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Abstract 

Green’s function gives the response of a system to a probe and is a powerful technique 

for solving a variety of problems in science and engineering.  We describes a multiscale 

Green’s function method for modeling nanomaterials at different length and time scales. 

In the static case the method can seamlessly link the length scales from atomistic to 

continuum in an integrated formalism. In time-dependent problems, this method can 

simulate physical processes in a multipartcle system over a wide range extending from 

femto seconds to micro seconds within a reasonable CPU time. For illustration, the 

method is applied to simulate elastic deformation and propagation of elastic waves in 

two-dimensional graphene.  
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1.  Introduction 

Fabrication and analysis of nanostructures and new nanomaterials have been growing 

exponentially over the last few years (see, for example,  the papers quoted in this 

volume). However, to advance the nanotechnology in a systematic way, it is absolutely 

vital that robust and reliable mathematical models are available. In fact, materials 

modeling has now emerged as a new branch of knowledge that has tremendous scientific 

and industrial applications.  These models help in the visualization of materials and 

understanding of the physical processes at length and time scales that are difficult and 

indeed expensive to explore by direct experimental methods. The models are therefore 

useful for scientific research as well as pedagogical purposes. Moreover, they are 

indispensable tools for industry for designing and testing of new materials because they 

can provide quick and inexpensive answers to ‘what if’ type questions and can give an 

estimate of the lifetime and reliability of the materials for different applications and under 

different operating conditions. Modeling supported by data is the basis of the materials 

genome initiative, a major new research initiative being pursued in the USA.  

In this chapter we describe a Green’s function (GF) method for multiscale modeling 

nanomaterials and nanostructures. Green’s function is a well-established technique for 

solving a variety of problems in science and engineering [1], [2]. The application of the 

GFs  to phonons in a lattice is given in the excellent treatise by Maradudin et. al [3]. The 

static GF, which is the zero frequency limit of the phonon GF, has been described in an 

earlier paper [4]. The GF techniques have been extensively applied in the continuum 

model of a solid as described in a very good book by Ting [5]. These techniques have 
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contributed to the multiscale Green’s function (MSGF) method described in this chapter 

for the nanomaterials.  

The plan of the chapter is as follows: The present section, Sec. 1 is the introduction. The 

rest of this section gives the need for multiscale modeling –  for bridging length and time 

scales, and for its application to graphene. The basic GF technique is described in Sec. 2. 

A review of the lattice model of a solid as relevant for lattice GFs is given in Sec. 3 and 

the lattice statics Green’s function (LSGF) is described in Sec. 4. The MSGF method for 

length and time scales are described in Sec. 5 and 6 respectively. Finally, the application 

of the MSGF method for graphene is presented in Sec. 7.  

1.1 Need for bridging length scales 

The challenges associated with the modeling of nanostructures arise due to the fact that 

the material system usually contains “defects” at various length scales: (i) the core region 

of the nanostructure and lattice defects  at the atomistic scale(sub-nano regime) where 

nonlinear effects may be important, (ii) free surfaces in the nanostructure and its interface 

with the host solid and the region of the host solid around the nanostructure (nano 

regime), and (iii) free surfaces and interfaces (with thin films) in the host solid (macro 

regime). It is therefore necessary that a model for nanostructures links not only the nano 

and macro regimes but also the sub-nano regime. It has to be an integrated model in 

which each length scale seamlessly merges into the next scale. 

Lattice defects can be classified in two broad categories- potential defects and structural 

defects. The potential defects are those that can be simulated by a change in the potential 
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energy or the Hamiltonian of the crystal. Examples of potential defects are point defects 

such as vacancies and interstitials or their aggregates such as voids, precipitates, hillocks, 

etc.  In contrast, the structural defects or extended defects consist of  major 

rearrangements of atoms in the lattice and cannot be represented by a change in the 

crystal Hamiltonian alone. Examples of structural defects are dislocations, free surfaces, 

interfaces, etc. These defects affect the mechanical properties of all solids but are 

especially important for nanostructures because they can strongly degrade the functional 

performance of the nanostructure in many cases, for example, its interaction with light. 

For ordinary macroscopic solids lattice defects can be adequately modeled by using the 

anisotropic continuum theory which can be used to calculate the stresses and strains in 

the solid. These two are the most important measurable parameters that characterize the 

mechanical behavior of a solid and are mutually related by the elastic constants of the 

solid. It is also necessary to account for piezoelectric effects and electric polarization 

effects associated with certain materials; this can be done by using the continuum model. 

Free surfaces and interfaces play a relatively large role in nanomaterials as compared to 

their role in ordinary solids. Many physical properties of nanomaterials and 

nanostructures in thin films depend upon the strains near the free surfaces and the 

interfaces caused by point defects. For example, the formation of quantum dots and their 

arrays depends strongly upon the strains near the free surface of the substrate. Optical and 

electronic properties of quantum dots are also sensitive to strains. Electromigration in 

copper interconnects and the efficiency of GaN and other III-V LED devices depend 

upon the concentration profile of vacancies and other point defects. 
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It is generally accepted that the continuum theory is inadequate to describe the response 

of a crystal lattice close to a defect [4]. This region in which the continuum model is not 

valid extends from sub-nano to a few nanometers. It then becomes necessary to model the 

discrete atomistic structure of the lattice in this region. On the other hand the continuum 

theory is adequate to model the response of the solid at sufficiently large distances from 

the defects and is also adequate to model free surfaces and interfaces that are not too 

close to the point defects. At the macroscopic level the continuum theory is a highly 

developed theory that has been very successful in modeling the macroscopic response of 

solids and for interpreting measurements of stresses and strains that are essentially the 

continuum model parameters. The problem is that the physical processes that determine 

the macroscopic stresses and strains, in particular, the energetics of interatomic 

displacements, occur at the atomistic or sub-nano scales . Hence a multiscale model is 

needed to relate the physical processes to macroscopic parameters for the purpose of 

design and interpretation of measurements that are sensitive to atomic-scale phenomena. 

Further, for reasons described earlier, the atomistic arrangements inside and around a 

nanostructure (its interface with the host solid) and near the point defects have to be 

modeled by using a discrete-lattice theory. On the other hand, those regions of the free 

surfaces and the interfaces which are distant from the nanostructures and the point defects 

can be modeled by using the continuum theory. In fact for structural applications the 

continuum theory may be preferable for modeling such regions. A pure lattice-theory 

model of the macroscopic free surfaces and interfaces of the host lattice is difficult 

because of uncertain factors like surface reconstruction, presence of impurities, and a lack 

of knowledge of reliable interatomic potentials near the surface [6]. The interatomic 
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potentials which may be reliable in the bulk of the solid may not be valid at or close to 

the surface because of factors like electronic rearrangements. On the other hand, the 

continuum model gives at least a reasonably correct macroscopic representation of 

structural defects  [7], which has been verified experimentally over the last several years. 

Moreover, measurements of the strains are mostly made at or near a free surface. Since 

strain is a continuum parameter, it is convenient to represent the free surfaces of the host 

solid away from the defect by using the continuum model.  

1.2 Bridging the time scales 

A large class of materials modeling problems deal with the simulation and understanding 

of time dependent processes.  Examples are diffusion, phonon transport, thermal 

conduction, crack propagation, radiation damage, and many more.  Presently various 

non-silicon materials such as carbon nanotubes and graphene are being considered as 

adjuncts or additions to the CMOS technology and other semiconductor applications. A 

huge amount of work has been published on temporal processes in conventional materials 

but not so much on graphene, nanotubes, and other nanomaterials.  This is partly because 

the continuum model and the analytical and semi-analytical formulae work reasonably 

well for bulk materials but not for nanomaterials that must be simulated at the atomistic 

scales.  

