EXTREMAL THEOREMS FOR DEGREE SEQUENCE PACKING AND THE 2-COLOR DISCRETE TOMOGRAPHY PROBLEM

JENNIFER DIEMUNSCH ${ }^{*} \ddagger$ MICHAEL FERRARA ${ }^{\dagger} \ddagger$
SOGOL JAHANBEKAM ${ }^{\dagger} \ddagger$ AND JAMES M. SHOOK ${ }^{\S}$

Abstract

A sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ such that the degree of v_{i} is d_{i}. We say that graphic sequences $\pi_{1}=\left(d_{1}^{(1)}, \ldots, d_{n}^{(1)}\right)$ and $\pi_{2}=\left(d_{1}^{(2)}, \ldots, d_{n}^{(2)}\right)$ pack if there exist edge-disjoint n-vertex graphs G_{1} and G_{2} such that for $j \in\{1,2\}, d_{G_{j}}\left(v_{i}\right)=d_{i}^{(j)}$ for all $i \in\{1, \ldots, n\}$. Here, we prove several extremal degree sequence packing theorems that parallel central results and open problems from the graph packing literature. Specifically, the main result of this paper implies degree sequence packing analogues to the Bollobás-Eldridge-Catlin graph packing conjecture and the classical graph packing theorem of Sauer and Spencer.

In discrete tomography, a branch of discrete imaging science, the goal is to reconstruct discrete objects using data acquired from low-dimensional projections. Specifically, in the k-color discrete tomography problem the goal is to color the entries of an $m \times n$ matrix using k colors so that each row and column receive a prescribed number of entries of each color. This problem is equivalent to packing the degree sequences of k bipartite graphs with parts of sizes m and n. Here we also prove several Sauer-Spencer-type theorems with applications to the 2-color discrete tomography problem.

Key words. degree sequence, discrete tomography, packing
AMS subject classifications. 05C35, 05C70

1. Introduction. A sequence of nonnegative integers $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realize or be a realization of π, and we write $\pi=\pi(G)$. If a sequence π consists of the terms d_{1}, \ldots, d_{t} having multiplicities μ_{1}, \ldots, μ_{t}, then we may write $\pi=\left(d_{1}{ }^{\mu_{1}}, \ldots, d_{t}^{\mu_{t}}\right)$.

There are a number of necessary and sufficient conditions for a sequence to be graphic, including the seminal Havel-Hakimi Algorithm [21, 23] and the Erdős-Gallai Criteria [16]. However, a given graphic sequence may have a large family of nonisomorphic realizations, and as such considerable attention has been given to the study of when a graphic sequence has a realization with a given property. Such problems can be divided into two broad classes, described as "forcible" problems and "potential" problems in [30]. Given a graph property \mathcal{P}, we say that a graphic sequence π is forcibly \mathcal{P}-graphic if every realization of π has property \mathcal{P}, and that π is potentially \mathcal{P}-graphic if at least one realization of π has property \mathcal{P}.

Results on forcible degree sequences are often stated as traditional problems in structural or extremal graph theory, where a necessary and/or sufficient condition is given in terms of the degrees of the vertices (or equivalently the number of edges) of a given graph. For instance, minimum degree thresholds for the existence of certain graph structures, such as the threshold for hamiltonicity in Dirac's Theorem [12], can be thought of as forcible theorems. Two older, but exceptionally thorough surveys on

[^0]forcible and potential problems are due to Hakimi and Schmeichel [22] and Rao [31], and a more recent survey on forcible "Chvátal-Type" theorems (in the spirit of [9]) is due to Bauer et al. [3].

A number of degree sequence analogues to classical problems in extremal graph theory appear throughout the literature, including potentially graphic sequence variants of Hadwiger's Conjecture [15, 32], graph Ramsey numbers [6] and the Turán problem (c.f. [17]). In this paper, we consider an extension of the classical graph packing literature to degree sequences. In particular, we prove a potentially \mathcal{P}-graphic analogue to a widely-studied graph packing conjecture of Bollobás and Eldridge [4] and, independently, Catlin [8], which implies a graphic sequence version of the SauerSpencer graph packing theorem [33]. We conclude by using similar techniques to prove a pair of related results that have applications to discrete imaging science.
1.1. Graph Packing. Two n-vertex graphs G_{1} and G_{2} pack if G_{1} is a subgraph of $\overline{G_{2}}$, or alternatively if G_{1} and G_{2} can be expressed as edge-disjoint subgraphs of K_{n}, the complete graph on n vertices. Graph packing has received a great deal of attention in the literature ([26], [35] and [36] are detailed and useful surveys).

In 1978, Sauer and Spencer [33] proved the following classical theorem.
THEOREM 1.1. Let G_{1} and G_{2} be graphs of order n with maximum degree Δ_{1} and Δ_{2} respectively. If

$$
\Delta_{1} \Delta_{2}<\frac{n}{2}
$$

then G_{1} and G_{2} pack.
Likely the most notable open conjecture in graph packing is due to Bollobás and Eldridge [4] and, independently, Catlin [8].

