Thermophysical Properties of Carbon Dioxide and CO$_2$-Rich Mixtures

Allan H. Harvey, Marcia L. Huber, Arno Laesecke, Chris D. Muzny, Richard A. Perkins
Applied Chemicals and Materials Division
National Institute of Standards and Technology
325 Broadway, Boulder, CO 80305, USA

Christopher W. Meyer
Sensor Science Division
National Institute of Standards and Technology
100 Bureau Drive, Gaithersburg, MD 20899, USA

DOE UTSR Workshop, Purdue, Oct. 22, 2014
Motivation

1. Thermophysical properties of CO\(_2\) for design and optimization of sCO2 power cycles

2. For Carbon Capture and Sequestration (CCS), need to know phase behavior of water in compressed CO\(_2\) (condensation in pipelines, etc. leads to corrosion)
Outline

1. CO₂ Thermodynamic Properties (review)
2. CO₂ Thermal Conductivity: Measurements and Correlation
3. CO₂ Viscosity Correlation
4. Dew Point of Water in Compressed CO₂
5. Future Possibilities
Thermodynamic Properties of Pure CO₂

• Compute using Equation of State (EOS) $p(\rho,T)$
 [state-of-the-art: Helmholtz energy as $f(\rho,T)$]

• NOTE: EOS also needed for transport correlations [to
 get $\rho(p,T)$ and for critical enhancement]

• Old engineering EOS (Peng-Robinson, etc.) not accurate
 enough, especially around critical point.

• For well-measured fluid, can fit substance-specific
 reference EOS.

• Early standard EOS: Ely et al. (NBS), 1987.

Span-Wagner EOS for CO$_2$

- Up to 1100 K (1520 °F) and 800 MPa (116,000 psia)
- Extrapolation believed to be good beyond those limits
- Uncertainty similar to that of best data, should be negligible for engineering purposes
- Implemented in NIST REFPROP (and other software)
- Should be the benchmark for work with pure CO$_2$
- If too slow for an application (CFD), can pre-generate grids for spline interpolation
Thermal Conductivity of Pure CO$_2$

- Current correlation from 1990, based on older data and used older (1987) EOS.
- Uncertainties around 5% at many conditions (1% or 2% in some well-measured regions). Uncertainty due to limitations of existing data, especially at high T and/or P and near the critical point.

- Our plan:
 1. Take new data with lower uncertainty over wide range of conditions (Done)
 2. New correlation, using new data, Span-Wagner EOS, and theoretical guidance (in progress)
Thermal Conductivity Measurements

- Carbon dioxide sample purity of 99.994 %
- Subcritical thermal conductivity measured for liquid and vapor along 220, 237, 252, 267, 282, and 296 K isotherms
- Supercritical thermal conductivity measured along 310, 314, 324, 340, 370, 404, 453, 503, 553, 603, 652, 702, and 752 K isotherms
- Transient hot-wire measurements for liquid phase and for gas phase at pressures from 0.5 MPa to saturation or 69 MPa
- Steady-state hot-wire measurements for gas phase at pressures below 1 MPa
- Uncertainty is 0.5 % for liquid and compressed gas, increasing to 3 % for gas below 1 MPa and in the critical region
Schematic of Hot-Wire Bridge

- Main Power Relay
- Dummy Load Resistance
- Power Supply
- Hot-Wire Bridge
- Imbalance Voltage
- R1, R2, R3, R4
- +V/2, −V/2
- Ground
- Long Hot Wire
- Short Hot Wire
- Cell Wall
Working Equation (transient hot wire)

\[\Delta T_{id} = \frac{q}{4\pi\lambda} \left[\ln(t) + \ln\left(\frac{4a}{r_0^2 C}\right) \right] = \Delta T_w + \sum_{i=1}^{10} \delta T_i \]

\[\Delta T_{id} \quad = \quad \text{ideal temperature rise (line heat source)} \quad (K) \]
\[q \quad = \quad \text{applied power per unit length of wire} \quad (W/m) \]
\[\lambda \quad = \quad \text{thermal conductivity} \quad (W/(m\cdot K)) \]
\[t \quad = \quad \text{elapsed time} \quad (s) \]
\[a \quad = \quad \text{thermal diffusivity} \quad (m^2/s) \]
\[r_0 \quad = \quad \text{wire radius} \quad (m) \]
\[C \quad = \quad \text{exponential of Euler’s Constant} \quad (1.781…) \]
\[\Delta T_w \quad = \quad \text{measured temperature rise} \quad (K) \]
\[\delta T_i \quad = \quad \text{corrections for non-ideal heat transfer} \quad (K) \]
Working Equation (Steady-State Hot Wire)

\[\lambda = \frac{q}{2\pi(T_1 - T_2)} \left[\ln \left(\frac{r_2}{r_1} \right) \right] \]

\(\lambda \) = thermal conductivity (W/(m·K))

\(q \) = applied power per unit length of wire (W/m)

\(r_1 \) = wire radius (m)

