2014 9th Gateway Computing Environments Workshop

GenApp Module Execution and Airavata Integration

Emre H Brookes', Nadeem Anjum?, Joseph E. Curtis®, Suresh Marru*, Raminder Singh*, Marlon Pierce*
Corresopnding Author / University of Texas Health Science Center, Department of Biochemistry, San Antonio, Texas
2Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur 721302, India
3NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*Pervasive Technology Institute, Indiana University, Bloomington, Indiana

ABSTRACT

A new framework (GenApp) for rapid generation of scientific
applications running on a variety of systems including science
gateways has recently been developed. This framework builds a
user interface for a variety of target environments on a collection
of executable modules. The method for execution of the modules
is unrestricted by the framework. Initial implementation
supports direct execution, and not queue managed submission,
on a user's workstation, a web server, or a compute resource
accessible from the web server. After a successful workshop, it
was discovered that long running jobs would sometimes fail, due
to the loss of a TCP connection. This precipitated an
improvement to the execution method with the bonus of easily
allowing multiple web clients to attach to the running job.
Finally, to support a diversity of queue managed compute
resources, a Google Summer of Code project was completed to
integrate the Apache Airavata middleware as an additional
execution model within the GenApp framework.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
Computer-aided software engineering (CASE).

General Terms
Design, Human Factors, Languages.

Keywords

CASE tools, science gateway, middleware.

1. INTRODUCTION

The GenApp framework [1] is a product of a joint United
Kingdom / Engineering and Physical Sciences Research Council
and United States / National Science Foundation grant entitled:
"CCP-SAS — Collaborative Computational Project for advanced
analyzes of structural data in chemical biology and soft
condensed matter" and is an SI2-CHE cyberinfrastructure project
addressing Grand Challenges in the Chemical Sciences. The
CCP's initial software elements are primarily small-angle
scattering (SAS) software simulation and analysis tools
developed by multiple independent laboratories. Small-angle
scattering can be performed using individual lab x-ray sources
but is more frequently performed at high energy synchrotrons or
neutron sources. A collimated beam of x-rays or neutrons with a
fixed wavelength are scattered by the sample and is recorded on
a two dimensional detector. For solution studies, where particles
in solution are typically randomly oriented, the 2d data is radially
integrated to produce a 1d scattering curve that contains
structural information. Some computations can be quite trivial
such as producing various transformed plot views and others can
be computationally expensive such as rigid body modeling and
expansion of conformational space utilizing various molecular
dynamic and Monte Carlo methods and their subsequent
scattering simulation and screening. The grant includes aims of
developing new and enhanced SAS analysis methods as well as

2152-1093/14 $31.00 © 2014 IEEE
DOI 10.1109/GCE.2014.12

the development and implementation of the cyberinfrastructure
bringing together three preexisting software packages which
analyze SAS data [2,3,4,5]. Considerations during the design
phase of GenApp were based upon observations and discussions
with developers of existing independently produced scientific
software. Common issues include ease of deployment in an ever-
evolving software landscape, support for legacy codes and the
fact that science research groups can not typically afford a
dedicated software team. The design employed was to divorce
the computational modules from the user interface, define their
inputs and outputs on an easily extensible set of data types,
define applications as seen by the user on a set of pre-existing
and user supplied modules, define an easily extensible set of user
interfaces and execution models, so called "target languages" and
subsequently generate working instances (see figure 1). For
further details about GenApp see [1].

Apache Airavata [6] is open source, open community distributed
system software framework for supporting the metadata and
application execution requirements of both science gateways and
scientific workflows. Airavata consists of the following internal
components. The Registry is used to store, access, and manage
descriptions of applications, computing resources, and
computational experiments. The Orchestrator is used to schedule
executions of both single applications and workflows. GFAC is
the component that interactions with external resources and
services needed to execute a specific task. The Workflow
Interpreter manages steps in experiments that consist of multiple
tasks. The Messenger provides publish-subscribe messaging for
both internal components and external consumers. Airavata has
an Apache Thrift-defined API, which it exposes through the API
Service component. These components and their interactions are
more fully described in [7]. Airavata is also serving as one of the

Target Data « Modulss
Languages Types
Generate & -
- Applications
. #—7 — -~ - Y A
HTML5 Qt3” Qt4 ; | o ;
PHP Cit Ci+ i0oS Android JAVA ?