To appreciate the problem of temporal modeling and the need to bridge the time scales, 

we consider radiation damage in solids as an example. Because of the obvious difficulties 

associated with the purely experimental investigation of the nanoscale phenomena, even 
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more so when radiation damage is involved, it is necessary to develop reliable 

mathematical models for the effect of radiation on the new nanomaterials.  

Radiation damage often results in lattice displacements (see, for example, [8]) that lead to 

the creation of vacancies and interstitials (primary event). These lattice changes can 

agglomerate into clusters and, under certain conditions, form voids and 

hillocks/dislocations (secondary and higher events). They may also get distributed 

randomly to make the crystal amorphous. The charge distribution in the crystal is 

strongly perturbed due to the lattice defects, which may cause the device to fail. In order 

to model the reliability and performance of the device when exposed to high-energy 

radiation, it is, therefore, necessary to track the movement of vacancies and interstitials 

and determine the conditions under which they aggregate or settle randomly.  A precise 

knowledge of atomic locations is also needed for calculating charge distribution and other 

processes such as transport of hydrogen in graphene and nanotubes that are important for 

estimating the reliability of those devices.    

Radiation damage is just one of many physical processes where bridging time scales is 

crucial. The most challenging aspect of modeling these processes is that the primary 

event occurs over femtoseconds, whereas the accumulation of defects and other 

secondary events occur over several nano or even microseconds. It is therefore necessary 

to develop models that can bridge the time scales from femto to microseconds. 

Atomistic modeling of materials and physical processes is presently done by use of 

molecular dynamics (MD) and its variations [9].  A major stumbling block in classical as 

well as ab initio MD is the extremely limited time scale. Convergence requirements limit 
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the time step in MD analysis to a few femtoseconds in most materials. In some idealized 

cases, the time step can be extended to at most a few picoseconds by using very elegant 

techniques [10]. Still it would require 106-109 time integration steps in the conventional 

MD analysis to model material processes at time scales of practical interest (nano to 

micro seconds). This is a formidable task even for modern computers but has been a 

long-sought goal. We will describe here a mathematical technique that is a hybrid of 

causal GF and MD, which can accelerate the temporal convergence by several orders of 

magnitude [11].  

1.3 Application 

We will illustrate the MSGF method by applying it to graphene for bridging the length 

scales as well as the temporal scales. Graphene is a 2D hexagonal lattice of covalently 

bonded carbon atoms [12]. It is widely regarded as having a strong potential for 

application in revolutionary new devices [13]. In order to develop graphene-based 

devices, an important requirement is to control the local curvature of graphene films. This 

would require an understanding of the mechanical deflection of graphene and to develop 

techniques for its multiscale modeling ranging from the atomistic to the device level.  

It has been only a few years since graphene was invented/discovered.  In spite of its short 

history, so much of work has been published on graphene that it is not treated as a new 

material anymore. In fact many more 2D materials have now been identified that may be 

even more promising than graphene like boron nitride, molybdenum disulfide, silicene, 

phosphorene, etc. [14, 15] .  It is apparent that a whole new class of materials is emerging 

that have the potential to revolutionize the materials industry. Still, graphene remains the 



9 
 

main prototype of this new class of materials because of the simplicity of its structure and 

very fascinating electronic and mechanical properties. The importance of understanding 

graphene therefore cannot be overemphasized.  

The MSGF can be used to model the mechanical strength of graphene, which should be 

useful for developing, for example, flexible electronic devices. The temporal modeling is 

useful for developing new methods of characterizing graphene samples and 

understanding processes like propagation of ripples [16] that play an important role in the 

stability of graphene.  

2. Green’s function method- the basics 

In any scientific measurement process, we measure the response of a system to a probe. 

The mathematical function that defines the response is called the response function and is 

a characteristic of the system. We need to know the physical process that determines this 

function.  The physical process is represented in terms of an equation or a mathematical 

relationship which may be an algebraic, differential, or an integral equation. The equation 

needs to be solved to obtain the response function. In general the objective of modeling is 

to calculate this function which will enable us to predict the response of the system to a 

probe.  Green’s function is essentially the response function of a system. Obviously the 

choice of the GF would depend upon the nature of the response that we are trying to 

model. 

We can write symbolically the following equation, which is the master equation for all 

scientific measurements: 
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Response = Response function * Probe  (1) 

The so called forward problem is when the response function and the probe are known 

and we want to find the response. The inverse problem is when the probe and the 

response are known and we want to obtain the response function. 

For example, consider a simple experiment on a particle of mass m attached at the end of 

a massless spring of spring constant . The spring is attached to a wall as shown in Fig. 1. 

We apply a force f on the spring and measure u, the displacement of the end of the spring. 

The physical process that gives the displacement of the point A is expressed in the terms 

of the following simple equation  

f =  u,   (2) 

In this example, the applied force f is the probe and u, the displacement of the particle, is 

the response of the spring. In this one-dimensional (1D) case, f,u, and ϕ are all scalars. In 

general they are vectors and tensors. In this chapter our interest is mainly in the 

calculation of the particle displacements in a multiparticle system. The displacement 

field, that gives the displacement of each particle, is the most important field quantity for 

modeling of elastic and thermal characteristics of a material system. Most of the elastic 

and thermal parameters of a material such as stress and strain, heat diffusion etc., require 

calculation of the particle displacements.  

We can write the solution of Eq. (2) as 
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u  =  G f  (3) 

where G = 1/. In Eq. (3) G is the GF that gives the response of the spring to the applied 

probe f. Notice that G is independent of both f and u and is solely a characteristic of the 

spring. If we know G, we can obtain displacement for any applied force.  

The GF obtained above is the static GF in contrast to the dynamic GF that is used for 

time dependent problems. Now let us expand our example to include the time 

dependence. Suppose the probe is an applied force that is a function of time t. The 

equation of equilibrium in this case is given by 

 

u + M 2u/t2 = f (t),    (4) 

 

where m is the mass of the particle A. We write Eq. (4) in the form of a linear operator 

equation as follows: 

 

Pu(t) = f(t)    (5) 

 

where the operator P is defined as  
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P = ( + m 2/t2)  (6) 

 

The formal solution of Eq. (5) is given by 

u (t) = P-1 f = Gf(t)  (7) 

where 

G = P-1   (8) 

 

We identify G as the GF that is the inverse of the operator P. It is the particular solution 

of the equation  

 

  Pt G(t,t’) = δ (t-t’),   (9) 

 

where t’ is also a time variable in the same space as t but is independent of t, and δ (t) is 

the Dirac delta function which is zero for a nonzero argument.  The delta function in Eq. 

(9) is defined by the following well-known integral relationship: 
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Z(t) =  δ (t-t’) Z(t’) dt’,     (10) 

 

where Z(t) is any arbitrary but integrable function of t and the integration is over all t-

space. The subscript at P in Eq. (9) indicates that it operates only on the variable t and not 

on t’.  We can now write the formal solution given by Eq. (7) in the following general 

form 

u(t) =  G (t-t’) f(t’) dt’,    (11) 

where the integration is over all t-space.  It can be easily verified that Eq. (11) is the 

solution of Eq. (5) by substitution and using Eqs. (9) and (10). Note that we have written 

G as a function of single argument t-t’ which assumes that G depends upon t and t’ only 

through their difference.  

Now we derive an expression for G. We note that it is an operator so we need a 

representation for G. Let us try the Fourier representation and express all quantities in 

terms of their Fourier transforms defined as follows: 

 

f(t)  =  (1/2π)f(ω) exp(ιwt) dω,    (12) 
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u (t) = (1/2π)u(ω) exp(ιwt) dω,    (13) 

and 

G(t) = (1/2π)G(ω) exp(ιwt) dω,    (14) 

where ω is the variable conjugate to t and ι = ◊-1. The integration in Eqs (12)-(14) is 

over all ω space. We now specify that both the variables t and ω range from - to +.  

