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ABSTRACT

Confidence intervals quantify the uncertainty in an average
and offer a robust alternative to hypothesis testing. We
measure the performance of standard and bootstrapped con-
fidence intervals on a number of common IR measures using
several TREC and NTCIR collections. The performance of
an interval is its empirical coverage of the estimated statistic.
We find that both standard and bootstrapped intervals give
excellent coverage for all measures except in situations of
abysmal retrieval performance. We recommend using stan-
dard confidence intervals when statistical software is handy,
and bootstrap percentile intervals as equivalent when no sta-
tistical libraries are available.

1. INTRODUCTION

Conventional practice in information retrieval recommends
testing the statistical significance of results [4]. Hull recom-
mended use of diagnostic plots to support the distributional
assumptions of parametric tests and noted that Student’s t
test is quite robust to violations of normality.

However, null-hypothesis significance testing has a num-
ber of known problems. Statistical significance does not in-
dicate a large or user-visible effect, but rather that the result
is very likely to not be null due to sampling error. The null
hypothesis is a strawman, and a successful test against it
offers no inferential support for other comparisons. Signif-
icance is not hard to achieve in IR experiments by simply
increasing the topic set size, and topic sets in common test
collections are large enough to exhibit significant test results
for very small differences in a measure [2].

An alternative to significance testing is computing con-
fidence intervals. A confidence interval for a statistic (like
the mean of average precision scores across all topics in a
test collection) indicates the region within which we would
plausibly expect that statistic to arise in a given proportion
of repeated experiments using data from the same popula-
tion. Confidence intervals can be compared for overlap to
yield a result similar to a statistical test [1]. Many disci-
plines use confidence intervals rather than statistical tests,
and confidence intervals were recently suggested for use in
information retrieval settings by Sakai [5].

In this paper, we explore several existing methods for com-
puting confidence intervals on common measures in a num-
ber of test collection environments. We then measure the
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effectiveness of each interval method by its empirical cov-
erage probability, simulating the long-run accuracy of the
interval. Based on these results, we make recommendations
for reporting IR measures in future experiments.

2. CONFIDENCE INTERVALS

A confidence interval (CI) indicates the range in which we
would reasonably expect a statistic such as mean AP score
to occur in the long run in similar experiments. We select a
confidence level such as 95% and estimate where the mean
would fall in 95% of hypothetically repeated experiments
from the same population of topics and documents.

If the population arises from a well-known distribution,
then the confidence interval around the mean of that pop-
ulation can be derived directly from the definition of the
population distribution. For the mean of values in a stan-
dard normal distribution, a 95% confidence interval around
that mean is defined as:
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where 2(%) is the percentile of the standard normal distribu-
tion with mean 6 and standard deviation o.

Since we don’t know the mean and variance of the normal
distribution giving rise to our retrieval evaluation scores, we
can approximate it using Student’s ¢ distribution with n —1
degrees of freedom, n being the number of topics:
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where 6 is the sample mean of scores from the topics we
observe, and se is the standard error.

As an example, the run weaver? in the TREC 8 adhoc col-
lection has a mean average precision of 0.2175 with a stan-
dard error of 0.0343. The 95% standard confidence interval
using the ¢t approximation is [0.1491, 0.2859].

Two confidence intervals can be compared visually, and
this comparison can be used like a t-test. If the intervals
are for independent means (as they are in the kind of IR ex-
periments we describe here) and they just touch at the end-
points, this is roughly equivalent to a significant test result
against the null hypothesis of no difference with p =~ 0.01.
A gap indicates p < 0.01, and moderate overlap of about
half of one side of the interval indicates p =~ 0.05 [2]. Never-
theless, it should be stressed that computing two confidence
intervals is not the same as performing a t-test; the interval
defines the precision of the estimate with respect to the pop-
ulation, providing a basis for inference, and since comparing
intervals is an analysis method rather than a test, correc-
tions for multiple comparisons may not be necessary [6].



Proceedings of the 6th EVIA Workshop, December 9, 2014, Tokyo, Japan

3. COVERAGE

When we refer to a 95% CI, the “95%” value is the nom-
inal confidence. However, we may certainly ask how well
that interval actually estimates the behavior of the statis-
tic. We can do this using a resampling or bootstrap ex-
periment [7]. Bootstrapping involves taking random sam-
ples from the available observations in order to estimate
properties of the distribution from which those observations
arose [3].

