretized grid cell size. Both methods show 

quadratic convergence. 

a) 

b) 
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that all OOMMF results are with double-precision floating 

point operations, because OOMMF does not support single-

precision operation. The GPU results in Table I are for single-

precision operations. GPU results with double-precision 

operations are presented in Table II.) We considered cubic 

magnetic domains with different number of discretized cells as 

test cases. The number of cells in each dimension ranges from 

16 to 128. One can see that the GPU OOMMF code has an 

increasing speed-up with respect to the total number of cells as 

compared to the CPU code. The increasing speed-up is 

because the GPU still has enough parallelization power for the 

problem scale we considered. The absolute performance is 

also high. In particular, for a problem with 2 million grid cells, 

compared to the time of 1322.9 ms by single-core CPU 

OOMMF, the GPU running time per single time step are 17.4 

ms and 35.2 ms with the scalar and tensor approaches, 

respectively. This corresponds to a 76.2x and 37.5x GPU-CPU 

speed-up. The CPU OOMMF running on 6 cores has the 

parallelization efficiency of 41%-55%. In particular, the for a 

problem with 2 million grid cells, the computational time of 

OOMMF on 6 cores is 401.82 ms. 

 

Fig. 6 compares the speed of the GPU version of the solver 

implemented with scalar and tensor approaches. The running 

time per time step of both methods follows ( log )O N N  trend. 

We can also observe that the speed of the scalar approach is 

higher. At the points where cuFFT has highest efficiency on 

the GPU, e.g. 8
3
, 16

3
, 32

3
, 64

3
, 128

3
, the scalar approach is 

about 2x faster. The speed-up is higher at other points because 

cuFFT is working with a lower efficiency at these points, 

which leads to a higher weight of the FFT as compared to the 

other parts of the code. Since cuFFT performs better when the 

transformed array sizes are composed of small prime factors, 

such as 2, 3, 5 and 7, we zero-pad the array to these sizes. As a 

result, a smooth timing performance is achieved (Fig. 6). The 

presented implementation allows fitting up to 4M cells in 2GB 

GPU memory. Currently GPUs with 12 GB memory are 

available, which would allow problems up to 24M cells. 

C. OOMMF on GPU 

Next we present full simulation results of OOMMF 

implemented on GPU. The magnetostatic field is computed 

using the tensor approach for all cases. The CPU results are 

double-precision because OOMMF does not support single-

precision operation. The GPU results are given for single- and 

double-precision. 

1) Single Precision Performance 

Fig. 7 shows the timing results of the OOMMF adaptive 

Euler solver using single-precision for the GPU computations 

and double-precision for the CPU computations. There is a 

difference in the simulation time of OOMMF running on CPU 

versus GPU, but both also show a step-like behavior in the 

simulation time. The steps occur when the number of cells in 

each dimension surpasses a power of two, i.e. 16, 32, 64. This 

occurs because OOMMF pads the FFT array to a power of 

two. For example, when the number of grid cells is 33, the 

FFT array is padded to 128 although a size of only 2x33-1 = 

65 is necessary for the computation. With this padding 

strategy, the FFT computation always stays at its best 

performance, whereas there are some unnecessary 

computations during the simulation. 

Fig. 7 also breaks down the time spent on the magnetostatic 

field computation on GPU. This time is very close to the 

computational time of the entire OOMMF solver on GPU 

when the total number of discretized cells is large enough. 

This reflects the fact that in our implementation kernels other 

than the magnetostatic field are subdominant. One can also 

observe that the computational time for the magnetostatic field 

has higher weight at the points with sizes that are not powers 

of two. This further verifies that the FFT computations take 

most of the computational time when the FFT array is padded 

to a power of two. 

 
 

Fig. 7.  Run time per time step for OOMMF on CPU and GPU as a function 

of the number of discretization cells N. The time for the magnetostatic field 
computation on the GPU is also included. Significant performance 

improvement is observed. The computation for the magnetostatic field takes 

most of the run time in the GPU implementation. 

 
 

Fig. 6.  Run time on the GPU per time step for the scalar potential and tensor 
methods as a function of the number of discretization cells N. The time 

scales as O(NlogN) for both approaches but the scalar potential approach is 

about two times faster.  

TABLE I 
TIMING RESULTS OF FINITE DIFFERENCE SOLVER WITH FIXED TIME STEPPING 

N 

OOMMF Finite Difference Solver 

1 core 

(ms) 

6 cores 

(ms) 

Scalar 

(ms) 

Speed

-up 

Tensor 

(ms) 

Speed

-up 

4K 1.63 0.66 0.13 12.9 0.14 11.8 

32K 14.11 5.12 0.34 41.4 0.60 23.7 

256K 155.3 48.71 2.16 71.8 4.30 36.1 

2M 1323 401.8 17.36 76.2 35.2 37.5 
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Fig. 8 shows the GPU-CPU speed-up, demonstrating the 

speed-up increase with the number of discretized cells. The 

efficiency increase is due to the fact that multiple GPU 

streaming processors can be utilized more efficiently for larger 

problems and the memory access time is hidden by the 

computations to a larger extent. In the same figure, limitations 

of speed-ups by multi-core CPU is observed. 

 

2) Double Precision Performance 

We also tested double-precision computations. The double-

precision results are shown in Table II. We find that using the 

GTX690 the double-precision performance is 2.0x – 3.5x 

slower than single-precision. It is interesting to note that the 

number of double-precision streaming processors on the 

GTX690 GPU we used is 24x fewer than single-precision 

processors. The comparatively smaller reduction of the 

double-precision performance indicates that the FFT 

computations that dominate the overall cost are memory 

access latency limited. Indeed, the memory access time for a 

given number of double-precision accesses is about twice that 

for the same number of single-precision accesses. The 

reduction in the computational speed for the double-precision 

case is closer to 1/2 as explained by memory bandwidth and 

not 1/24 as would be explained by the number of streaming 

processors. 

V. CONCLUSIONS 

This paper presents a GPU-based FDM solver for the LLG 

equation in a micromagnetic context. Two approaches for 

computing the magnetostatic field were implemented. The 

first more conventional approach uses tensor products without 

evaluating differential operators. The second approach, 

presented for the first time, proceeds in three steps: the 

computation of volume and collocated surface charges, 

evaluating the magnetic scalar potential, and finding the field 

via the gradient of the scalar potential. Both approaches use 

FFTs for computing the resulting superposition summations, 

resulting in a computational cost of ( log )O N N . Both 

approaches for computing the magnetostatic field as well as 

the computation of all other LLG solver components were 

implemented on GPU. It is demonstrated that with proper 

implementation, the computational time for the exchange field 

can be substantially lower than that for the magnetostatic field, 

which is critical for the scalar potential approach and for 

future implicit time integration schemes. 

The developed codes were integrated with the OOMMF 

simulator [5]. The integration is mostly seamless to the user in 

that the OOMMF interface remains the same and only the 

internal kernels were GPU-accelerated. The developed 

implementation shows an up to 32x GPU-CPU speed-up as 

compared to a fully optimized CPU version of OOMMF. The 

GPU version of the OOMMF code will be made available to 

the broad community of users at the OOMMF web site [20], 

providing opportunities to accelerate scientific research in 

magnetics. Future code updates will include options for 

different magnetostatic field approaches and new physics as 

well as further speed increases and increases to accessible 

problem sizes. 
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