Figure 1: Generating application instances. The generator
reads application definitions, module definitions and chosen
target language information to assemble the application
instances.

*Certain commercial equipment, instruments, materials, suppliers, or software
are identified in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment identified are

necessarily the best available for the purpose.

IEEE
computer
pSOC|ety

bases of a hosted science gateway platform as a service (SciGaP),
currently under development. Airavata has supported the
execution management of the UltraScan and UltraScan-SOMO
gateways, which are precursors of the current work.

2, EXECUTION

Prior to this work, execution in GenApp was developed for direct
execution on either the client computer (for GUI based target
languages) or on a web server (for web based target languages)
or via ssh from the web server. To provide support for queuing
compute resources, Apache Airavata was chosen to act as
middleware. In this section we will describe the execution
model of GenApp and how it was modified to integrate with
Airavata.

2.1 GenApp

User supplied executable modules are wrapped with JSON [8]
definitions of their input and output. Typically, a driver script is
written to wrap execution modules so that no change to the
underlying scientific execution module is required. The driver
script for each module must accept standard input in JSON and
provide standard output as JSON. A collection of defined
modules is placed in a JSON file describing the application.
Executing the GenApp tool generates complete application code
for an extensible set of "target languages". The primary foci of
this current work are the Q/C++ GUI and HTML5/PHP target
languages.

The execution models for the executable modules, prior to
Apache Airavata integration, proceed as follows and as shown in
Figure 2: The Qt/C++ GUI target language generates a GUI
application where each module is executed directly on the user's
workstation. The HTML5/PHP target language executes the
module through an AJAX call to a PHP module that directs
execution of the module.

As part of the CCP-SAS project, a dedicated compute resource
was installed at University of Tennessee Knoxville to host
HTML5/PHP targets for SAS software, initially the SASSIE
software [3]. The server is a Dell cluster running Rocks [9] with
two 64-core compute nodes, a eight NVIDIA K20m GPU
enclosure, and a 12-core head node. The head node is running a
virtual machine hosting the web-server for the HTMLS5/PHP
server. To utilize the compute nodes for execution, we extended
the job submission mechanism to support direct ssh execution of
modules. The globally available resources are defined as
name/value pairs in a JSON application configuration object
where global default resource is also defined (see Text 1). Each
individual module's definition file can also provide an overriding
module specific resource or resources. The changes to the
GenApp HTMLS5/PHP target language module execution required
an appropriate prefix to the executed command based upon the

AJAX
SFisis JSON Svevr?lte)r JSON o~
Browser PHP Executable
JSON Miidiiat
odule's
Qraul Executable

Figure 2: Execution models for target languages HTML5/PHP
(top) and QUC++ (bottom).

called module's determined target resource. This basic resource
targeting was functional for our first user's workshop given at the
American Conference of Neutron Scattering in June 2014 [10].
Of course, such a system has limited resources and the long-term
plan was to support queued resources by integrating with
Airavata middleware.

The workshop was successful, but subsequently an issue came to
light with respect to long running jobs. The HTML5's AJAX call
to PHP was waiting on completion of the job to return the JSON
results. This required the TCP connection to remain open. It did
not appear during our testing with directly connected web clients,
nor for general users running jobs of less than approximately one
hour, but users reported failures of long jobs that appeared to be
the result of a dropped TCP connection during the AJAX call.
This precipitated a redesign of the HTML5/PHP execution
method. In the updated execution method, the HTMLS5 initiates
an AJAX call, the PHP starts the module execution under a
monitor daemon and returns immediately with a simple
acknowledgment JSON object. Subsequently, the monitor
daemon waits on the job completion and messages the HTML5
client via a pub-sub websocket (see [1] for messaging details).
Once messaged, the HTML5 client produces another AJAX call
to retrieve the results. Additionally, the HTML5 client has a
watchdog slow (currently 16 second) poll as a fallback for the
case of a lost message. The updated execution model is shown in
Figure 3.