Given our observations (AP scores) and their known mean,
we can draw samples from those observations, compute a
confidence interval from the sample and check if the known
mean falls within the sample’s confidence interval. If we do
this repeatedly and count the proportion of times the sam-
ple interval contains the original sample mean, we calculate
the empirical coverage of the interval.

For the weaver! run, we have fifty average precision scores
with a mean of 0.2175. Our implementation of the cover-
age computation draws 1000 samples from this run, where
each sample is fifty AP scores selected from weaver! with
replacement. From each sample, we compute its 95% con-
fidence interval. The empirical coverage is the fraction of
sample confidence intervals that contain the original MAP
score. This coverage score varies slightly due to sampling;
in our experiments, the empirical coverage for the standard
interval is 0.919, which is smaller than the nominal coverage
0.95.

4. BOOTSTRAP INTERVALS

The bootstrap method can be used to estimate the con-
fidence interval itself. This technique is especially useful
when the statistic of interest has no analytical expression
of the confidence interval. When it does (as in the case of
the mean) can serve as a check that distributional assump-
tions are reasonable. We investigate three bootstrap confi-
dence interval methods: bootstrap percentile, bootstrap-t,
and bias-corrected and accelerated (BCa) intervals [3].

The simplest bootstrap method for confidence intervals is
the percentile method. Given the original per-topic scores x
with sample mean 6, we generate a bootstrap data set * by
resampling from x with replacement, and compute the mean
0* of each bootstrap sample. Then, sort the means. Then,
the 1 — 2a percentile interval is exactly the o and 1 — «
percentiles of the bootstrap distribution. If « = 0.05 and
we take 5000 bootstrap samples, the lower endpoint of the
interval is the 250th ordered value of the bootstrap means,
and the upper endpoint is the 5,750th value. An advantage
of this method is that it requires no statistical tables or
advanced mathematical support for computing distribution
functions.

The second method follows from the definition above of
textbook studentized intervals. The motivation behind Stu-
dent’s t distribution is that means of samples from a stan-
dard normal distribution are normally distributed, but only
in the limit as the sample size approaches the population
size. For smaller samples and when the variance of the pop-
ulation is unknown, Student’s ¢ gives a better approxima-
tion. We can studentize the bootstrap in the same way. For
each bootstrap sample x; from the original per-topic scores
x, we compute both the mean #; and the standard error
sep of the sample. We then compute a Z-score for each as

7* (b) _ 6* (b)—6

se* (b)

. We then compute or look up the critical
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Figure 1: Confidence intervals and empirical cover-
age probabilities for one example run and measure.

values from the ¢ distribution with n — 1 degrees of freedom,
{0=) and {*, and apply them to the original sample mean
and standard error to get the bootstrap-t interval,
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The third method we use in this paper is the BCa method,
which stands for bias-corrected and accelerated intervals. BCa
intervals adjust the percentile method intervals with two
terms,
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® is the standard normal cumulative distribution function,
and z¢ is a percentile of the standard normal distribution.

2o is called the bias-correction term, and a is the acceler-
ation. The bias-correction is computed from the proportion
of bootstrap replicate means that are less than the original
sample mean 6. The acceleration & is more complicated and
is computed using another resampling method to estimate
the rate of change of the standard error of the sample mean.

Figure 1 shows the confidence intervals for the mean av-
erage precision of the weaver! run. The box range is the
confidence interval, and the horizontal line is placed at the
mean average precision, which is the same for all intervals,
0.2175. The widths of the intervals are all roughly the same,
with the bootstrap-t interval slightly tighter. The standard
interval is symmetric about the mean, but the bootstrapped
intervals can be asymmetric, extending farther in one direc-
tion or the other to capture the bootstrap distributions.

The empirical coverages of these intervals are shown above
the boxes. Again, the computed coverage values vary in
practice due to sampling variation. In this case the standard
and bootstrap-t intervals have equivalent coverage, but the
bootstrap percentile and BCa intervals have coverage closer
to the nominal confidence level. Following [7] one can boot-
strap a confidence interval on coverage, but we do not do
that in this work.
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Collection

topics runs
TREC 8 adhoc 50 129
TREC 2004 robust 100 83
TREC 2005 robust 50 74
TREC 2006 terabyte (adhoc task) | 150 61
TREC 2008 blog (topic rel) 150 232
TREC 2012 web 50 48
NTCIR-7 IR4QA 97 40
NTCIR-10 INTENT 100 24

Table 1: Details of test collections used in this paper.