Conjecture 1. Let G_{1} and G_{2} be n-vertex graphs with maximum degrees $\Delta\left(G_{i}\right)=\Delta_{i}$ for $i=1,2$. If

$$
\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1
$$

then G_{1} and G_{2} pack.
If true, Conjecture 1 implies Theorem 1.1. The Bollobás-Eldridge-Catlin conjecture has been settled in several cases, including when $\Delta_{1} \leq 2$ by Aigner and Brandt [1] and Alon and Fisher [2]. The case when $\Delta_{1}=3$ was shown by Csaba, Shokoufandeh, and Szemerédi [11] for large n utilizing the regularity lemma. For $\Delta_{1}, \Delta_{2} \geq 300$, Kaul, Kostochka and $\mathrm{Yu}[25]$ showed that $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq 0.6 n+1$ implies that the two graphs pack, which improves the Sauer-Spencer theorem, and is a partial solution to Conjecture 1. Other partial results were obtained by Corrádi and Hajnal [10] and Hajnal and Szemerédi [20].
1.2. Packing Graphic Sequences. The notion of packing graphic sequences was investigated in [7], where the following key definition appears. If π_{1} and π_{2} are (not necessarily monotone) graphic sequences, with $\pi_{1}=\left(d_{1}^{(1)}, \ldots, d_{n}^{(1)}\right)$ and $\pi_{2}=$ $\left(d_{1}^{(2)}, \ldots, d_{n}^{(2)}\right)$, then π_{1} and π_{2} pack if there exist edge-disjoint graphs G_{1} and G_{2}, both with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, such that

$$
d_{G_{1}}\left(v_{i}\right)=d_{i}^{(1)} \quad \text { and } \quad d_{G_{2}}\left(v_{i}\right)=d_{i}^{(2)}
$$

It is critical to note here that the order of the terms in π_{1} and π_{2} is fixed, so that the statement " π_{1} and π_{2} pack" is not equivalent to " π_{1} and π_{2} have realizations
that pack". This framework allows for some interesting distinctions between packing graphs and packing graphic sequences. On the other hand, by fixing the ordering of π_{1} and π_{2}, the study of degree sequence packing provides insight into how a pair of graphs with these degree sequences might feasibly pack, if in fact they do.

Given a sequence π, let $\Delta(\pi)$ and $\delta(\pi)$ denote the maximum and minimum terms in π, respectively. Further, given two sequences π_{1} and π_{2} of the same length, let $\pi_{1}+\pi_{2}$ denote the "vector sum" of π_{1} and π_{2}. One of the main results from [7] is the following.

THEOREM 1.2. Let π_{1} and π_{2} be n-term graphic sequences with $\Delta=\Delta\left(\pi_{1}+\pi_{2}\right)$ and $\delta=\delta\left(\pi_{1}+\pi_{2}\right)$. If

$$
\Delta \leq \sqrt{2 \delta n}-(\delta-1)
$$

then π_{1} and π_{2} pack, except that strict inequality is required when $\delta=1$. This result is sharp for all n and δ.

As was noted in [7], this theorem can be viewed as an "additive" analogue to the Sauer-Spencer theorem, since $\Delta_{1}+\Delta_{2}<\sqrt{2 n}$ implies that $\Delta_{1} \Delta_{2}<\frac{n}{2}$. We modify and strengthen the techniques introduced in the proof of Theorem 1.2 to obtain our main results here.
1.3. Statement of Main Results. Throughout the statement and proof of the following results, given graphic sequences π_{1} and π_{2} we let $\Delta_{i}=\Delta\left(\pi_{i}\right)$ and $\delta_{i}=\delta\left(\pi_{i}\right)$ for $i \in\{1,2\}$. Our main result is as follows.

THEOREM 1.3. Let π_{1} and π_{2} be graphic sequences with $\Delta_{2} \geq \Delta_{1}$ and $\delta_{1} \geq 1$. If

$$
\left\{\begin{array}{cl}
\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \delta_{1} n+1 & \text { when } \Delta_{2}+2 \geq \Delta_{1}+\delta_{1} \\
\frac{\left(\Delta_{2}+1+\Delta_{1}+\delta_{1}\right)^{2}}{4} \leq \delta_{1} n+1 & \text { when } \Delta_{2}+2<\Delta_{1}+\delta_{1}
\end{array}\right.
$$

then π_{1} and π_{2} pack.
Theorem 1.3 holds regardless of the orderings of π_{1} and π_{2}, although these orderings are fixed. Given this, we cannot assume that $\delta\left(\pi_{1}\right)=\delta\left(\pi_{2}\right)=0$, as it would be possible to order π_{1} and π_{2} so that the zero terms correspond, which would impact the relative strength of the hypothesis. It seems feasible that the conditions that $\Delta_{1} \leq \Delta_{2}$ and $\delta\left(\pi_{1}\right) \geq 1$ could be replaced by the weaker hypothesis that $\delta\left(\pi_{1}+\pi_{2}\right) \geq 1$, although we are unable to obtain such a result at this time.

Theorem 1.3 implies the following analogue to the Bollobás-Eldridge-Catlin conjecture.

Corollary 1.4. Let π_{1} and π_{2} be graphic sequences with $\Delta_{2} \geq \Delta_{1}$ and $\delta_{1} \geq 1$. If

$$
\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1
$$

then π_{1} and π_{2} pack. This result is best possible.
Much as the Bollobás-Eldridge-Catlin conjecture implies the Sauer-Spencer theorem, we also obtain the following.

COROLLARY 1.5. Let π_{1} and π_{2} be graphic sequences with $\Delta_{2} \geq \Delta_{1}$ and $\delta_{1} \geq 1$. If $\Delta_{1} \Delta_{2}<\frac{n}{2}$, then π_{1} and π_{2} pack. This result is best possible.
1.4. Sharpness. In [24], Kaul and Kostochka characterized the sharpness examples for Theorem 1.1. Specifically, graphs G_{1} and G_{2} satisfying $\Delta_{1} \Delta_{2}=\frac{n}{2}$ pack, unless n is even, G_{1} is a matching of size $\frac{n}{2}$, and either $\frac{n}{2}$ is odd and $G_{2}=K_{\frac{n}{2}, \frac{n}{2}}$, or G_{2} is any graph that contains $K_{\frac{n}{2}+1}$ as a component.