\(r_2 \) = concentric cavity radius (m)

\(T_1 \) = measured wire temperature (K)

\(T_2 \) = cell temperature (K)
Thermal Conductivity (Subcritical Vapor)

\[
\frac{\lambda}{\text{W.m}^{-1}\text{K}^{-1}} = \frac{\rho}{\text{kg.m}^{-3}}
\]

- 220 K
- 237 K
- 252 K
- 267 K
- 282 K
- 296 K

REFPROP
Thermal Conductivity: Liquid & Supercritical Phases

Graph showing the relationship between thermal conductivity (λ) in W m$^{-1}$ K$^{-1}$ and density (ρ) in kg m$^{-3}$ for different temperatures (314 K, 404 K, 503 K, 603 K, 702 K). The graph includes a line labeled "REFPROP" and another labeled "Critical Density."
Thermal Conductivity Critical Enhancement

- Saturation
- 1% Enhancement
- 5% Enhancement
- 10% Enhancement
- 25% Enhancement

P/P_c vs T/T_c graph

Critical Point
Thermal Conductivity Correlation

- Thermal conductivity expressed as sum of 3 contributions

\[\lambda(\rho, T) = \lambda_0(T) + \lambda_1(\rho, T) + \lambda_2(\rho, T) \]

- Zero-Density contribution
- Critical enhancement
- Residual contribution
Zero-Density Limit

• Experimental data at density < 50 kg/m³ considered for regression
• Data sorted into “bins” of ~ 3 K; thermal conductivity corrected to nominal temperature

\[\lambda_{\text{corr}}(T_{\text{nom}}, \rho) = \lambda_{\text{exp}}(T_{\text{exp}}, \rho) + [\lambda(T_{\text{nom}}, \rho) - \lambda(T_{\text{exp}}, \rho)]_{\text{calc}} \]

• Weighted linear least squares regression used to extrapolate to zero density resulting in set of experimental \(\lambda_0(T_r) \)
 o Results: 47 isotherms from 219 K to 751 K
• Experimental data supplemented by selected theoretical results from the work of Hellmann (2014)
 o Uncertainty of 1 % for 300 K < \(T < 700 \) K, increasing to 2 % at 150 K and 2000 K.
 o Added 8 points between 150 K and 215 K, 14 points between 760 K and 2000 K
Zero-Density Limit, continued

- Zero-density values fit to functional form:

\[
\lambda_0(T_r) = \frac{\sqrt{T_r}}{\sum_{k=0}^{J} \frac{L_k}{T_r^k}}
\]

\[T_r = T/T_c\]
Residual Contribution

- Identify primary data set and assess their uncertainties
- Fit primary experimental data \textit{simultaneously} for residual and critical enhancement terms.
- Use equation of state of Span and Wagner to provide density and thermodynamic properties required in enhancement term
- Theoretical guidance \textit{not} available for the residual contribution
- Use empirical form

\[
\lambda_1(T_r, \rho_r) = \sum_{j=1}^{m} (B_{1,j} + B_{2,j}T_r) \rho_r^j
\]
Selected (preliminary) Results

Supercritical Fluid, $T > 500$ K

![Graph showing data points for supercritical fluid at temperatures above 500 K. The graph includes data from various sources: Bakulin 1976, LeNeindre 1972, LeNeindre 1973, Perkins HTSS, Perkins HTTR, and Tarzimanov 1978.](image-url)
Selected (preliminary) Results

Significant improvements in representation of liquid phase
Our new data represented to \(\sim 1\% \)
Viscosity of Pure CO$_2$

- Uncertainties 4-5 % at many conditions (1 % or 2 % in some well-measured regions)
- Since 1998, some new data available, and better theoretical understanding (esp. for dilute gas)
- Our plan: New correlation, using new data, Span-Wagner EOS, and theoretical guidance
p,T-Distribution of Selected Viscosity Data
Viscosity Formulation

\[\eta(T, \rho) = \eta_0(T) + \Delta \eta(T, \rho) + \Delta \eta_c(T, \rho) \]

Correlation for \(\rho \to 0 \) by Bock et al. (2002)

\[\eta_0(T) = 0.021357 \sqrt{MT} / \sigma^2 \exp \left[\sum_{i=0}^{4} a_i (\ln T^*)^i \right] \]

with \(T^* = T / (\varepsilon / k_B) \)

Residual part, Symbolic regression (preliminary)

\[\Delta \eta(T, \rho) = \eta_{tL} \left[a_1 \rho_r + a_2 \rho_r^{a_3} + (a_4 \rho_r)^{a_5} / T_r \right] \]

\[\eta_{tL} = \frac{\rho_{tL}^{2/3} \sqrt{R T_t}}{M^{1/6} N_A^{1/3}} \]
Viscosity Data and Correlation for $\rho \to 0$
Data Representation by Preliminary Correlation
For carbon capture and sequestration (CCS), compressed CO$_2$ in pipelines will contain some H$_2$O.

Condensation of H$_2$O undesirable (corrosion).

