
  

  

Abstract— This paper proposes a neurobiology-based exten-
sion of integrate-and-fire models of Radial Basis Function Neu-
ral Networks (RBFNN) that adapts to novel stimuli by means of 
dynamic restructuring of the network’s structural parameters.  
The new architecture automatically balances synapses modula-
tion, re-centers hidden Radial Basis Functions (RBFs), and 
stochastically shifts parameter-space decision planes to main-
tain homeostasis. Example results are provided throughout the 
paper to illustrate the effects of changes to the RBFNN model. 
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I. INTRODUCTION 

LIMITATION of many implementations of Radial Basis 
Function Neural Networks (RBFNNs) is the requirement 

for knowing the upper and lower bounds of input vector ele-
ments.  During the construction of RBFNNs, archetype inputs 
are used to center the various Radial Basis Functions (RBFs) 
in the RBFNN’s hidden layers.  The result is a pre-processed 
normalization of the input space, and makes the RBFNN in-
capable of accommodating input data points beyond the nu-
merical bounds of their initial training sets.  Subsequent, 
post-training inputs are expected to fall somewhere within 
these multidimensional boundaries lest they fall into a “dead 
zone” in the network coverage.  This limits their applicability 
within many unbounded domain problems (e.g., characteriza-
tion and optimization of manufacturing and research robot-
ics). 

In contrast, the more traditional Feed-Forward Artificial 
Neural Network (FFANN) model trained using backwards 
propagation, which does not indelibly center its hidden-layer 
neurons based solely on single input vectors, is typically 
more capable of extrapolating and interpreting inputs beyond 
the scope of the initial training set. 

The system introduced in this study represents an alterna-
tive training mechanism of the integrate-and-fire RBFNN 
model in [1].  Taking cues from neurobiology, the proposed 
RBFNN extension is capable of automatically adapting to 
novel stimuli and pruning its internal architecture to prevent 
homeostasis.  Section II provides a brief overview of the base 
integrate-and-fire RBFNN model.  Section III describes the 
biological basis of the adaptive retraining and restructuring of 
neural networks.  Section IV discusses the process of dynam-
ically adjusting the RBF weight exploration range for accel-
erated convergence.  Section V describes a mechanism for 
identifying and accommodating novel stimuli.  Section VI 
concludes with a description of a process for adaptively re-
structuring decision planes to optimize relevancy. 
 

 

II. INTEGRATE-AND-FIRE RBFNN 

Nonlinear patterns are more likely to be linearly separable 
in high dimensional spaces than they are in lower dimensions 
[2].  RBFNNs exploit this phenomenon by using nonlinear 
activation functions to decimate a parameter space.  The in-
dividual RBFs are then trained to respond strongly for a finite 
region of input parameter space, and weakly for all others. 

One can approximate the functionality of RBFNNs by us-
ing a simple, two-hidden-layer network topology (Fig. 1) 
consisting of simple integrate-and-fire neurons (e.g., [1, 3]).  
In Fig. 1, I input i-layer neurons feed into J α-layer decision 
plane neurons, which then feed into K β-layer basis neurons, 
which then funnel into a single output γ-layer linear percep-
tron. 

The RBFs are centered in parameter space by using the α 
layer as a series of decision planes.  Such decision planes are 
effectively switching bipolar neurons, defined as 
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where the output of the jth RBF, g, subdivides the parameter 
space based on the function inputs, x, and their associated 
weights, w.  Here the α neurons have their input weights wj,i 
set to random values (ex. in range of -1 to +1).  Assuming 
that the inputs are scaled to be in range of xi ∈ [-1, 1], the bias 
weights wj,0 can be chosen randomly in the range of 

 wj ,0 ∈ − wj ,i , wj ,i
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Selecting bias weights in this range prevents the decision 
planes from either never responding or always responding.  
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Fig. 1:  RBFNN topology from [1] with two hidden layers.  The first 
hidden layer (α) acts as an arbitrarily large number of decision planes to 
divide the input space (i), while the second (β) is used to recognize re-
gions of the subdivided space for the output layer (γ). 