{
, "resources” : {
"local” .o
, "compute0"” :@ "ssh compute-0-0"
, "computel” :@ "ssh compute-0-1"
, "airavata” : [
"stampede "
, "gordon"
, "trestles”
, "alamo"”

7

, "resourcedefault” : "local”

}

Text 1: JSON describing the available resources for a HTML5/PHP
target language instance. "resource", "local" executes directly on the
web server, "compute0" and "computel” utilize ssh to run directly on

the attached compute nodes. "airavata" allows submissions to a vector
of named targets.

Input Inout
JSON PHP SN
< AJAX " | ‘start |—— =
JSON module” é
ACK
Monitor Module's
Web daemon Executable
Browser
WebSocket
JSON Message
JSON
PHP
_AJAX | ‘“get Sutpw
JSON results”
Output

Figure 3: Two step HTML5/PHP execution. The client web browser
makes a second AJAX call to retrieve the results once messaged that the
module's execution has completed. Additionally, there is a 16 second
interval poll running on the web browser checks for results in the case
the WebSocket message is for some reason not received. The web
server components coordinate job status via a database (not shown).

An additional benefit of the updated enhanced execution model R G e e e e e !
is that previously executed module results are easily retrieved i
and multiple web clients can attach to an running module. These || TargstLanguages Dala Types » Moduios
features are both implemented in the current version of GenApp. |
A minor downside is that additional storage is required to hold
the results and should be managed and eventually purged by the
system administrators.

Generate E App N

2.2 Airavata Integration

Integration with Apache Airavata middleware provides GenApp
an additional execution model. This execution model supports
queuing compute resources. The integration was completed as a |
Google Summer of Code 2014 Project [11], providing GenApp § HTMLS/PHP G013 Ciaicnd
the capability to execute long-running, non-interactive jobs on
distributed computing resources, including local clusters, N
supercomputers, national grids, academic and commercial

clouds. The integration has been achieved for both the
HTML5/PHP and C++/Qt target languages. The overview of the AmpvEm PR Glen)
integration can be seen in Figure 4. /

GENAPP

Airavata requires applications to be registered in a catalog before
they can be executed. Using a simple utility, Register
Applications, all GenApp executable modules can now be
registered with the Airavata Server automatically. This
registration step is a one-time task and can be achieved with a
single command to execute the registration utility. Once the
registration utility has been executed, job submissions can be
redirected to Airavata.

Airavata APl Server

v

Orchestrator - eeomooon. . Messaging System

~
GenApp executes short jobs locally and only uses Airavata for |
long-running jobs, a configuration option has been provided
based on a variable setting in the input JSON file to enable or
disable job submission to Airavata. There is a global default for
resources defined i.e. local, airavata or ssh, along with a module
specific override. This provides one the option to execute the ‘
required modules on the required resource for maximum resource i
optimization. |

!

Jobs are submitted to Airavata through Apache Thrift [12] based AIRAVATA
i omputational
i Resources

Workilow Engine

Airavata clients written in PHP and C++ which make calls to the |
Airavata API. The execution steps include creating an Airavata :

project, creating an experiment (Airavata's terminology for a Figure 4: Overview of GenApp-Airavata Integration. GenApp (top)
specific instance of a module execution) within the project, produces applications (middle) that call the appropriate Airavata
launching the experiment, checking its status and retrieving the (bottom) client as part of their execution of modules. The Airavata API

output(s). The experiment creation step includes specifying the provides manages submission to a diverse set of computational

relevant GenApp module, which had been registered by the resources.
Input Launch Job
JSON PHP Input JSSON Input
AJAX | ‘“start JSON -
JSON module Check Status g
ACK
; Module's
Monitor .
Web daemon . AIRAVATA Executable
Browser .
WebSocket
JSON Message JSON
JSON Output
f’HP Output
AJAX get
JSON results”
Output

Figure 5: Two-step Airavata managed HTML5/PHP execution. The module's execution is launched on the first AJAX call from the client and
monitored via a "Check Status" poll. Airavata manages the submission of the module's execution on remote compute resources.

11

“Register Applications” utility, as the executable and the user
inputs retrieved in JSON format as the input. After launching the
experiment, the status is checked for completion. The experiment
ends with either “COMPLETED” state or “FAILED” state. On
successful completion, the output(s) are retrieved and displayed
to the user. In case the experiment fails, the appropriate error
message is retrieved and displayed to the user. Extensive error
handling mechanisms have been implemented to notify the user
in case of any exceptions in any step of the execution. The
overview of the two-step HTML5/PHP submission mechanism
with Airavata managed execution can be seen in Figure 5.