The delta function has the following Fourier representation [2] 

 

 (t) (1 / .2 () )exp wt d 




      (15) 

 

From Eq. (15) we can obtain the inversion relationship for the Fourier transforms. For 

example 

 

G( ) ((  .))G t exp wt d 




      (16) 
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Similar relationships can be derived for the Fourier transforms of other variables. 

Substitution of Eq. (14)  in Eq. (9) and using Eqs. (6) and (15) gives the following result 

G(ω) = 1/M(ω0
2-ω2),      (17) 

where 

ω0  = ◊(/M),       (18) 

is the natural frequency of the spring. Equation (17) gives the desired GF in the frequency 

space. The GF in the time space can then be calculated from Eq. (14). Finally, we obtain 

by using Eqs. (11) - (15) 

u(ω) = G(ω)f(ω).     (19) 

Equation (19) along with Eq. (13) yields Eq.  (11), the desired particular solution of Eq. 

(5). The solution can also be written directly from Eq.  (19) by taking the following 

convolution 

u(t) =  G (t-t’) f(t’) dt’.     (20) 

In a general case, the temporal GF G(t) is to be defined as retarded or advanced GF for 

positive and negative times to account for causality [3]. The causal GFs that we consider 

in this chapter, must obey the causality condition that the response cannot precede the 

cause. Hence 
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G(t) = 0 for t < 0.   (21) 

Since G(ω) has a singularity on the real axis (Eq. (17)), one has to take an appropriate 

contour for the integration to ensure causality.  

For positive values, the variable ω can be identified as the frequency. In Eqs. (12)- (14) 

we have used the same symbol for the functions and its Fourier transform for notational 

brevity, the identifying feature being the functional dependence on t or ω. 

The above derivation gives the basic features of the GF method. Although the example 

was rather trivial, it does bring out some of the main characteristics of the GF that are 

summarized below: 

i. GF is an operator being the inverse of an operator as defined by Eq. (9). We need a 

representation for calculating the GF. Fourier representation is one such representation 

and other representations are possible. The choice of a representation depends upon the 

physical conditions to be simulated. 

ii. GF is linear so the solutions are additive as can be verified from Eq. (20). It is, 

however,  possible to include nonlinear effects in the probe. 

iii. GF has poles at the natural frequencies of the system. These poles can be identified as 

resonances. 

iv. GF is a characteristic of the system and is independent of the probe. 
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v. Once the GF is known, it can be used to obtain the solution (or the response) to any 

probe by using Eq. (20). 

vi. The static GF is the zero frequency limit of the dynamic GF and is independent of the 

mass of the particles. 

3. Discrete lattice model of a solid 

In this section we describe the main features of the lattice model of a solid that accounts 

for its discrete atomistic structure explicitly. We will include only those features that are 

directly relevant to the GF method. For details please consult any text book on solid state 

physics or lattice dynamics such as the excellent classics by Kittel [17], Born and Huang 

[18], or Maradudin et al. [3]. In this section we shall consider only a general 3D lattice. 

The special case of two-dimensional  (2D) graphene will be discussed in Sec. 5.  

An important input to all the lattice calculations is the interatomic potential. All atomistic 

defect calculations are based upon minimizing the free enthalpy of the solid that consists 

of an ionic part which gives the elastic contribution, and an electronic part. These are, of 

course, coupled. When a defect such as a vacancy is introduced in the lattice, the relaxed 

configuration depends upon the charge states of the defect [19]. The same applies to 

extended defects like a quantum dot or a quantum well. A rigorous calculation of the 

relaxed configuration would require an ab intio quantum mechanical modeling of the 

coupled ion-electron system in the whole lattice. Such calculations are limited to very 

small model crystallites consisting of only a few hundred atoms [20]. At the other 

extreme is the continuum model, in which the electron effects are totally neglected. The 
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continuum model reproduces the bulk mechanical characteristics of the defect and has 

been extensively used for a long time. It has the advantage of computational convenience 

but obviously has a limited validity.  

The intermediate approach is to use models in which the effect of the electrons is 

included in an empirical and phenomenological manner by using an effective interatomic 

potential [21, 22], [23], [24, 25] [26] . This approximation has been has been used in 

almost all lattice-statics/lattice-dynamics/molecular-dynamics defect calculations. See, 

for example, the review article by Stangl et al. [27] and the monographs by Harrison [28] 

and Bimberg et al. [29] for application of phenomenological potentials to 

semiconductors. Such model potentials have been used in many atomistic calculations in 

Ge/Si and other semiconductors using MD. See, for example, the papers by Makeev and 

Madhukar [30], and Swadener et al. [31], which also give other references.  

As discussed by Harrison [28], the inherent assumptions in all these calculations are: (i) 

tight binding approximation which allows us to treat atoms as separate entities, (ii) 

adiabatic approximation which assumes that the electrons respond adiabatically to the 

ionic displacements, and (iii) the independent electron approximation. These assumptions 

result into a separation of the crystal Hamiltonian into a part that corresponds to ionic 

interactions and another part that gives the energy of the electrons. Of course the ionic 

interactions are also affected by the electrons. This contribution is included in a 

parametric model potential. Such models [21, 22, 24, 25, 31-34], [26] give correct values 

for many observable parameters including the energy of vacancies and other defects, 

which lends credence to the validity of the model potential. The potentials [21, 22, 24, 25, 
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32] to which we refer in this paper belong to this class of models. Some other potentials 

are available in the literature [33, 35-39], which all have comparable advantages. We 

have used the Tersoff potential for some applications to graphene because of its 

computational convenience. It reproduces the correct energy of the defect and has been 

widely used in defect calculations on covalent solids. 

The GF method described in this chapter is based upon the Born von Karman (BvK) 

model [3, 17, 18] of a lattice. This model fully accounts for the discrete structure of the 

lattice. The basic assumptions of the BvK model are: 

i. Adiabatic approximation: As described above, it implies that the contribution of the 

electrons to the crystal Hamiltonian is additive. We therefore consider only the ionic 

interactions in the lattice model. The electronic energies can be calculated separately and 

added to the ionic energies to obtain the total energy of the crystal. 

ii. Cyclic boundary conditions: The whole crystal is assumed to be divided in identical 

supercells. This enables us to neglect the surface effects in a model lattice. This is, 

therefore, applicable only to large crystals in the regions far away from the surfaces. This 

assumption is obviously not valid for nanocrystals. In such cases the surfaces are 

modeled as defects in the ideal BvK lattice.  

iii. Harmonic approximation: The atomic displacements are assumed to be small enough 

such that their cubic and higher powers can be neglected in potential energy of the 

crystal.  
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iv. Equilibrium and stability: The crystal is assumed to be in equilibrium in the absence 

of external forces so there is no net force at any atom in the lattice.  

The  lattice structure of a solid can be described in terms of its primitive real-space lattice 

vectors of the Bravais lattice and the corresponding reciprocal lattice vectors (see, for 

example, [17]). The primitive lattice vectors define a unit cell. Each unit cell may contain 

one or more atoms. We consider a 3D lattice containing N unit cells with each unit cell 

containing p atoms. So the total number of degrees of freedom in our model are 3pN 

corresponding to 3 coordinates of pN atoms.  