  

Neither of these extremes offers useful information to the 
network.  The bias term defines the offset of the plane rela-
tive to the origin of the input space (Fig. 2).  When multiple 
decision planes are thus defined, the input space is divided 
into sub-regions (Fig. 3).  Specific sub-regions can be in-
dexed in terms of the α-layer neuron activations.  For in-
stance, given the α-layer outputs, {α1, α2, …, α6}, the shaded 
region in Fig. 3 is defined as {1, 1, 1, 1, 1, 1}. 

 The kth β-layer neuron is “centered” to respond strongly 
to specific shaded regions by assigning the synaptic weight 
between the jth α-layer neuron to 

 wk , j =
sgn g j u j( )( )

J
,  (3) 

and the weight from the bias input to the kth β-layer neuron is 

 wk ,0 = −1.  (4) 

With these weights, the input of the kth β-layer neuron 
will be: 

 uk xc( ) = wk ,0 + g j
α xc( )wk , j

j=1

J

∑ . (5) 

The kth β-layer neuron will have a net input of 0 for all inputs 
xc within the shaded region.  Any inputs outside of the shaded 
region will have a negative net input. 

Each β node is tuned to recognize specific network inputs, 
and is associated with a specific target output tp.  When pre-
sented with its trained stimulus, β-node k responds strongly 
with 1, while all other β nodes will respond less strongly, if at 
all.  The weight wl,k from β-node k to the output γ node, l, is 
initialized as wl,k = ti.  Thus the input to the linear γ node is 

 ui = wl ,k gk
β xi( ) = tigkβ xi( ) = ti

k=0

K
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The α-layer decision planes can be set randomly and 
permanently to divide up the input parameter space.  Howev-
er, the placement of β nodes requires some forethought based 
on the training sets.  Selecting random input sequences for 
centering is somewhat effective provided those random se-
quences are representative of the input population as a whole 
(e.g., if the inputs are themselves random with a known dis-
tribution).  If the distribution of the input sequences is not 

known, however, applying simple clustering algorithms (e.g., 
K-Means [4]) to the training set may be more effective in 
producing useful responsiveness.   

While the kth β node dominates the output, wl,k = ti is ade-
quate for the input-output mapping approximation provided 
that 1) the number of β nodes equals the number of training 
inputs, and 2) the β node activation functions have narrow 
receptive fields.  Otherwise, the β-layer activation receptive 
fields should partially overlap.  If this is true, then the weight 
assignments of wl,k = ti results in poor function fits.  However, 
these weights may be optimized algorithmically. 

Let FK be the P×K matrix that describes the outputs of the 
K β-layer neurons for the P training patterns, and let t be the 
associated vector of P training pattern target outputs: 
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The vector of β-γ weights w is computed by solving for 
the pseudo-inverse: 

 w = FK
TFK( )

−1
FK
Tt.  (7) 

Alternatively, the weight vector solution can be approximated 
using a stochastic gradient descent search. 

 The error function, e(w), describes the distance from the 
output of the RBFNN to the target output vector t: 

 e w( ) = FKw− t  (8) 

The optimum set of weights, wopt, minimizes this error 
expression.  The solution for this is known to be equal to the 
pseudo inverse computed in Eq. 7, and has a known mini-
mum error emin = FKwopt − t . 

For the nth trial iteration, the β-γ synaptic weights are wn, 
and have an associated error en.  For iteration n+1, a weight 
vector of random perturbations, δw, is added such that wn+1 = 
wn + δw, and en = FKwn+1 − t .  If en+1 < en, then the network 
performance is improved, and the new synaptic weights are 

 
Fig. 2: A single α-layer neuron can be used to subdivide the parameter 
space into two regions. 

 
Fig. 3:  The logical combination of multiple decision planes can be used 
to specify a particular region in space. 



  

kept.  Otherwise the changes are rejected and the weights are 
reverted such that wn+1 = wn.  This rejection mechanism en-
sures that the convergence of en→emin is monotonic. 

III. NEUROBIOLOGICAL BASIS FOR LEARNING 

The biological central nervous system, on which artificial 
neural networks are based, can adapt to, learn from, and re-
member novel experiences.  Unlike artificial neural networks, 
which converge on solutions by complex algorithms, biologi-
cal neural systems adapt through long-term potentiation 
(LTP) to modulate communication through the synapses.  
The combination of LTP and long-term depression (LTD) 
creates, destroys, strengthens, and weakens synapses as the 
fundamental component of biological learning. 