3. CONCLUSIONS

The GenApp framework produces user-interfaces for JSON
wrapped modules generating GUI and web based applications.
The initial community consists of chemical and chemical biology
researchers involved in small-angle scattering studies. The
framework could easily extend to other scientific disciplines.
GenApp's web based execution has been improved with better
handling of AJAX calls and the ability to have multiple instances
attach to running or view results from previously run jobs. The
integration of Airavata provides access to a diverse set of
computational resources. In addition to the intellectual
contributions, the work described is a good demonstration of
bringing computational science and open source software
experience to next generation students.

4, RESOURCES

The software is currently stored on a subversion integrated Trac
Wiki (http://trac.edgewall.org) hosted on an Indiana University
Quarry node http://gw105.iu.xsede.org:8000/genapp. A separate
virtual machine containing multiple HTML5 application
instances is hosted on another Quarry node. A 128 core, 256 GB
ram, 8 Tesla K20m GPU cluster is installed at University of
Tennessee Knoxville dedicated to computations running under
this tool. The Alamo cluster at the University of Texas Health
Science Center in San Antonio will also make cycles available
callable via Airavata. When usage demands, we will submit an
XSEDE proposal for additional cycles to support the Science
Gateways developed utilizing this tool.

5. ACKNOWLEDGEMENTS

This work was supported by NSF grant 1265817 to E. Brookes
and Google Summer of Code funding to N. Anjum. This work
benefited from CCP-SAS software developed through a joint
EPSRC (EP/K039121/1) and NSF (CHE-1265821) grant. J.
Curtis acknowledges support from NIST.

6. REFERENCES

[1] Brookes, E.H. 2014. An Open Extensible Multi-Target
Application Generation Tool for Simple Rapid Deployment
of Multi-Scale Scientific Codes. XSEDE '14[1]. ACM
DOI=10.1145/2616498.2616560

Perkins, S. http://www.ucl.ac.uk/smb/perkins

[2]
[3] Curtis, J. E, Raghunandan, S., Nanda, H., and S. Krueger.
SASSIE: A program to study intrinsically disordered
biological molecules and macromolecular ensembles using
experimental restraints. Comp. Phys. Comm. 183, 382-389

(2012) & http://www.smallangles.net/sassie
Brookes, E.H. US-SOMO http://somo.uthscsa.edu

Brookes, E.H., Singh, R., Pierce M., Marru, S., Demeler, S.,
and Rocco, M. 2012. Ultrascan solution modeler:
integrated hydrodynamic parameter and small angle
scattering computation and fitting tools. XSEDE '12. ACM
DOI=10.1145/2335755.2335839

Marru, S., Gunathilake, L., et al. 2011. Apache airavata: a
framework for distributed applications and computational
workflows. Proc. Workshop Gateway computing
environments. ACM

Pierce, M, Suresh Marru, Lahiru Gunathilake,
Raminderjeet Singh, Don Kushan Wijeratne, Chathuri
Wimalasena and Chathura HerathApache Airavata: Design
and Directions of a Science Gateway Framework” in
Proceedings of the International Workshop on Science
Gateways, Dublin, IE, June 3-5, 2014.

Standard ECMA-404. 2013 The JSON data interchange
format. Geneva

(4]
(5]

(6]

(71

(8]
[9] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno.
2001. NPACI Rocks Clusters: Tools for Easily Deploying
and Maintaining Manageable High-Performance Linux
Clusters. In Proceedings of the 8th European PVM/MPI
Users' Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Yannis
Cotronis and Jack Dongarra (Eds.). Springer-Verlag,
London, UK, 10-11.

[10] H. Zhang. Simulation of Neutron Data of Intrinsically
Disordered Proteins and Nucleic Acids: Part II. ACNS 2014,
Jun 1-5, 2014. Knoxville, USA. WORKSHOP

[11] Anjum, N. 2014. GSoC: GenApp Integration with Apache
Airavata http://www.google-melange.com/gsoc/proposal
/public/google/gsoc2014/nadeemanjum/5632763709358080

[12] Apache Software Foundation, Thrift, http://thrift.apache.org/