In a similar manner, to see that Corollaries 1.4 and 1.5 are sharp, let n be even and consider $\pi_{1}=\left(1^{n}\right)$ and $\pi_{2}=\left(\frac{n}{2} \frac{n+2}{2}, 0^{\frac{n-2}{2}}\right)$. These sequences are uniquely realized as a perfect matching and $K_{\frac{n}{2}+1} \cup\left(\frac{n}{2}-1\right) K_{1}$, which do not pack, regardless of the orderings of π_{1} and π_{2}. The proof of the following theorem is inherent in the proofs of Corollaries 1.4 and 1.5 , so we omit the proof in the interest of concision.

Theorem 1.6. Theorem 1.3 is strictly stronger than Corollary 1.4 unless $\delta_{1}=1$. Further, Corollary 1.4 is strictly stronger than Corollary 1.5 unless $\Delta_{1}=\delta_{1}=1$.

A k-factor of a graph G is a spanning k-regular subgraph of G. Kundu's k factor Theorem [28], proved independently by Lovász for $k=1$ [29], states that a graphic sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ has a realization containing a k-factor if and only if $\pi^{\prime}=\left(d_{1}-k, \ldots, d_{n}-k\right)$ is also graphic. Together with Theorem 1.6, this allows us to partially characterize the sharpness of Corollary 1.4 and completely characterize the sharpness of Corollary 1.5. The latter characterization is analogous to the characterization for graph packing from [24].

Theorem 1.7. Let π_{1} and π_{2} be graphic sequences with $\Delta_{2} \geq \Delta_{1}$ and $\delta_{1} \geq 1$.
(a) If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+2$ and $\delta_{1} \neq 1$, then π_{1} and π_{2} pack.
(b) If $\Delta_{1} \Delta_{2}=\frac{n}{2}$, then π_{1} and π_{2} pack unless $\Delta_{1}=1$ and $\pi_{1}+\pi_{2}$ is not graphic.
2. Proofs of Theorem 1.3 and Corollaries 1.4 and 1.5. Let $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ be graphs. We say a vertex pair (x, y) is a bad pair for $\left(G_{1}, G_{2}\right)$ or a $\left(G_{1}, G_{2}\right)$-bad pair if $x y \in E_{1} \cap E_{2}$. Let $b\left(G_{1}, G_{2}\right)$ denote the number of $\left(G_{1}, G_{2}\right)$-bad pairs. We begin by proving Theorem 1.3.

Proof. [Proof of Theorem 1.3] Let π_{1} and π_{2} be graphic sequences that do not pack. Choose $G_{1}=G\left(\pi_{1}\right)$ and $G_{2}=G\left(\pi_{2}\right)$ to have the fewest bad pairs among all realizations of π_{1} and π_{2} and let $G=G_{1} \cup G_{2}$. For a given (G_{1}, G_{2})-bad pair (x, y) we define $I(x, y)=V-\left(N_{G}(x) \cup N_{G}(y)\right)$. Among all choices of G_{1} and G_{2} that minimize $b\left(G_{1}, G_{2}\right)$, choose G_{1}, G_{2} and a bad pair (x, y) such that the size of $I=I(x, y)$ is maximum. For $i \in\{1,2\}$, let $Q_{i}(y)$ be $N_{G_{i}}(y)-N_{G}[x]$ and define $Q_{i}(x)$ similarly. If either $Q_{1}(x)$ or $Q_{1}(y)$ is nonempty, assume without loss of generality that $\left|Q_{1}(x)\right| \leq\left|Q_{1}(y)\right|$. Otherwise, if both $Q_{1}(x)$ and $Q_{1}(y)$ are empty, then assume without loss of generality that $\left|Q_{2}(x)\right| \leq\left|Q_{2}(y)\right|$.

Throughout the proof we will make use of the following sets. First, let $\bar{Y}=$ $V(G)-N_{G}[y]$. Define A to be a subset of $N_{G_{1}}(\bar{Y})$ such that every vertex of A has at least two neighbors in G_{1} in \bar{Y}. Finally, let $B=N_{G_{1}}(\bar{Y})-A$ and $R=A \cup\{v \in$ $\left.N_{G}[y]: A \subseteq N_{G}(v)\right\}$.

We prove Theorem 1.3 by counting the number of edges in G_{1} between R and $V(G)-R$ to reach a contradiction. In order to gain the desired count, we first show particular edge structures in I, \bar{Y}, and $N_{G_{1}}(\bar{Y})$. We then show that A is not empty and further that R is a vertex cover of G_{1}.

We proceed by proving a sequence of claims, the first of which follows immediately from the straightforward fact that $4 x y \leq(x+y)^{2}$ for all real x and y.

Claim 1. $\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \frac{1}{4}\left(\Delta_{2}+1+\Delta_{1}+\delta_{1}\right)^{2}$.
Claim 2. If u and v are vertices in G such that $x u$ and $y v$ are not in $E(G)$, then $u v$ is not in $E(G)$.

Proof. Assume otherwise, and without loss of generality let $u v$ be an edge of G_{1}. We may then exchange the edges $x y$ and $u v$ with the non-edges $x u$ and $y v$ in G_{1} to create another realization of π_{1}. Since $x u$ and $y v$ are not in G, this reduces the number of bad pairs, a contradiction.

Claim 2 immediately implies that I is an independent set in G.
Claim 3. $\bar{Y} \neq \emptyset$.