In 1961, Hebb introduced the model of synaptic modula-
tion as the underlying basis for memory and learning [5].  
The model of “Hebbian learning” is typically simplified as, 
“cells that fire together, wire together.”  Taken by itself, 
however, the Hebbian algorithm of synapse modulation is not 
sufficient for explaining the process of learning.  For in-
stance, it focuses on synaptic strengthening, and does not 
consider the reversed action of synaptic weakening (e.g., [6]).  
Regardless, it is a convenient basis for modeling LTP. 

 The neurotransmitter Dopamine is the leading agonist for 
the positive reinforcement of Hebbian learning within cere-
bral tissues.  Moreover, background levels of Dopamine indi-
cate the feedback response states.  Increased Dopamine con-
centrations signal positive learning results, while decreased 
levels mark depression.  Consistent concentrations of Dopa-
mine indicate status quo, and spikes in the Dopamine levels 
signal short-term reinforcement. 

While Dopamine acts as the catalyst for increases in syn-
aptic effectiveness, the LTP trigger involves the postsynaptic 
activity of the N-Methyl D-Aspartate (NMDA) neurotrans-
mitter receptor.  The NMDA receptor is activated by Gluta-
mate, but is inhibited by an extracellular magnesium ion 
blocks.  This magnesium ion precludes the NMDA receptor 
from contributing to the signal propagation process [7].   

The induction of LTP requires the activation of the 
postsynaptic NMDA receptors during the postsynaptic action 
potential.  This is induced by an increase in sensor input fre-
quency [8].  Following high-frequency stimulation and 
postsynaptic action potentials during the Dopamine-assisted 

strengthening, the magnesium ion is ejected from the NMDA 
receptor.  Glutamate is permitted to bind, which results in 
more channels in the neuron’s walls opening. The pre- and 
post-synaptic action combination results in an increase in 
calcium concentration within the cell.  This concentration 
increase serves as a coincidence detector that associates the 
signal propagation with a given reward (i.e., Dopamine).  The 
result is an increased number of neurotransmitter receptors on 
the synapses linking those neurons to the cell, and more ef-
fective signal transmission. 

The process of LTP can be further influenced by other 
neurological phenomena.  For instance, neurons may fire 
either spontaneously or as a result of errant signals.  Both 
pre- and postsynaptic spikes can induce LTP and LTD [9], 
allowing even optimized networks to recognize and adapt to 
novel stimuli.  Another observed reaction is that of homeo-
stasis, where synaptic signals are turned down when it is de-
termined they are not providing useful feedback to the sys-
tem.  Although considered to be separate from Hebbian learn-
ing and typically associated with entire systems of neurons, 
homeostatic responses have been observed at localized re-
gions in the hippocampus [10]. 

The traditional RBFNN construction has been shown to 
be effective for predefined training sets.  However, the 
RBFNN’s inability to interpret or adapt to new, significantly 
different inputs outside of the initial training set prevents it 
from being as versatile as FFANNs trained through back-
propagation.  The RBFNN implementation must thus be ex-
tended to accommodate dynamic data sets.  The biological 
system described previously provides a plausible basis for 
accomplishing this. 

IV. DYNAMIC Β-Γ WEIGHT MUTATION RANGES 

The background concentration of Dopamine can be simu-
lated within in the stochastic gradient descent search of the β-
γ weight space.  Positive reinforcement results in improved 
performance (i.e., reduced error).  The Dopaminergic rein-
forcement can be used to accelerate and fine-tune the conver-
gence of the weights to their optimum values.  

Fig. 4 illustrates a two-dimensional (2D) weight space 
representation of the current and target β-γ synaptic weights.  
The coordinate p0 is the current value of the β-γ weights, and 
ptarget is the globally optimal weight vector.  The radius of the 
circle centered at p0 is the random perturbation range δw.  
The radius of the circle centered at ptarget is the Euclidean 
weight-space distance separating p0 and ptarget, p0 ptarget .  The 
tangent bisecting the circle centered at p0 is a hypothetical 
probability line.  For sufficiently small enough δw, the prob-
ability that the perturbation will result in a positive motion 
toward ptarget is roughly 50 %.  As δw increases relative to the 
radius p0 ptarget , however, this probability decreases.  Be-
cause it is assumed that ptarget is not known, the optimum val-
ue of δw is also not known.  Using the Dopaminergic rein-
forcement model, however, the value can be approximated 
dynamically. 