Need to be able to predict dew point temperature as a function of pressure and H$_2$O concentration (calculate how much drying of CO$_2$ needed).

Thermodynamically, this mainly depends on the deviation of the mixture from ideal-gas behavior.
Thermodynamics: Virial Expansion

\[\frac{p}{\rho RT} = 1 + B(T)\rho + C(T)\rho^2 + \ldots \]

\[B(T) = \sum_i \sum_j x_i x_j B_{ij}(T) \]

- \(B_{ij} \) (second virial coefficient) rigorously related to pair potential, \(C_{ijk} \) adds 3–body effects, etc.
- Can calculate all thermodynamic properties (if density low enough); use as EOS boundary condition.
Gas/H$_2$O Second Virial Coefficient

• **Experiments** are difficult (high-T PVT data, or measure (small!) solubility of water or ice in carrier gas at low T).

• **Theory** (collaboration with Richard Wheatley, U. of Nottingham): *ab initio* quantum mechanics \rightarrow quantitatively accurate potential for pairs of small molecules, then calculate B_{12} rigorously (uncertainties from unc. in potential).
Water-Nitrogen $B_{12}(T)$ from theory
Water-CO$_2$ $B_{12}(T)$ from theory

Temperature (K)

B_{12}/ (cm3 mol$^{-1}$)

Wheatley & Harvey (2011)
Coan & King (1971)
Vanderzee & Haas (1981)
Patel et al. (1987)
Bamberger et al. (2000)
Valtz et al. (2004)
Dew-Point Data

• **Problem:** Uncertainties from theory are larger than desired, reducing uncertainty with more computations not currently feasible. Also, theory loses accuracy at higher pressures.

• **Solution:** Better measurements in key temperature range, using NIST dew-point apparatus developed for humidity standards.
Dew-Point Experiments

1. Saturation system for compressed CO₂ (generates saturated gas at P and T_{DP})
2. Gravimetric hygrometer (designed for humidity standards) measures amounts of H₂O and CO₂ in saturated gas

NIST has only working metrology-class gravimetric hygrometer in the world [C.W. Meyer et al., Metrologia 47, 192 (2010)].

Expected uncertainty for $T_{DP}(x,P)$: 0.05 °C.
Saturation System (for p to 5 MPa)

- Pressure Controller
- Heat Exchanger
- Bath
- Saturator
- Pre-Saturator
- Final Saturator
- CO$_2$ Cylinder
- SPRT
- Pressure Gauge
- Output
NIST Gravimetric Hygrometer

\[r = \frac{m_w}{m_g} \]

- \(r \): mass of water vapor
- \(m_w \): mass of water vapor
- \(m_g \): mass of carrier gas

1) Separate moisture from dry gas (using desiccants)
2) Determine \(m_w \) by measuring increase in mass of water collection system
3) Determine \(m_g \) from volume, temperature and pressure measurements by use of pure-component EOS
Water Collection Tubes

- Desiccant used: Magnesium Perchlorate
- Mass measurements (10 μg resolution) made before and after water collection. ~70 μg uncertainty in water mass measurement.
Prover Tube Gas Collection System

- Pressure and temperature measurements determine gas density (CO₂ equation of state well known)
- Laser interferometer measures piston displacement to determine gas volume, therefore total moles of gas
- Alternating pistons allow continuous gas flow
Experimental Program

- Report saturated vapor composition (dew point) and enhancement factor (ratio of H_2O partial pressure in vapor phase to pure H_2O vapor pressure)
- 6 Temperatures from 10 °C to 80 °C
- Pressures up to 5 MPa (higher-pressure saturator could be built in the future)
- Avoid conditions where gas hydrates form (low T, high p)
- Use data to fit mixture EOS, also back out B_{12} with good precision and rough estimates for C_{122}
Preliminary Results

Water Vapor Enhancement Factor in CO₂

![Graph showing water vapor enhancement factor as a function of pressure for different temperatures.]

Key:
- △ 10.0 °C
- ■ 21.7 °C
- ● 30.0 °C
- × 40.0 °C
- □ 60.0 °C
- ○ 80.0 °C
Preliminary Results for \(B_{12} \)

\[
B_{12} / (\text{cm}^3 \text{ mol}^{-1})
\]

Temperature (K)

Wheatley & Harvey (2011)
Coan & King (1971)
Vanderzee & Haas (1981)
Patel et al. (1987)
Bamberger et al. (2000)
Valtz et al. (2004)
This work
Summary of Dew-Point Results

- H$_2$O dew point in CO$_2$ measured more accurately than previous data.
- Preliminary results agree very well with theory for B_{12} (Wheatley & Harvey, 2011), but have smaller uncertainty.
- Data should be useful for optimizing mixture models for design of CCS processes.
Possible Future Work

• Thermophysical properties of mixed working fluids for supercritical CO$_2$ power cycles.
• Extension of dew-point experiments to higher pressures.
• Materials compatibility for CO$_2$-rich fluids (for pipelines and power cycles).