Proof. Toward contradiction, suppose that $N_{G}[y]=V(G)$. Thus $\left|N_{G}[y]\right|=n$, and therefore $\Delta_{1}+\Delta_{2} \geq n$. By assumption, $\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \delta_{1} n+1$, which implies that

$$
\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \delta_{1}\left(\Delta_{1}+\Delta_{2}\right)+1
$$

Expanding and rearranging, this yields

$$
0 \leq \Delta_{1}\left(\delta_{1}-1-\Delta_{2}\right)-\delta_{1}+1
$$

However, $\delta_{1}-1-\Delta_{2}<0$ and $-\delta_{1}+1 \leq 0$, a contradiction. Consequently, $N_{G}[y] \neq$ $V(G)$.

Claim 4. \bar{Y} is independent in G_{1}.
Proof. Otherwise, suppose there are vertices u and v in \bar{Y} that form an edge in G_{1}. By Claim 2, both u and v must be adjacent to x. If there is some vertex $z \in Q_{1}(y)$, then removing the edges $u v, x y$ and $y z$ from G_{1} and adding the non-edges $y u, y v$ and $x z$ to G_{1} would create another realization of G_{1}^{\prime} of π_{1} such that $b\left(G_{1}^{\prime}, G_{2}\right)<b\left(G_{1}, G_{2}\right)$. If $Q_{1}(y)$ is empty, then since $\left|Q_{1}(x)\right| \leq\left|Q_{1}(y)\right|$, we have that $Q_{1}(x)$ is also empty, and therefore since we have assumed $\left|Q_{2}(x)\right| \leq\left|Q_{2}(y)\right|$ and $u \in Q_{2}(x)$, there is some z in $Q_{2}(y)$. We then exchange the edges $y z$ and $x u$ in G_{2} and the edges $u v$ and $x y$ in G_{1}, for the non-edges $y u$ and $x z$ in G_{2} and the non-edges $x u$ and $y v$ in G_{1} to again create realizations of π_{1} and π_{2} with fewer than $b\left(G_{1}, G_{2}\right)$ bad pairs. Thus, \bar{Y} is independent in G_{1}. \square

Claim 5. $N_{G_{1}}(\bar{Y}) \cup\{x, y\}$ is a clique in G.
Proof. Let $u \in \bar{Y}$ and $w \in N_{G_{1}}(u)$. By Claim 4, $w \notin \bar{Y}$ and therefore $w \in N_{G}[y]$. If $w \neq x$, then since $u y \notin E(G)$, by Claim 2, $w x \in E(G)$. Thus, $N_{G_{1}}(u) \subseteq N_{G}[x] \cap$ $N_{G}(y)$.

Consequently, suppose $w, w^{\prime} \in N_{G_{1}}(\bar{Y})$ are such that $w w^{\prime} \notin E(G)$. Let $u \in$ $N_{G_{1}}(w) \cap \bar{Y}$ and $u^{\prime} \in N_{G_{1}}\left(w^{\prime}\right) \cap \bar{Y}\left(u\right.$ and u^{\prime} need not be distinct). Note that without loss of generality $x \neq w$ since $x w^{\prime} \in E(G)$. If $u \in I$, then replacing the edges $u w$, $u^{\prime} w^{\prime}$ and $x y$ in G_{1} with the non-edges $x u, y u^{\prime}$ and $w w^{\prime}$ contradicts the minimality of $b\left(G_{1}, G_{2}\right)$. Thus $u \notin I$, and likewise $u^{\prime} \notin I$.

Next, assume there is some $z \in Q_{1}(y)$. By Claim $2, u z \notin E(G)$. Remove the edges $w u, w^{\prime} u^{\prime}$ and $y z$ from G_{1} and add the edges $w w^{\prime}, y u^{\prime}$ and $z u$ to create a realization G_{1}^{\prime} of π_{1} with $b\left(G_{1}^{\prime}, G_{2}\right)=b\left(G_{1}, G_{2}\right)$. However, neither x nor y are adjacent to vertices in $\{z\} \cup I(x, y)$, which contradicts the maximality of I.

It remains to consider the case where $Q_{1}(y)=\emptyset$. Similar to the proof of Claim 4, since $Q_{1}(y)$ is empty, $Q_{1}(x)$ is empty, therefore $u, u^{\prime} \in Q_{2}(x)$ and there must be a vertex z in $Q_{2}(y)$. Also note that since $u, u^{\prime} \in Q_{2}(x)$ the edges $x u$ and $x u^{\prime}$ are in G_{2}. Exchanging the edges $w u, w^{\prime} u^{\prime}$ and $x y$ in G_{1} with $u x$ and the non-edges $u^{\prime} y$ and $w w^{\prime}$ creates another realization G_{1}^{\prime} of π_{1} such that (u, x) is a $\left(G_{1}^{\prime}, G_{2}\right)$ bad pair and $b\left(G_{1}^{\prime}, G_{2}\right)=b\left(G_{1}, G_{2}\right)$. However, by Claim $2 u$ is not adjacent to vertices in $\{z\} \cup I(x, y)$, and x is not adjacent to vertices in $\{z\} \cup I(x, y)$. Therefore $I(u, x)>I(x, y)$. Hence, $N_{G_{1}}(\bar{Y}) \cup\{x, y\}$ is a clique in G.