The algorithm for this Dopaminergic reinforcement mod-
el is simple:  if the application of a weight perturbation re-
sults in an improved fit, increase the value of δw, otherwise 

 
Fig. 4: The radius of the circle centered at the optimum β-γ weight vector, 
ptarget is equal to the Euclidean distance from the optimum weights to the 
current synaptic weight estimate, p0. 
 



  

reduce the value of δw. One possible implementation of the 
algorithm is as follows: 

  if en+1 < en then 
   Fail = 0 
   ∀k, δwk *= δinc, where δinc > 1.0 
  else 
   Fail = Fail + 1 
   if Fail > Failmax then 
    ∀k, δwk *= δdec, where δdec < 1.0 

The performance error, en+1, is compared to the previous 
step’s error.  The values of δinc, δdec, and Failmax are arbitrary 
and thus user-defined, but may be empirically derived.  The 
results of applying this model to a simple example are shown 
in Fig. 5 and Fig. 6.  Fig. 5 shows the root mean square 
(RMS) error for an example RBF application using a fixed 
δw of 0.01 as compared with the RMS error of the same RBF 
using a variable-value δw.  Each line represents the average 
of 10 runs, and the thickness of the plots represent 1σ stand-
ard deviation.  For the Dopaminergic reinforcement model, 
δinc = 1.1, δdec = 0.99, and Failmax = 10.  The network’s train-
ing patterns consist of 200 randomly sampled points on the 
surface of a symmetric 2D Gaussian curve defined by  

 z = e
−
x−cX( )

2

2σ X
2

+ e
−
y−cY( )

2

2σY
2

,  (9) 

where cX = cY = 3, and σX = σY = 1. 

The network is composed of 500 randomly placed α-layer 
linear neurons, and 25 β-layer sigmoidal neurons centered 
using K-means clustering.  The results of training the net-
work ten times were averaged to provide an expected per-
formance for this example.  These results are plotted in Fig. 
5, where the line widths represent 1 standard deviation of the 
RMS error at each time step.  The constant δw model has a 

slow, monotonically decreasing error.  In contrast, the new 
variable-value δw converges much faster.  Fig. 6 illustrates 
example values of δw as the number of training iterations 
increases in one test evaluation.  A notable increase in δw is 
observed with the variable weight model as the algorithm 
begins its exploration.  As the values of w approach wopt, the 
value of δw steadily decreases. 

V. Β-LAYER RETRAINING 
Biological systems exhibit reactions to repeated, novel 

stimuli by means of spontaneous firing, cell death, and the 
growth of new inter-neuron connections.  They are also ca-
pable of single-instance imprinting of knowledge [11].  This 
imprinting behavior is inherent in the RBFNN model de-
scribed in Section II in the form of the initial positioning of 
the β-layer neurons.  However, the RBFNN is not capable of 
adjusting to new stimuli, nor is it able to allow for the focus-
ing in on regions of interest. 

The RBFNN is not able to capture new data points if they 
are far from the centers of the defined β-layer neurons.  
While the old memories are still important, especially in 
preventing network regression, their training requires dedi-
cated β-layer neurons that are not typically generalizable. To 
accommodate new information, the β-layer neurons may 
need periodic retraining.  Fig. 7 shows the effects of periodic 
retraining when presented with new data.  Each line repre-
sents the average of 10 runs ±1 standard deviation.  The data 
fed into the RBFNN is gathered by sequentially evaluating a 
1D sigmoid function (Fig. 8) defined as 

 y = 1
1+ e−x

, (10) 

 
Fig. 6: In the Gaussian model example, the variable weight range imple-
mentation rapidly increase in the value of δw until it nears an optimum 
value, after which the mutation range narrows for fine-tuning. 

 
Fig. 7: The performance of a trained RBFNN is impacted by the introduc-
tion of new data outside of the network’s known parameter space.  With-
out assimilating new data into the network the RMS error steadily in-
creases. 

 
Fig. 8: Sub-sampled sigmoid training data for the β-layer retraining trials.   

 
Fig. 5: The performance for the stochastic weight search is monotonically 
decreasing for both the fixed and the variable weight ranges, but the vari-
able model approaches a minimum error at a significantly increased rate.   
 