We assume a Cartesian frame of reference with the axes parallel to the crystallographic 

axes and its origin at a lattice site. The Z axis is assumed to be normal to the plane of the 

paper. We denote the lattice sites of the origin of the unit cells by the indices L, L’, etc., 

and the Cartesian coordinates x,y, and z by indices , , , etc..  The atoms inside each 

unit cell are labeled by the index . The atom at the origin of each unit cell is labeled as 

=0 and other atoms as =1,2, p-1. In all the cases considered in this paper p is either 1 or 

2. For example for a monoatomic Bravais lattice such as fcc Cu or Au, p=1. For 

semiconductors such as Si or Ge that have a diamond lattice structure, and for 2D 

graphene, p=2.   

We can label each atom by the index doublet L and write its position vector as follows: 

 

R(L) = R(L0) + r(),     (22) 
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where R(L) is the position vector of the origin of the Lth unit cell and r() is the position 

vector of the th atom relative to the origin of its own unit cell. At equilibrium each atom 

is assumed to be located at its lattice site and the energy at equilibrium is assumed to be 

zero.  

We now introduce lattice distortion and denote the displacement of the atom L by 

u(L). In time dependent problems, u(Lκ) will also depend upon t and its Fourier 

transform over time will depend upon the frequency ω. However, for brevity of notation, 

we will not show the explicit dependence of  u(Lκ) on t or ω unless locally needed to 

avoid confusion.  

We write the potential energy of the lattice in the form of a Taylor series as follows 

W=-L f(L)u(L)+(1/2)LL’’ (L,L’’)u(L)u(L’’), (23) 

where -f  and ϕ are  the Taylor coefficients. They are defined by 

 

f(L) = -W/u(L),      (24) 

and 
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(L,L’’)W/u(L)u(L’),    (25) 

where the derivatives are evaluated at zero displacement. To clarify the notation, f(L) is 

a 3D vector which denotes the force at the atom L.  Its three Cartesian components are 

denoted by f(L) where α =x,y, or z. Similarly (L,L’’) is a  3x3 matrix which is 

called the force- constant matrix between atoms at L and L’’.  Its 9 elements are 

denoted by (L,L’’) for  α, β = x,y, or z.  

The force and the force-constant matrices can be obtained from the interatomic potential 

[3]. These matrices must obey the constraints imposed by the translation and rotation 

symmetry of the lattice, which determine the number of independent elements in the 

matrices [3].  In addition, the equilibrium condition of zero net force on the solid imposes 

the following constraints: 

i. For all  

Lf(L) = 0,      (26) 

ii. For all L, , , and  

L’’ (L,L’’) = 0.     (27) 

At equilibrium W must be minimum. By minimizing the right-hand side (RHS) of Eq. 

(23), we obtain the following equation for the displacements 
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f(L) = L’’ (L,L’’)u(L’’),    (28) 

Equation (28) is the generalized form of Eq. (2) for a many particle system in which f is 

the probe and u is the response. For time dependent problems, the Newtonian term has to 

be added to Eq. (28) as in Eq. (4). For a finite system one can write a set of coupled 

equations for pN atoms as in Eq. (28) and solve it numerically for all u. This is essentially 

the technique used in MD. As mentioned in Sec. 1, solving Eq. (28) directly may become 

computationally too expensive for large N – say a few million or billion atoms. As we 

shall see in this section, the GF method offers a computationally efficient method for 

solving Eq. (28).  

Using Eqs. (23) and (28) we can write the equation of motion for the atom Lκ for a 

perfect lattice as follows:   

 2 2

L ' '

f LM(L ) u(L ) / t ( ) ( ) (L ), L ' ' u L ' ' .  
 

           (29) 

For modeling of phonons, we take the Fourier transform of the displacement over time as 

given in Eq. (13). This will make u(Lκ) a function of the frequency ω, which can be 

identified as the phonon frequency. The nonlinear terms in the potential, if any, will add 

terms on the right of Eq. (29) that will depend upon u. Alternatively, the nonlinear effects 

can be included by treating f and ϕ as functions of u and hence t. In the harmonic 

approximation, f and ϕ are independent of u and t. Further, in the harmonic 

approximation phonon frequencies are independent of f. If f is nonzero, the equilibrium 
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location of atoms will change and they will simply vibrate about their new position of 

equilibrium.  

We define the discrete Fourier transform over space of the displacement vector as follows 

u(L) = (1/N)k u(k;) exp[k.R(Lκ)],  (30) 

where k is a vector in the reciprocal space of the lattice. The number of allowed k vectors 

in the first Brillouin zone is N equal to the number of unit cells in a supercell. For 

notational brevity, we follow the common convention and denote the matrix in real space 

and the Fourier (reciprocal) space by the same symbol. The distinguishing feature 

between the two is that the functional dependence on k will be shown explicitly for a 

matrix in reciprocal space. An equation similar to Eq. (30) can be written down for the 

force vector defined by Eq. (24). Instead of Eq. (30), an alternative definition of the 

Fourier transform has also been used in the literature in which R(L0) is used in the 

exponent instead of R(L). The two definitions differ only by a phase factor exp[ιk.r()].  

Because of the orthogonality of the reciprocal and the direct-lattice vectors, the vector k 

can take only certain allowed discrete values [3, 4] and can be confined to the first 

Brillouin zone of the lattice. The inverse Fourier transform of Eq. (30) can be obtained by 

using the following relation [3] 

 

L exp[ιk.R(L0)] = δd(k),    (31) 
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and 

k exp[ιk.R(L0)] = δd(L),    (32) 

where δd is the discrete analogue of the Dirac delta function defined by Eq. (10). It is 0 

for non zero value of the argument and equal to N if the argument is 0. Strictly speaking 

the sum in Eq. (31) is equal to N not just for k=0 but whenever k is equal to a reciprocal 

lattice vector. However, in this paper, we will be concerned with only those cases when k 

is restricted to the first Brillouin zone of the lattice. 

Using Eqs. (31) and (32) in Eq. (30), we find the following equation for the inverse 

transform of the displacement vector 

u(k;) = L u(L) exp[-k.R(L)].  (33) 

Note the absence of the factor (1/N) in Eq. (33) as compared to Eq. (30) .   

The above equations are valid for a perfect lattice as well as a lattice containing defects. 

A perfect infinite lattice or a perfect lattice with periodic boundary conditions has full 

translation symmetry. This combined with the condition of invariance of the potential 

energy against rigid body translations  leads to the following additional constraints [3]:  

i. The Taylor coefficient f(L) = 0 for all L. Physically this condition implies that for a 

perfect lattice in equilibrium without any external forces, there cannot be any force on 
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any lattice site. Of course if external forces are applied, then f can represent the applied 

external forces.  

ii. The force-constant matrix (L,L’’) depends upon L and L’ only through their 

difference. This is a consequence of translation symmetry. Since all atoms on one 

sublattice are equivalent, any atom can be chosen as the origin. The force-constant matrix 

can therefore be labeled by a single index as (0,L’) that gives the force constant 

between any two atoms for which the unit cells are separated by R(L’) - R(0). This 

enables us to write the force-constant matrix in terms of its discrete Fourier transform as 

defined below: 

(0,L’) = (1/N)k (k;,’) exp[k.{R(L’)-R(0)}],  (34) 

where  (k) is the Fourier transform of the force-constant matrix. Its matrix elements are 

(k;,’). As in Eq. (33), the inverse transform of (k) is given by ϕ 

(k;,’) = L (0,L’) exp[-k.{R(L’)-R(0)}].   (35) 

Since  and ’ can take p values, the matrix (k) is 3px3p  square matrix. By 

generalizing the derivation given in Sec. 2 to 3d many particle systems, it can be shown 

that the phonon frequencies ω are the eigenvalues of the dynamical matrix [3, 18] defined 

in terms of (k) as follows  
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D(k;,’) = (MκMκ’)
-1/2 (k;,’),    (36) 

where Mκ is the mass of the atom . In view of the translation symmetry in a perfect 

lattice for which Eq. (36) is valid, Mκ is independent of L. The dynamical matrix D(k) is 

used extensively in the lattice dynamical calculations. Lattice statics for static problems is 

independent of the atomic masses. The relevant matrix for lattice statics is (k). [40] 

The matrices D(k) and  (k) have 3p eigenvalues. From Eq. (36), their eigen values are 

related through a factor depending upon the atomic masses.  By using Eq. (27) it can be 

shown that the determinant of D(k) is zero at k=0 and at least three of its eigenvalues 

vary as k2 near k =0 for a normal 3D solid. These are called the acoustic modes. The 

remaining 3p-3 eigenvalues are, in general, finite at k=0 and are called the optical modes. 