5. EXPERIMENTS

We would like to find out which method of computing
confidence intervals gives the best empirical coverage, and
hence best predictive value, for measures used in information
retrieval research. We computed standard, bootstrap per-
centile, bootstrap ¢, and BCa intervals at the 95% level for
mean average precision (MAP), R-precision, mean reciprocal
rank, and precision at rank (10, 30, 1000) cutoffs. We com-
puted intervals for all official submitted runs for the TREC
collections listed in Table 1. These collections were selected
because they have common measures across a range of tasks,
topic set sizes, and run set sizes. Additionally, we computed
confidence intervals for nDCG, nERR, and Q measure in the
NTCIR-7 IR4QA collection; and for a-nDCG, D-nDCG, Df-
nDCG, and nERR-IA in the NTCIR-10 INTENT collection.

For each interval, we computed its empirical coverage prob-
ability using the bootstrap algorithm above. A suitable con-
fidence interval will have high coverage close to the nominal
confidence level of the interval. The scores and confidence
interval data, along with Python code to compute all four in-
tervals, is available from https://github.com/isoboroff/
confint.

6. RESULTS

The plots in figures 2 and 3 show the spread of empirical
coverage rates for the different confidence intervals that we
computed over the measures we examine across eight test
collections. The coverage spread is shown with a boxplot of
the empirical coverage of the confidence interval over all runs
in that collection. The box extends over the interquartile
distance and any points shown are outliers.

All of the interval methods have good empirical coverage
close to the nominal confidence level. The bootstrap-t in-
tervals have somewhat lower coverage, 0.9 on average across
all collections and measures, compared to 0.94 — 0.95 in the
other methods.

In the TREC 8 adhoc, TREC 2005 robust, and TREC
2006 terabyte collections, there are some coverage outliers
across all the measures. These are situations where intervals
give relatively poor coverage for some run/measure pairs.
From our inspection, this happens with runs that have scores
of zero for most topics, and a few topics with nonzero scores.
For these runs, the bootstrap sampling methods are likely
to draw topic subsets that contain only zeros, and the re-
sulting confidence intervals are zero length. The variance
of this phenomenon across measures is due to how likely
the measure is to quantize given a skewed sample of topic
scores, and how far that resulting score would be from the
true measured mean.
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Figure 2: Coverage results for different confidence
intervals on IR measures in four TREC collections.
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Figure 3: (cont.) Coverage results for two more

TREC collections and two NTCIR collections.
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7. CONCLUSION

We explored four methods for computing confidence inter-
vals on several information retrieval effectiveness measures
in a wide range of test collections. We found that all four
methods give intervals with high empirical coverage of the
true mean. The bootstrap-t method has lower coverage in
our experiments and because of this we do not recommend
its use for quantifying the uncertainty in these measures.

The bootstrap percentile method is trivially implemented
in any programming language and does not require statis-
tical library support. The standard method is easily com-
puted using textbook methods and common statistical soft-
ware. The BCa method is more complicated to implement,
and since the bootstrap percentile and standard intervals
seem to offer equivalent coverage, we do not see an advan-
tage for these measures.

When seeking to compute confidence intervals for new
measures and collections, we recommend the general ap-
proach taken in this paper, namely generating a range of
parametric and nonparametric intervals and verifying their
coverage empirically. Statisticians have formally investi-
gated the coverage properties of these measures, but its sim-
ple enough to confirm explicitly what the data shows.

Just as increasing the number of topics in a collection
can contribute to a successful significance test, using more
topics results in tighter confidence intervals. This indicates
that larger topic sets are necessary to distinguish systems
for some measures. We plan to explore this in future work.

This paper discusses computing confidence intervals for
single measures. When comparing systems with a common
test collection, confidence intervals may be directly com-
pared during data analysis. An alternative approach is to
compute an interval on the mean difference between sys-
tems. Like a paired ¢ test, intervals on the difference in
means would be smaller than intervals on the measure itself.
Working with effect sizes rather than raw measure values is
planned as future work.
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