Claim 6. $A \neq \emptyset$.
Proof. For sake of contradiction, suppose A is empty, and therefore $N_{G_{1}}(\bar{Y})=B$. Since \bar{Y} is independent in G_{1} we have that $\delta_{1}|\bar{Y}| \leq|B|$. Thus,

$$
n=|\bar{Y}|+\left|N_{G}[y]\right| \leq \frac{|B|}{\delta_{1}}+\Delta_{1}+\Delta_{2}
$$

We proceed by showing that $|B| \leq \Delta_{1}+\Delta_{2}-2$, which establishes the desired contradiction. By the definition of \bar{Y}, y is not adjacent to vertices in \bar{Y}, and therefore $y \notin B$. If $x \notin B$, then $|B| \leq\left|N_{G}(y)\right|-|\{x\}| \leq \Delta_{1}+\Delta_{2}-2$. If $x \in B$, then since x has a neighbor in $\bar{Y}, Q_{1}(x) \neq \emptyset$. By assumption $\left|Q_{1}(x)\right| \leq\left|Q_{1}(y)\right|$, thus there is some vertex z in $N_{G}[y]$ not adjacent to x. Now we have that $|B| \leq\left|N_{G}[y]-\{y, z\}\right| \leq \Delta_{1}+\Delta_{2}-2$. Inserting this upper bound of $|B|$ into the above inequality we have that

$$
\delta_{1} n+1 \leq\left(\delta_{1}+1\right)\left(\Delta_{1}+\Delta_{2}\right)-1
$$

By Claim 1,

$$
\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \frac{\left(\Delta_{2}+1+\Delta_{1}+\delta_{1}\right)^{2}}{4}
$$

so that the hypothesis of the theorem yields

$$
\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq\left(\delta_{1}+1\right)\left(\Delta_{1}+\Delta_{2}\right)-1
$$

which implies

$$
\Delta_{2}\left(\Delta_{1}-1\right)<\delta_{1}\left(\Delta_{1}-1\right)
$$

so that either $0<0$, if $\Delta_{1}=1$, or $\delta_{1}>\Delta_{2}$, a contradiction.
By Claim $6, A \neq \emptyset$ and by Claim $5, N_{G_{1}}(\bar{Y}) \cup\{x, y\}$ is a clique in G and therefore $N_{G_{1}}(\bar{Y}) \cup\{x, y\} \subseteq R$.

Claim 7. Every edge of G_{1} is incident with R.
Proof. Towards contradiction let $z z^{\prime}$ be an edge of G_{1} not incident with R. By Claim 4 we know that z and z^{\prime} must be in $N_{G}[y]-R$, so there exist vertices w and w^{\prime} (not necessarily distinct) in A which are not adjacent to z and z^{\prime} (respectively). Also, we have distinct vertices u and u^{\prime} in \bar{Y} such that $w u$ and $w^{\prime} u^{\prime}$ are edges in G_{1}.

We can remove the edges $z z^{\prime}, u w$ and $u^{\prime} w^{\prime}$ from G_{1} and add the non-edges $w z$, $w^{\prime} z^{\prime}$ and $u u^{\prime}$ to form a realization G_{1}^{\prime} of π_{1}. It is possible that, via this edge-exchange, $\left(u, u^{\prime}\right)$ is a bad pair of $\left(G_{1}^{\prime}, G_{2}\right)$, implying that $b\left(G_{1}^{\prime}, G_{2}\right)=b\left(G_{1}, G_{2}\right)+1$. However, the sets $Q_{1}(x), Q_{2}(x), Q_{1}(y)$ and $Q_{2}(y)$ are not affected by these exchanges. Now, \bar{Y} is no longer independent in G_{1} and (x, y) is still a bad pair. As in the proof of Claim 4 we now exchange edges to obtain a realization $G_{1}^{\prime \prime}$ of π_{1} such that (x, y) and $\left(u, u^{\prime}\right)$ are no longer bad pairs and no other bad pairs are created. Thus, $b\left(G_{1}^{\prime \prime}, G_{2}\right)<b\left(G_{1}, G_{2}\right)$, a contradiction.

Therefore R is a vertex cover of G_{1}, as desired.
We conclude the proof by finding lower and upper bounds on the number of edges in G_{1} between R and $V-R$, which we denote by $e_{1}(R, V-R)$. The necessary lower bound follows easily from the assertion that $V-R$ is independent in G_{1}

$$
\delta_{1}(n-|R|) \leq e_{1}(R, V-R)
$$

While $\Delta_{1}|R|$ is a straightforward upper bound for $e_{1}(R, V-R)$, we require a stronger bound to obtain the desired result.

Suppose $|R| \leq \Delta_{2}+1$. Since $\{x, y\} \subseteq R$, in G_{1} both x and y have at most $\Delta_{1}-1$ neighbors in $V-R$. The remaining vertices of R each have at most Δ_{1} neighbors in $V-R$. Thus, $e_{1}(R, V-R)$ is bounded above by

$$
(|R|-2) \Delta_{1}+2\left(\Delta_{1}-1\right)=|R| \Delta_{1}-2
$$

Combining the upper and lower bounds on $e_{1}(R, V-R)$ yields

$$
\delta_{1} n+1<|R|\left(\Delta_{1}+\delta_{1}\right)
$$

By our assumption on $|R|$ we have the following contradiction,

$$
\delta_{1} n+1<\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right)
$$

Now assume that $|R|=\Delta_{2}+1+t$, where t is a positive integer. Notice that $\left|N_{G}[y]\right| \leq \Delta_{1}+\Delta_{2}$ implies that

$$
\left|N_{G}[y]-R\right| \leq \Delta_{1}+\Delta_{2}-\left(\Delta_{2}+1+t\right)=\Delta_{1}-t-1
$$

As y has no neighbors in \bar{Y}, y has at most $\Delta_{1}-t-1$ neighbors of G_{1} in $V-R$. If there is another vertex $w \in R-N_{G_{1}}(\bar{Y})$, then w also has no neighbors in \bar{Y} and thus has at most $\Delta_{1}-t-1$ neighbors of G_{1} in $V-R$. If $R-N_{G_{1}}(\bar{Y})=\{y\}$, then R is a clique. In this case, x has at most $\Delta_{1}+\Delta_{2}-|R|$ neighbors of G_{1} in $V-R$. As $\Delta_{1}+\Delta_{2}-|R|=\Delta_{1}-t-1$, we have that there are at least two vertices in R with at most $\Delta_{1}-t-1$ neighbors of G_{1} in $V-R$.