4. Lattice statics Green’s function 

First we consider a perfect lattice. The phonon GF of the lattice is defined as  follows [3]: 

G(k,ω2) = [-ω2I +  (k)]-1,   (37) 

where I is the unit matrix. In steady state the displacements are independent of time so 

the steady state corresponds to ω=0. We define the lattice statics Green’s function 

(LSGF) as the zero frequency limit of the phonon GF [4].   In the Fourier k-space, the 

LSGF is given by  : 

G(k) = [(k)]-1.       (38) 
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Since the determinant of (k) is zero at k=0, G(k) is singular at k=0, which is consistent 

with the discussion in Sec. 2. Analogous to (k), the matrix elements of the 3px3p matrix 

G(k) are labeled as G(k;,’). The LSGF in the real space is defined by its inverse 

Fourier transform in analogy with Eq. (34) as follows 

G(0,L’) = (1/N)k G(k;,’) exp[k.{R(L’)-R(0)}]. (39) 

Equation (39) provides a convenient and computationally efficient semi-analytic 

representation for calculation of the LSGF. For a solid containing N atoms, it requires 

inversion of only 3p x 3p matrices. In most cases of practical interest as considered here, 

p is a small number, i.e. 1 or 2.  

For real space calculations, it is convenient to define a 3pNx3pN vector space in terms of 

the three coordinates of the pN atoms. In this representation we denote the real-space 

force constant and the GF matrices by Φ and G respectively. These matrices will be 

3pNx3pN square matrices and their matrix elements are (L,L’’) and G(L,L’’) 

respectively. Similarly, in the same vector space, we define 3pN dimensional column 

matrices U and F for the displacement and the force vectors with matrix elements U(L) 

and f(L) respectively. Using Eq. (38) it can be easily shown that in this representation  

G =  Φ-1.       (40) 

In the same representation, Eq. (23) can be written in the following compact form   Γ  
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W = -F.U + (1/2)UT..U     (41) 

If defects are introduced in the lattice then its translation symmetry is broken. 

Consequently, even in the absence of any external force,  f becomes non zero for at least 

some L and κ  [4]. Further, ϕ and G depend upon L and L’ separately and not merely on 

their difference [3]. Hence it is not possible to define their Fourier transform in terms of a 

single vector k as in Eqs. (34) and (39). In such cases, the defect LSGF, the GF for the 

lattice with defects, is calculated as follows [4], [41]. 

We denote the force constant matrix for the defective lattice and the defect LSGF by  Φ*  

and Γ* respectively.  In the representation of lattice sites, Γ* and  are 3Np x 3Np 

matrices. The GF is formally given by as in Eq. (40) 

 

Γ*  =  [       

 

We write  

,  (43)      

where denotes the change in the force-constant matrix  caused by the 

defect(s)From  (40),  (42) and (43), we obtain the following equation  
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Γ* = Γ + Γ Γ*.   (44)    

Equation (44) is the Dyson equation for calculation of the defect GF.  This equation 

shows that in order to calculate G*, we have to first define a reference state and calculate 

G and the corresponding ΔΦ. The change ΔΦ is obtained by the interatomic potential 

between the defect and the host atoms. In quantum mechanical problems, ΔΦ gives the 

change in the system Hamiltonian. Methods for solving the Dyson equation have been 

discussed in detail in references [3] [4, 42]. 

In the present case we have taken the perfect lattice with full translation symmetry as the 

reference state. In practice, any state can be chosen to be the reference state for which G 

can be calculated and ΔΦ can be conveniently defined [42-44].   Further, although G for 

the reference state is calculated using the harmonic or the linear approximation, ΔΦ can 

include non-linear terms [45, 46]. 

For a defect lattice,  Eq. (41) is modified as follows:  

W* = -F.U + (1/2) UT.*.U,    (45) 

where U and F are now identified as the displacement and the force vectors in the defect 

lattice. The solution of Eq.  (45) gives the displacement field: 

 

U = Γ* F.      (46) 
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A very useful form of Eq. (46) has been derived in [4]. It is shown that Eq. (46) is exactly 

equivalent to  

U = Γ F*,       (47)     

where 

F* = F + U.    (48)    

Equations (46) or (47)  are the main equations of the LSGF method. They are used to 

calculate the atomic displacements, which give the lattice distortion or the lattice 

relaxation  caused by the defect. In this method the defect is characterized by ΔΦ. 

Equation (46) gives the displacement in terms of the defect GF and the forces on the 

atoms at the lattice sites of the reference state. Equation  (47), the alternative form of Eq. 

(46), gives the displacement in terms of the perfect-lattice GF and an effective force 

denoted by F*, as defined by Eq. (48).  

The effective force F* is called the Kanzaki force [4]. From Eq. (48), we can identify it 

as the force due to the defect on the relaxed lattice sites, in contrast to F, that denotes the 

force at the original lattice site.  

5. Multiscale Green’s function  

The LSGF method provides a convenient and computationally efficient mathematical 

technique for multiscale modeling of nanomaterials. We need multiscale models of 

nanomaterials for bridging length scales as well as temporal scales. In this section we will 
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discuss only the length scales. The problem of multi-time scales will be discussed in the 

next section.  

The coupling between the lattice and the continuum models in the GF method is achieved 

by using the Born’s method of long waves [18]. This method establishes the 

correspondence between the force constants and the elastic constants. Using the Born’s 

method, it has been shown in [4] that the LSGF varies as 1/R for large R and reduces 

asymptotically to the continuum GF (CGF) for 3D lattices. The case of 2D graphene is, 

however, different and will be described in Sec. 7.  

To establish the correspondence between the LSGF and CGF, we make R(Lκ) and k 

continuous variables and replace the summation in Eq. (39) by integration over the 

reciprocal space. In conformity with the continuum model notation, we replace R(Lκ) by 

the continuous variable x for large R(Lκ), and the discrete wave vector k by the 

continuous wave vector q, which spans all space from -∞ to ∞.  

Gx (/2)3G(q) exp (ιq.x) dq,  (49)  

We obtain the asymptotic limit of G(x)  by using Duffin’s lemma (see, for example, [4]).  

In the limit x   , smaller values of q make more significant contribution to the integral 

in Eq. (49). Accordingly, we expand G(q) in powers of q as given below. 

Limq0 G(q)  =    Limq0 [ϕq   (50) 

For low values of q, ϕ(q) has the following behavior [3] for the acoustic modes 
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 ϕ(q) ~ O(q2) + O(q4).     (51) 

Using the expansion given in Eq. (51), in Eq. (50), we can carry out the integral in Eq. 

(49) term by term which gives the asymptotic expansion of the LSGF.  