  

which is sampled at regular, increasing intervals for values 
of x between -5.0 and 3.0. 

Three RBFNNs were created for testing:  a basic inte-
grate-and-fire RBFNN (“RBF”), an RBFNN with β-layer 
neuron retraining (“RBF-Beta”), and an RBFNN with both 
β-layer retraining and dynamic β-γ weight modulation 
(“RBF-Beta-Gamma”).  Each RBFNN consisted of 400 ran-
domly placed α-layer decision planes, and 25 β-layer neu-
rons.  The initial training set for the network consisted of the 
first 25 data points in the range [-5.0, -4.52].  Because the 
number of β-layer neurons is equal to the number of data 
points, the RBFNN is over-determined for the initial training 
set.  The second training set consisted of the next 175 se-
quential data points.  The third and fourth training sets are 
composed of 100 points each, for a total of 400 training 
sample points.  This division of data points was arbitrarily 
chosen to illustrate the training on nonlinear data. 

Each subsequent training set is introduced every 250 
training iterations to allow the networks to converge to some 
optimum state.  All training inputs are scaled to be in the 
range of [-1, 1], and all training outputs are scaled to be in 
the range of [0, 1].  This pre-scaling served to avoid conflicts 
with the α-layer decision planes. 

Fig. 7 shows the average RMS errors for the three 
RBFNNs.  The three RBFNNs all experience spikes in RMS 
error whenever a new training set is introduce.  The RMS 
error then slowly declines as the networks adapt to the new 
information.  As the input space becomes more complex 
with additional data sets, the basic RBFNN is less able to 
accommodate new information.  As a result, the minimum 
RMS error steadily increases.  In contrast, the two RBFNNs 
with β-layer neuron retraining fare considerably better with 
noticeably smaller minimum RMS errors.  

VI. RBFNN HOMEOSTASIS 
To prevent the system from going unstable, biological 

systems utilize means of homeostasis to adjust the synaptic 
sensitivity between two adjacent neurons [11].  Constant 
stimulation can wear out the nervous system, so tolerance to 
stimuli is developed.  However, the sensitivity never fully 
disappears.  Similarly, in the absence of stimulation, biologi-
cal systems have been observed increasing the signal 
strength to accommodate signal degradation.  In instances of 
sensory or activation deprivation, synapses have increased in 
size and the number of receptors [12]. 

At the α-layer, homeostasis is essentially the movement of 
the decision planes to where most temporally relevant query 
values are focused.  If the activity of a given α-layer neuron 
is either too frequent or too infrequent, it is moved to a new 
random location within the parameter space.  The signal 
activity of a given neuron, j, is defined as the activation fre-
quency, p j

α : 
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The “lifespan” of the α-layer neuron, Tj, represents the 
number of evaluation iterations since the last time the neuron 
was retrained.  The signal threshold, gmin

α , is user-defined, 
but is set at 50 % for evaluative trials. 

The neuron is said to be in a homeostatic state if the ine-
quality 
 0 ≤ pmin

α < p j
α < pmax

α ≤1,  (12) 

is true, where pmin
α  and pmax

α  are user-defined bounding 

variables.  In the unmodified RBFNN implementation, pmin
α  

and pmax
α  are 0 and 1, respectively.  If the value of p j

α  is 

outside of this range, the α-layer decision plane neuron is 
moved.  The optimal placement of decision planes can be 
achieved via the same stochastic approach used to discover 
the β-γ weights discussed in Section II.  To provide a rea-
sonable evaluation of the performance of each neuron, a 
minimum lifespan must be achieved before the decision to 
retrain an α-layer neuron can be made.  For trials, the firing 
frequency is not evaluated until Tj > 500 evaluations. 

Making such changes at the α-layer necessitates retraining 
the entire RBFNN, which will impact the short-term network 
performance.  As a result, the convergence toward optimali-
ty is no longer monotonic.  However, optimizing the place-
ment of α-layer decision planes based on the observed net-
work activity is expected to provide better long-term net-
work performance. 