Each of the remaining vertices of R have at most $\Delta_{1}-t$ neighbors of G_{1} in $V-R$. In particular, if $v \in B$, then v has one neighbor of G_{1} to \bar{Y} and at most $\Delta_{1}-t-1$ neighbors of G_{1} to $N_{G}[y]-R$. If $v \in A$, then v is adjacent to every vertex of A, and therefore has at most $\Delta_{1}+\Delta_{2}-|R|+1$ neighbors of G_{1} to $V-R$, which is $\Delta_{1}-t$.

Therefore, we have that

$$
e_{1}(R, V-R) \leq 2\left(\Delta_{1}-t-1\right)+(|R|-2)\left(\Delta_{1}-t\right)=|R|\left(\Delta_{1}-t\right)-2 .
$$

Combining this with the lower bound of $e_{1}(R, V-R)$, we have

$$
\delta_{1} n+1<|R|\left(\Delta_{1}+\delta_{1}-t\right)
$$

Since $\Delta_{2}+1+t=|R|$, we expand the right side to obtain

$$
\delta_{1} n+1<\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right)-t\left(\Delta_{2}+1-\left(\Delta_{1}+\delta_{1}\right)\right)-t^{2}
$$

If $\Delta_{2}+2 \geq \Delta_{1}+\delta_{1}$, then we contradict our claim that $\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) \leq \delta_{1} n+1$. Otherwise, $\Delta_{2}+2<\Delta_{1}+\delta_{1}$. In this case, the right side is maximized when $t=$ $\frac{1}{2}\left(-\Delta_{2}-1+\Delta_{1}+\delta_{1}\right)$, which yields

$$
\delta_{1} n+1<\frac{\left(\Delta_{2}+1+\Delta_{1}+\delta_{1}\right)^{2}}{4}
$$

This contradiction completes the proof.
We next prove Corollary 1.4.
Proof. Assume that $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$. Then

$$
\begin{aligned}
\left(\Delta_{2}+1\right)\left(\Delta_{1}+\delta_{1}\right) & =\left(\Delta_{2}+1\right)\left(\Delta_{1}+1+\delta_{1}-1\right) \\
& =\left(\Delta_{2}+1\right)\left(\Delta_{1}+1\right)+\left(\Delta_{2}+1\right)\left(\delta_{1}-1\right) \\
& \leq \delta_{1} n+1
\end{aligned}
$$

where the last inequality follows from the hypothesis and the fact that $\delta_{1} \geq 1$. Thus the result follows when $\Delta_{2}+2 \geq \Delta_{1}+\delta_{1}$.

Suppose then that $\Delta_{2}+2<\Delta_{1}+\delta_{1}$, which implies $\delta_{1} \geq 2$ and also that

$$
\begin{aligned}
\frac{\left(\Delta_{2}+1+\Delta_{1}+\delta_{1}\right)^{2}}{4} & <\frac{\left[2\left(\Delta_{1}+\delta_{1}\right)\right]^{2}}{4} \\
& =\left(\Delta_{1}+\delta_{1}\right)^{2}
\end{aligned}
$$

Note that $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ implies that $\Delta_{1} \leq \sqrt{n}$, while $\delta_{1} \geq 2$ implies that $\sqrt{\delta_{1} n}-\delta_{1}>\sqrt{n}$. Hence $\left(\Delta_{1}+\delta_{1}\right)^{2} \leq \delta_{1} n$, and the result follows. \square

Finally, we give the straightforward proof that Corollary 1.4 implies Corollary 1.5.

Proof. For $\Delta_{1}>1$, since $\Delta_{1} \geq \Delta_{2}$, we have that $\Delta_{1}+\Delta_{2} \leq 2 \Delta_{2}$ and $2 \Delta_{2} \leq \Delta_{1} \Delta_{2}$, thus

$$
\Delta_{1} \Delta_{2}+\Delta_{1}+\Delta_{2} \leq 2 \Delta_{1} \Delta_{2}
$$

By assumption, $2 \Delta_{1} \Delta_{2}<n$, therefore $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$. If, instead, $\Delta_{1}=1$, then $2 \Delta_{2}<n$ or $2 \Delta_{2}+1 \leq n$, and since $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right)-1=2 \Delta_{2}+1$, we have that $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$ as desired.
3. Discrete Tomography. Tomography is the process of imaging through sectioning, for example constructing a three dimensional image from a series of 2dimensional cross-sections or projections. Of interest here is discrete tomography, which uses low-dimensional projections to reconstruct discrete objects, such as the atomic structure of crystalline lattices and other polyatomic structures.
3.1. The k-color Tomography Problem. Numerous papers (c.f. [13, 14, 18, 19]) study the k-color Tomography Problem, in which the goal is to color the entries of an $m \times n$ matrix using k colors so that each row and column receives a prescribed number of entries of each color. The colors represent different types of atoms appearing in a crystal, and the number of times an atom appears in a given row or column is generally obtained using high resolution transmission electron microscopes [27, 34]. This is precisely the problem of packing the degree sequences of k bipartite graphs with partite sets of size m and n.
3.2. Sauer-Spencer-Type Theorems. A sequence $\pi=\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s}\right)$ is bigraphic if there is a bipartite graph G such that $\pi=\pi(G)$ with partite sets X and Y, and the degrees of the vertices in X and Y are a_{1}, \ldots, a_{r} and b_{1}, \ldots, b_{r}, respectively. Two bigraphic sequences, $\pi_{1}=\left(a_{1}^{(1)}, \ldots, a_{r}^{(1)} ; b_{1}^{(1)}, \ldots, b_{s}^{(1)}\right)$ and $\pi_{2}=$ $\left(a_{1}^{(2)}, \ldots, a_{r}^{(2)} ; b_{1}^{(2)}, \ldots, b_{s}^{(2)}\right)$ pack if there exist edge-disjoint bipartite graphs G_{1} and G_{2}, both with partite sets $X=\left\{x_{1}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{s}\right\}$, such that for $j \in\{1,2\}$,