The leading term in qas q→0 is the q2 term. This term is identical to the Christoffel 

matrix in the continuum model.  Keeping only this term, we  can show [4] that  

Limq0 G(q)  =    Limq0 [ϕq =  [q   

where  is the well-known Christoffel matrix of the continuum model [5], which is 

defined in terms of c, the elastic constant tensor, as follows  

 ij (q) = cikjl qk ql,           (53)  

and i,j,k,l are Cartesian components in the continuum model. Summation over repeated 

Cartesian indices is assumed. The CGF Gc(q)  in q space is defined as the Christoffel 

matrix. Thus we get  

Limq0 G(q)   =  Gc(q)   = [qO(1/q2)   (54) 

In view of Eq. (54), the integrand in Eq (49) has a 1/q2 singularity at q = 0. It is integrated 

out in 3D because the integral element in 3D is proportional to q2. It can be shown [4] 

that the integral is proportional to 1/|x| which is the continuum GF in 3D. The subscript c 
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on G in Eq. (49) denotes the GF for the continuum model. It has been extensively used in 

modeling solids using the boundary element analysis. It provides a powerful technique 

for solving the boundary value problems for solids with and without defects. See, for 

example, [47], [48], [49], [50].  

It is important to note that the asymptotic relation given by Eq.  (49) is valid only for the 

perfect lattice GF G. It is generally not valid for the defect GF G* defined by  Eq. (44) 

unless the term containing  is negligible [51]. In most cases of practical interest it is 

not negligible. For example, in the case of a vacancy  = . Moreover, if the effect of 

 is negligible, then the information about the defect is lost. Calculations in this region 

are therefore not of interest for studying the properties of the defect. 

The advantage of writing the displacement in the form of Eq. (47) is now obvious. We 

can use the full power of continuum mechanics by using the continuum-model GF for G 

where needed while retaining the discrete lattice effects and all the characteristics of the 

defect exactly in F*.   

Equation (47) is the master equation of our MSGF method. The displacement of the atom 

at Lκ, which is a matrix element of U is given by  β 

u(L) = L’’ G(L,L’’)f*(L’’)   (55) 

where  f* is the Kanzaki force given which is the corresponding matrix element of F* 

given by Eq. (48) . For Lκ close to the defect we use G to be the LSGF, whereas for large 
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values  |R(Lκ) – R(L’κ’)| we choose G = Gc, the CGF. Since Gc is the asymptotic limit 

of G for large   |R(Lκ) – R(L’κ’)| , the linkage is seamless.   

It must be emphasized that even with Gc, we  use the discrete lattice value of f* (or F*) as 

defined by Eq. (48) near the defect in terms of ΔΦ.    The Kanzaki force retains all the 

characteristics of the defect through ΔΦ. Thus  Eq. (55) is the multiscale representation 

of the lattice distortion or strains due to the defect since it relates the discrete lattice 

parameters through f* to the continuum model parameters through Gc.  

The advantage of writing the displacement in the form of Eq. (47) is now obvious. We 

can use the full power of the continuum mechanics by using the continuum-model GF Gc 

for G where needed, while retaining the discrete lattice effects and all the characteristics 

of the defect exactly in F*.   

Further, nonlinear effects associated with the defect host interaction can be incorporated 

in the MSGF method through ΔΦ while still retaining the linear simplicity of the GFs. A 

convenient technique for including nonlinear effects is to calculate the atomic 

displacements in a zone near the defect by using MD and use these values to calculate f*.  

MD accounts for the nonlinear forces. The displacements outside the zone are then 

calculated by using Eq. (55) by using LSGF or CGF for G depending upon the value of 

|R(Lκ) – R(L’κ’)| . This method has been applied to model realistic size Ge quantum 

dots in Si and Au islands in Cu [45, 46]. A somewhat different version of the MSGF 

method has been applied to quantum nanostructures in semiconductors  [44, 52].  
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One important advantage of the MSGF method is that the continuum parameters like 

strain and stresses are uniquely defined in this method.  In a pure discrete lattice model, 

the atomic displacements are defined at discrete lattice points. In many applications, one 

needs elastic strains which are also measured experimentally. Strain is a continuum 

parameter defined in terms of the derivatives of the displacement field and cannot be 

defined as such for discrete values of the displacements. In practice, one has to assume 

some averaging scheme in order to define the derivatives. Although elegant techniques 

[53] have been developed for this purpose, the averaging process is not unique and 

requires careful attention to various conservation laws. In the MSGF method, the variable 

x in Eq. (49) is continuous so the derivatives of u with respect to x are uniquely defined.  

6. Causal Green’s function for temporal modeling 

We have developed a new temporal modeling technique [11] by incorporating causal GF 

in MD. We refer to this method as the GFMD method.  At least in some idealized cases, 

it has been shown that GFMD can model time scales over 6-9 orders of magnitude at the 

atomistic level.  So far this technique has been applied to only a few idealized cases but it 

clearly has the potential for a much wider and realistic applications in all physical, 

chemical, and biological systems where MD is used. 

In a certain class of problems in which atoms vibrate about an equilibrium site, GFMD 

gives exact results in the harmonic approximation. Even for nonlinear vibrational 

problems, GFMD has been shown to accelerate the MD by  up to 8 orders of magnitude 

[11]. This enables modeling processes up to microseconds. Examples of such problems 

are phonon transport, thermal conduction etc.. In problems involving itinerant atoms, 
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such as diffusion or crystal growth, GFMD should also be able to accelerate MD 

substantially.  

The GFMD method has been described in detail in [11]. Here we will only quote the 

highlights of the technique given in [11]. Consider the equation of motion for the atom 

Lκ as given by Eq. (29).  The symbols in this section will have a slightly more general 

meaning.  The time dependent displacement and the velocity vectors of the atom Lκ will 

be denoted by u(Lκ,t) and c(Lκ,t), respectively.  We assume that at time t=0, u(Lκ,0)  and 

f (Lκ) denote the values of displacement and force for the atom Lκ. As in classical MD, 

we need to solve the following equation for u:  

2

L 2

L'

u (L , t) W
M

t u (L , t)

f (L ) (L ,L' ')u (L' ', t) f (L ),






   


  
 

  

         
   (56)  

where Δf  represents higher than harmonic terms in the expansion of W.  This term 

depends upon u and hence on t.  

As in Eq. (45), we define 3pN dimensional vectors U(t), C(t), F, and F(t), and 3pN x 

3pN matrices   and D.   However, in the present time dependent case, for brevity of 

notation, their elements are denoted by the corresponding lower case quantities weighted 

with atomic masses. For example, the (,Lκ) element of U(t) is ◊MLκu(Lκ,t) and of F is 

(1/◊MLκ)f(Lκ). The formal solution of equation (56) in the operator form is then given 

by 
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12

eff2
(t) (t)

t


 

   
U I D F , (57) 

where I is the unit matrix, M is a diagonal matrix with atomic masses as its elements,   

D = M-1/2M-1/2,    (58) 

and 

Feff (t) = F + F(t).   (59)     

The inverse operator in Eq.  (57) is the GF. We solve Eq.  (57) by using Laplace 

transform that gives the causal GF [3], which is 0 for t<0, to ensure causality. Using the 

numerical approximation Feff (t) = F, we obtain the exact result [11]:  

U(t) = VU*(t),                (60) 

Where  (proof error: add negative sign in the first term )  

* * 2 * *
i i i i 0i i i 0i iU (t) (F / E )[cos(E t) H(t)] (C / E )sin(E t) U cos(E t)= - + + , (61) 

U*, F*, C0*, and U0*  are VT(U, F, C0, and U0 ) respectively, V is the matrix of 

eigenvectors of D, Ei (i=1..3pN) is an eigenvalue of D, and H(t) is the Heaviside step 

function, which is 0 for t <0, and 1 for t>0.  
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Equation (60) can be used as stated for phonons in systems where the harmonic 

approximation is valid but the analytical lattice dynamics cannot be used due to lack of 

translational symmetry. To account for anharmonic effects in a multiparticle system, we 

use  the MD type iterative approach. We expand W locally at each time step.  We 

calculate U(t) from equation (60) in steps of  t. We keep t small so that F(t) is 

negligible at each step. This introduces a constraint on the step size Δt, which is much 

less severe than that in the conventional MD.  