In contrast, the β-layer equivalent to homeostasis adjusts 
the receptive fields of individual neurons to maintain an op-
timized activation rate.  Moreover, the β-layer neurons that 
are rarely queried are moved to locations where they are 
more likely to actively participate in the network’s applica-
tion.  For such processes to be possible, each β-layer re-
quires a level of system-wide knowledge that has no biologi-
cal equivalent and is computationally inefficient.  For exam-
ple, each β-layer neuron needs to know both the distinction 
between a training query and a testing query, and the density 
and locations of other β-layer neurons to avoid over-
determination.  Further, the parameter influences of the β-
layer neurons are not well understood for such modification 
to be implemented. 

To evaluate the performance of α-layer homeostasis, a 
sample data set was created consisting of random points 
taken from the surface of an asymmetric 2D Gaussian (Fig. 
9) using Eq. 9.  For this surface, cX = 1, cY = -1, σX = 1, and 
σY = 0.5.  The surface points are divided into two data sets.  
The first data set consisted of 100 data points sampled for 
values of x in the range of (-3, -1) and values of y in the 
range of (-1, 3).  The second data set consisted of 300 data 
points sampled for values of x in the range of (-1, 1), and 
values of y in the range of (-1, 3).  Unlike the evaluation 
performed in Section V, the inputs and outputs of the train-
ing sets are not pre-scaled.  Instead, the RBFNNs were mod-
ified to accommodate the raw training inputs and outputs. 

The network consisted of 200 α-layer decision planes and 



  

20 β-layer neurons.  The RBFNN with α-layer homeostasis, 
“RBF-Alpha,” is compared with a standard integrate-and-
fire RBFNN (“RBF”) and an RBFNN with β-layer retraining 
(“RBF-Beta”) to accommodate the second data set.  With the 
α-layer homeostasis, pmin

α = 0.1  and pmax
α = 0.8 .  Each trial 

for the three RBFNNs consisted of 250 training epochs for 
the first data set, followed by 500 training epochs for the 
second.  The mean results are illustrated in Fig. 10 and Fig. 
11, where the thickness of each trend line represents 1σ of 
the RMS error at each time step. 

Fig. 10 omits the first 14 training epochs to minimize vis-
ualization issues due to scaling.  All three networks experi-
ence comparatively high RMS errors when new data points 
are introduced.  Because α-layer homeostasis necessitates β-
layer retraining, it is expected RBF-Alpha will perform at 
least as well as RBF-Beta.  However, when given sufficient 
time to converge on a more-optimal set of decision planes, 
the RBFNN with α-layer homeostasis performs more con-
sistently in that the standard deviation of RMS error remains 
comparatively small.  However, as is evidenced in Fig. 11, 
the convergence toward an optimum network topology is not 
monotonic, and the network is prone to minor performance 
regressions as α-layer decision planes are moved randomly. 

VII. CONCLUSIONS 
This paper introduces extensions to the integrate-and-fire 

RBFNN model that enables the neural network to adapt to 
novel stimuli and self-optimize the network’s topology.  
These extensions are based on neurologically observable 
phenomenon, and improve the performance of integrate-and-
fire RBFNNs.  Much like the observed effects of Dopamine 

on LTP, modulating the β-γ weight mutation rate results in 
accelerated convergence on synapse optima.  By periodically 
retraining the β-layer neurons as new training sets are intro-
duced, a RBFNN can adapt to novel stimuli and generalize 
the network to accommodate the entire spectrum of inputs 
beyond the original training set.  Implementing α-layer ho-
meostasis on a RBFNN can stochastically optimize the 
placement of decision planes such that the α-layer activa-
tions remain relevant for the entire spectrum of active inputs, 
and can adapt as some inputs lose relevancy.  This dynamic 
restructuring allows the RBFNN to be used in online learn-
ing scenarios, recognizing and adapting quickly to changes 
in the environment, expanding their use to a myriad of new 
application domains such as manufacturing and collabora-
tive robotics (e.g., dynamic parameter and control optimiza-
tion, tolerance band shifting, dynamic retraining). 
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Fig. 11: The RMS error of the RBFNN with α-layer homeostasis, while 
not monotonically improving, results in improved network performance 
when given sufficiently long training times. 
 

 
Fig. 10: Without the β-γ weight modulation, the three networks approach 
optimal solutions at roughly the same rate.  The network with α-layer 
homeostasis, however, generally performs more consistently. 
 

 
Fig. 9:  2D Gaussian surface used for evaluating the homeostatic place-
ment of α-layer neurons. 