$$
d_{G_{j}}\left(x_{i}\right)=a_{i}^{(j)}
$$

for $1 \leq i \leq r$, and

$$
d_{G_{j}}\left(y_{i}\right)=b_{i}^{(j)}
$$

for $1 \leq i \leq s$.
The following is a tomographic analogue to Corollary 1.5.
THEOREM 3.1. Let π_{1} and π_{2} be bigraphic sequences with parts of sizes r and s, and $\Delta_{i}=\Delta\left(\pi_{i}\right)$ and $\delta_{i}=\delta\left(\pi_{i}\right)$ for $i \in\{1,2\}$, such that $\Delta_{1} \leq \Delta_{2}$ and $\delta_{1} \geq 1$. If

$$
\Delta_{1} \Delta_{2} \leq \frac{(r+s)}{4}
$$

then π_{1} and π_{2} pack.
The other main result of this section, which takes δ_{1} into account, improves on Theorem 3.1 when $\delta_{1} \geq 3$.

Theorem 3.2. Let π_{1} and π_{2} be bigraphic sequences with parts of sizes r and s, and $\Delta_{i}=\Delta\left(\pi_{i}\right)$ and $\delta_{i}=\delta\left(\pi_{i}\right)$ for $i \in\{1,2\}$, such that $\Delta_{1} \leq \Delta_{2}$ and $\delta_{1} \geq 1$. If

$$
\Delta_{1} \Delta_{2} \leq \delta_{1} \frac{(r+s)}{8}
$$

then π_{1} and π_{2} pack.
As before, we say a vertex pair (x, y) is a bad pair for $\left(G_{1}, G_{2}\right)$ or a $\left(G_{1}, G_{2}\right)$-bad pair if $x y \in E\left(G_{1}\right) \cap E\left(G_{2}\right)$.

Let π_{1} and π_{2} be bigraphic sequences that do not pack, choose $G_{1}=G\left(\pi_{1}\right)$ and $G_{2}=G\left(\pi_{2}\right)$ to have the fewest bad pairs among all realizations of π_{1} and π_{2} and let $G=G_{1} \cup G_{2}$. Fix a (G_{1}, G_{2})-bad pair (x, y) and let X and Y be the partite sets of G, where $x \in X$ and $y \in Y$. Let $I_{X}=X-N_{G}(y)$ and $I_{Y}=Y-N_{G}(x)$. We now have the following lemmas, the first of which is analogous to Claim 2.

Lemma 3.3. The set $I_{X} \cup I_{Y}$ is independent.
Proof. Suppose otherwise, so in particular let $z \in I_{X}$ and $z^{\prime} \in I_{Y}$ such that $z z^{\prime} \in E(G)$. Exchanging the edges $x y$ and $z z^{\prime}$ with the non-edges $z y$ and $z^{\prime} x$ decreases the number of $\left(G_{1}, G_{2}\right)$-bad pairs, contradicting the choice of G_{1} and G_{2}.

Lemma 3.4. The subgraph of G induced by $N_{G_{1}}\left(I_{Y}\right) \cup N_{G_{1}}\left(I_{X}\right) \cup\{x, y\}$ is a complete bipartite graph.

Proof. First, note that by Lemma 3.3 and the definition of I_{Y}, x is adjacent to every vertex in $N_{G_{1}}\left(I_{X}\right)$ and likewise, y is adjacent to every vertex in $N_{G_{1}}\left(I_{Y}\right)$. Suppose then that there is some $w \in N_{G_{1}}\left(I_{Y}\right)$ and $w^{\prime} \in N_{G_{1}}\left(I_{X}\right)$ such that $w w^{\prime}$ is not an edge in G. Now we have that there is some $z^{\prime} \in I_{Y}$ and $z \in I_{X}$ such that $w z^{\prime}$ and $w^{\prime} z$ are edges in G_{1}. Exchanging the edges $w^{\prime} z, w z^{\prime}$ and $x y$ (all in G_{1}) with the non-edges $w w^{\prime}, x z^{\prime}$ and $y z$ decreases the number of bad pairs in G, a contradiction. \square

We are now ready to prove Theorems 3.1 and 3.2.
Proof. [Proof of Theorem 3.1] Observe first that each vertex in $N_{G_{1}}\left(I_{X}\right)$ (respectively $N_{G_{1}}\left(I_{Y}\right)$) can have at most Δ_{1} neighbors in I_{X} (resp. I_{Y}) so that

$$
\left|I_{X}\right|+\left|I_{Y}\right| \leq \Delta_{1}\left(\left|N_{G_{1}}\left(I_{X}\right)\right|+\left|N_{G_{1}}\left(I_{Y}\right)\right|\right) .
$$