The convergence of GFMD is much faster than MD because in the basic MD only the 

first term on the right of Eq. (56)  is retained whereas GFMD retains up to quadratic 

terms in the expansion of W, and the GFMD gives an exact solution of the temporal 

equation for any value of t. The constraint on t or Δt arises because of the necessity to 

keep ΔF(t) small. The basic MD can of course be accelerated somewhat by using more 

refined numerical techniques that partly account for the second order terms by iteration. 

We can compare the convergence of the GFMD and the MD techniques by estimating the 

errors in the two techniques as follows. We denote the displacement variable in the 

expansion of W in Eq. (23)  by ξ. Suppose the actual normalized value of a displacement 

is unity which we calculate in SMD  steps in the MD and SGFMD in the GFMD technique.  

Then ξMD =  1/SMD for MD and 1/SGFMD for GFMD.   In the conventional MD second and 

higher powers of  ξMD are neglected so the error in each step is of the order of (ξMD)2. The 

corresponding error in GFMD is (ξGFMD)3. For MD to be at least as accurate as GFMD, 

we must have 



40 
 

 (ξMD)2  =  (ξGFMD)3 
  

    (62) 

or  

SMD ≈ (SGFMD )3/2.    (63) 

Considering that in practical cases SGFMD ≈ 106, Eq. (63) shows that number of iterations 

needed in the conventional MD to attain the same accuracy as the GFMD technique is 

more by a factor of 1000.  

Finally, we remark that the GFMD technique is particularly efficient for modeling of 

phonons and elastic properties of nanomaterials. This is because it is specifically the u2 

term in Eq. (23) that defines the phonon and elastic response of a solid [3]. This term is 

exactly included in the GFMD technique. In the conventional MD the u2 term is included 

only through additional iterations that is a relatively inefficient process.  

7. Application to 2D graphene 

As we have seen in Sec 5, a multiscale model of a solid can be constructed if we can 

establish a correspondence between its lattice and continuum GFs. Such a 

correspondence has been rigorously proved for normal 3D solids in Sec 5. Unfortunately, 

that does not apply to 2D graphene or any solid that is strictly 2D. The reason for this 

discrepancy will be apparent from Eq. (49). The integration volume element is 

proportional to q2 in 3D, which integrates out the q2 singularity at q=0. The 

corresponding element in 2D is proportional to q. Hence the singularity in the integral 
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survives as 1/q. This is responsible for the long-range logarithmic behavior of the GF and 

size effect in the static as well as dynamic response of graphene [54, 55]. 

However, it is still possible to set up a correspondence between lattice and continuum 

models for a 2D graphene film in deflection mode. The displacement field in the 

deflection mode is normal to the plane of graphene. For small displacements, in the 

harmonic approximation, the out-of-plane displacements are not coupled with the in-

plane displacements. Consequently, the GF for the deflection mode is a scalar. Moreover, 

the q2 term  in Eq. (51) is identically zero [55] in the deflection mode for graphene.  

Hence the leading term in ϕ(q) in the deflection mode is O(q4) for graphene.   

The integral for the O(q4) term in Eq. (49) can be carried out analytically. This shows that 

the continuum limit of the LSGF of a graphene sheet in the deflection mode,  corresponds 

to the GF for an elastically stable Kirchhoff plate but not the GF for two-dimensional 

Christoffel equations. This correspondence demonstrates the mechanical stability of 

graphene in deflection and is necessary for relating its mechanical parameters to its lattice 

parameters.  Using this approach, an explicit expression has been derived  [55-57] for 

relating the continuum flexural rigidity to the force constants of graphene. This 

relationship can be used to measure flexural rigidity of graphene directly from 

experimentally observed phonon dispersion. However, a more rigorous calculation or 

measurement of rigidity will involve some more contributions  

Now we consider the force constants for graphene that are the most important parameters 

for the lattice GFs. For multiscale applications, force constants give the elastic constants. 

This relation ensures that the LSGF is seamlessly linked with the CGF. The force 
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constants can be obtained from the interatomic potential. A popular choice of potential 

for graphene is the Tersoff potential and its variations. This potential, which is essentially 

a bond-order potential, extends up to second neighbor distances. It is convenient for MD 

simulations and has been used for calculations of strains, friction, and many other 

physical characteristics of graphene [58-64] and many more solids.   

The second neighbor Tersoff type potential does not seem to be a good choice for phonon 

calculations and those properties of graphene that are sensitive to details of the phonon 

spectrum.  An optimized Tersoff Brenner potential seems to be more suitable for 

modeling of phonons in graphene [65]. The main point is that to obtain a good fit 

between the calculated and the experimental values of the phonon dispersion for 

graphene, interatomic interactions have to be included at least up to fourth neighbor 

atoms [66], [56, 57, 67, 68].  However, if only the harmonic GF is needed, a detailed 

knowledge of the potential is not required. The force constants can be obtained by 

parametric fitting [3] of the calculated phonon dispersion with measured values.  

For phonon applications, we give the 3 x 3 force constant matrices for graphene as 

defined by Eq. (25).  A graphene unit cell contains two non-equivalent atoms C1 and C2 

as shown in Fig. 2. This figure also shows the nearest neighbors of C1 and C2.  All these 

atoms are in the plane of the graphene lattice. The force constants depend upon the choice 

of coordinate axes, which is shown in Fig. 2. The Z axis is assumed to be normal to the 

plane of graphene.  

We denote a lattice site Lκ by its 2D  position vector l, where lx and ly are its x and y 

coordinates, respectively.  The coordinates of the atoms are given in the units of a where 
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2a = distance between C1 and A2  is the lattice constant.  The Z-coordinate of each atom 

in Fig 2 is zero. The force constant matrices (0;l) between C1 and its first four nearest 

neighbors identified by different values of l are written below. The form of the matrices is 

most general for the hexagonal symmetry of graphene: 

 

1

1

1

0 0

(0;2s,0) 0 0

0 0

æ öa ÷ç ÷ç ÷ç ÷=- bç ÷ç ÷÷ç ÷ç dè ø

 ,    (64) 

 

2 2

2 2

2

0

(0;0,2) 0

0 0



æ öa g ÷ç ÷ç ÷ç=- -g b ÷ç ÷ç ÷ç ÷÷ç dè ø

,    (65) 

 

3

3

3

0 0

(0; 4s,0) 0 0

0 0

æ öa ÷ç ÷ç ÷ç ÷- =- bç ÷ç ÷÷ç ÷ç dè ø

 ,    (66) 
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4 4

4 4

4

0

(0;5s,1) 0

0 0

æ öa g ÷ç ÷ç ÷ç ÷=- g bç ÷ç ÷÷ç ÷ç dè ø

 ,    (67) 

                                                  

where s=1/3. The form of the force constant matrices between C1 and other atoms in the 

same neighbor shell and also between C2 and its neighbors can be obtained from 

symmetry. Note that the matrix elements corresponding to xz and yz are 0 for each atom. 

This shows that the displacements in the plane of the lattice are not coupled with the out-

of-plane displacements. This decoupling is valid only in the harmonic approximation.  

In the multiscale method based upon Born’s method of long waves as described in Sec 5, 

we compare the phonon frequencies with the frequencies given by the Christoffel matrix 

as in Eq. (51). This yields the following relations between the force constants and the 

elastic constants for graphene: 

c11 = Cu [21
2 + 1(62 + 193 + 354 + 545 + 61 + 182 + 33 + 334 + 185 +  

                     143 4) + 2(63 + 124 + 61 +63 + 124) + 83
2 + 3(834 + 545 + 

                     91 + 182 + 243 + 214 + 185 + 23 4) + 534
2 + 4(1085 + 511 + 

          362 + 273 + 1624 + 365 + 403 4) + 5(541 + 543+1084) + 

           1(182 + 93 + 94 + 185 + 63 4) + 2(183 + 364) + 3(454 +  
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          185 + 183 4) + 94
2 + 364 5 – 12 4

2],     (68) 

c66 = Cu [21
2 + 1(62 + 193 + 354 + 545 + 61 + 182 + 33 + 334 + 185 –   

                     143 4) + 2(63 + 124 + 61 +63 + 124) + 83
2 + 3(834 + 545 + 

                     91 + 182 + 243 + 214 + 185 – 23 4) + 534
2 + 4(1085 + 511 + 

          362 + 273 + 1624 + 365 – 403 4) + 5(541 + 543+1084) + 

           1(182 + 93 + 94 + 185 – 63 4) + 2(183 + 364) + 3(454 +  

          185 – 183 4) + 94
2 + 364 5 – 12 4

2],    (69) 

where  

 Cu = 1/[4c3(1 + 3 + 24 + 1 + 3 + 24)],   (70) 

and c = 3.355 Angstrom is the interplanar separation in graphite and 2a=2.462 is the 

lattice constant of graphene. In deriving the above equations, we have used the fact that 

the volume per atom is equal to a2c3.  

The values of the force constants reported in [57] were derived from the interatomic 

potential reported in that paper. Unfortunately, the potential is incorrect and actually 

unstable [56]. However, the values of the force constants given in that paper are correct 

in the sense that they can be treated as independent parameters for fitting the phonon 
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dispersion relations. The force constants certainly give an excellent agreement between 

the calculated and the observed dispersion curves [57]. Of course they are related only 

with the derivatives of the potential at equilibrium lattice sites and are not meant to give 

the detailed interatomic potential. 

The values of the force constants are given below in N/m: 

a1 = 409.705; b1 = 145.012; δ1 = 98.920;  

a2 = –40.8; b2 = 74.223; γ2 = -9.11; δ2 = -8.191 

a3 = -33.203; b3 = 50.10; δ3 = 5.802;  

a4 = 10.539; b4 = 4.993; γ4 = 2.184; δ4 = -5.213.   (71) 

The values of the two elastic constants calculated by using Eqs. (68) and (69)  are: c11= 

1060 GPa and c66=440 GPa, which fit exactly with the experimental values for graphite 

given by Blakslee et al [69]. Because the interplanar interaction in graphite is much 

weaker than the intaplanar interactions, c11 and c66 of graphene should be approximately 

equal to those for graphite.        

Using the method described earlier in this section, the flexural rigidity of graphene for the 

present fourth neighbor interaction model is given by the following expression[57] : 

D =  – (3/36)( 1+182 + 163 + 984 + 1625 )a
2 = 2.13 eV. (72) 
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This value is in the range of values as reported in the literature [70, 71]. There is some 

confusion in the literature about the actual value of the rigidity and a wide range of values 

have been reported. In any case, the derivation as given here, shows that the rigidity is 

very sensitive to the range of the interatomic potential: the farther neighbors contribute 

more than the nearer neighbors. The rigidity may also be size dependent. Hence it is 

difficult to assess the validity of the calculated value.  

Finally, we quote the result [11] obtained by using GFMD method for propagation of 

elastic pulses or ripples in graphene.  Propagation of pulses is an important characteristic 

of a material and is useful in understanding its elastic response and phonon transport. 

Such a calculation for a finite lattice cannot be done analytically even in the harmonic 

approximation.   

The model used in [11] is particularly simple and only serves the purpose of illustration. 

The origin and the system of axes is same as given in Fig. 2. The model consists of about 

1100 carbon atoms located at the equilibrium graphene lattice sites at time t=0. As in 

[55], the outer atoms within the second neighbor distance of the outermost vibrating 

atoms are constrained so that their displacement is zero at all times. The size of the active 

lattice along the X-axis is about 5.52 nm. Propagation is initiated by imposing an initial 

displacement d in the Z direction on the central atom.  

We consider only the atomic displacements in the Z direction. Only the Z components fz, 

fz, and zz in Eq.  (56) contribute to these displacement. To account for the anharmonic 

effects in the Z direction, the MD type iterative approach is used. The quantities fz and zz 
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are calculated for each atom at each time step. These components change at each step due 

to anharmonicity. A major approximation in these calculations is that the displacements 

in the Z direction and in the XY plane are not coupled. This is strictly valid only in the 

harmonic approximation. It is, therefore, to keep d small so that the coupling between the 

ZZ and the planar components of  can be neglected at all times. In these calculation d 

was taken to be 0.01a and the results are normalized to this initial value.  

The results are illustrated  in Fig. 3, which shows a snapshot of the ripples or the 

instantaneous displacements of all atoms in the lattice at about 20 microseconds.  It is 

important to realize that, as stated earlier, the GFMD approach described here can 

reproduce the rippling dynamics of graphene in the case of infinitesimally small 

displacements. At sufficiently high lattice temperatures, however, it is expected that the 

long-wavelength flexural modes [16] will be significantly suppressed (private 

communication from Dr Alex Smolyanitsky).  

An important test of the numerical convergence of the model is the invariance of the total 

energy of the system at all times. It was found that change in the energy of the system at 

each time step was less than 10-4 per cent. This shows that the results had converged even 

up to microseconds and GFMD has extended and bridged the time scales at least in this 

model problem by 8 orders of magnitude - from femto to microseconds.   

In the basic MD the lack of energy conservation results in an increase of the crystal 

temperature. This necessitates quenching of temperature that may introduce errors in the 

displacements.  This problem should be substantially reduced in the GFMD calculations 
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since the energy is very well conserved. An additional advantage of the GFMD is that the 

same formulation can be used to bridge the length scales by taking the asymptotic limit of 

the static part of the GF as described in Sec 5.  

8. Conclusions and future work 

The MSGF and the GFMD techniques are computationally very efficient and the next 

step is to combine them into a unified technique that can be applied to static as well as 

dynamic problems. These techniques have so far been applied to only symmetric lattices. 

They need to be developed for unsymmetric, disordered,  and finite systems like 

amorphous solids, polymers, and liquids. One interesting application in which these 

techniques will be useful is model plasmonics in graphene that is sensitive to mechanical 

strains [72]. One reason why the MSGF and the GFMD techniques are not very 

widespread is the lack of efficient software. It would be useful, therefore, to develop 

efficient and freely available software for these techniques.  

Finally, the GFMD technique should be useful for solving time-dependent problems that 

are very difficult to solve by using existing methods. So far this technique has been 

applied only to an idealized case of graphene. This technique should be applicable to 

modeling of time-dependent processes in various physical, chemical, and bio systems for 

which presently which MD is used. In particular, this technique should be useful in 

simulation of protein folding and unfolding which has been of great interest for many 

years [73].  
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Figure Captions 

 

Fig. 1: A particle attached to a spring. F is the applied force and u is the displacement of 

the particle.  

Fig. 2- The bond structure of hexagonal graphene and the coordinate axes. The dots show 

the lattice sites occupied by carbon atoms A1,B1,C1,A2,B2, and C2. The origin of 

coordinates is at C1. 

Fig. 3: Snapshot of normalized atomic displacements in graphene at about 20 

microseconds. Coordinates X and Y are in units of half lattice constant.  
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