We further have that

$$
n-\left(\left|N_{G}(x)\right|+\left|N_{G}(y)\right|\right) \leq\left|I_{X}\right|+\left|I_{Y}\right|,
$$

and

$$
\left|N_{G_{1}}\left(I_{Y}\right)\right|+\left|N_{G_{1}}\left(I_{X}\right)\right| \leq\left|N_{G}(x)\right|+\left|N_{G}(y)\right|-2 \leq 2\left(\Delta_{1}+\Delta_{2}\right)-4 .
$$

Taken together, these yield that

$$
n-\left(2\left(\Delta_{1}+\Delta_{2}\right)-2\right) \leq \Delta_{1}\left(2\left(\Delta_{1}+\Delta_{2}\right)-4\right),
$$

so

$$
\frac{n}{2} \leq\left(\Delta_{1}+1\right)\left(\Delta_{1}+\Delta_{2}\right)-2 \Delta_{1}-1
$$

As $\Delta_{1} \Delta_{2} \leq \frac{n}{4}$, it follows that

$$
2 \Delta_{1} \Delta_{2} \leq \Delta_{1}^{2}+\Delta_{1} \Delta_{2}+\Delta_{1}+\Delta_{2}-2 \Delta_{1}-1,
$$

so that

$$
\Delta_{1} \Delta_{2}-\Delta_{2} \leq \Delta_{1}^{2}-\Delta_{1}-1
$$

However, then

$$
\Delta_{2} \leq \Delta_{1}-\frac{1}{\Delta_{1}-1}
$$

a contradiction, since $\Delta_{1} \leq \Delta_{2}$. \square
Proof. [Proof of Theorem 3.2] By Lemma 3.3, I_{X} and I_{Y} are independent, so every vertex in $I_{X} \cup I_{Y}$ must have at least δ_{1} neighbors in $N_{G_{1}}\left(I_{Y}\right) \cup N_{G_{1}}\left(I_{X}\right)$. Also, as in Theorem 3.1, each vertex in $N_{G_{1}}\left(I_{Y}\right) \cup N_{G_{1}}\left(I_{X}\right)$ has at most Δ_{1} neighbors in $I_{X} \cup I_{Y}$. Therefore,

$$
\delta_{1}\left(\left|I_{X}\right|+\left|I_{Y}\right|\right) \leq \Delta_{1}\left(\left|N_{G_{1}}\left(I_{Y}\right)\right|+\left|N_{G_{1}}\left(I_{X}\right)\right|\right)
$$

so that

$$
\left|I_{X}\right|+\left|I_{Y}\right| \leq \frac{\Delta_{1}}{\delta_{1}}\left(\left|N_{G_{1}}\left(I_{Y}\right)\right|+\left|N_{G_{1}}\left(I_{X}\right)\right|\right)
$$

Again, we have that

$$
\left|N_{G_{1}}\left(I_{Y}\right)\right|+\left|N_{G_{1}}\left(I_{X}\right)\right| \leq\left|N_{G}(x)\right|+\left|N_{G}(y)\right|-2 \leq 2\left(\Delta_{1}+\Delta_{2}-2\right)
$$

Let $r+s=n$, so that

$$
\left|I_{X}\right|+\left|I_{Y}\right|=n-\left(\left|N_{G}(x)\right|+\left|N_{G}(y)\right|\right)
$$

Combining the above equations yields

$$
n-2\left(\Delta_{1}+\Delta_{2}\right)+2 \leq 2 \frac{\Delta_{1}}{\delta_{1}}\left(\Delta_{1}+\Delta_{2}-2\right)
$$

By isolating Δ_{2},

$$
\frac{\delta_{1} n}{2\left(\Delta_{1}+\delta_{1}\right)}-\Delta_{1}+\frac{2 \Delta_{1}+\delta_{1}}{\Delta_{1}+\delta_{1}} \leq \Delta_{2}
$$

Notice that $\Delta_{1}+\delta_{1} \leq 2 \Delta_{1}$, so we have

$$
\frac{\delta_{1} n}{4 \Delta_{1}} \leq \Delta_{2}+\Delta_{1}-\frac{2 \Delta_{1}+\delta_{1}}{\Delta_{1}+\delta_{1}}
$$

By assumption, $\Delta_{2} \leq \frac{\delta_{1} n}{8 \Delta_{1}}$, so

$$
2 \Delta_{2} \leq 2\left(\frac{\delta_{1} n}{8 \Delta_{1}}\right) \leq \Delta_{2}+\Delta_{1}-\frac{2 \Delta_{1}+\delta_{1}}{\Delta_{1}+\delta_{1}}
$$

which implies

$$
\Delta_{2} \leq \Delta_{1}-\frac{2 \Delta_{1}+\delta_{1}}{\Delta_{1}+\delta_{1}}
$$

Since $\frac{2 \Delta_{1}+\delta_{1}}{\Delta_{1}+\delta_{1}}>0$, and $\Delta_{2} \geq \Delta_{1}$, we arrive at a contradiction, completing the proof.
Acknowledgement: The authors would like to thank the anonymous referees, whose suggestions greatly improved the exposition of this paper.

REFERENCES

[1] M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc., 28 (1993), pp. 39-51.
[2] N. Alon and E. Fischer, 2-factors in dense graphs, Discrete Math., 152 (1996), pp. 13-23.
[3] D. Bauer, H.J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D. R. Woodall and M. Yatauro, A Survey of Best Monotone Degree Conditions for Graph Properties, Graphs. Comb., 31 (2015), pp. 1-22.
[4] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B, 25 (1978), pp. 105-124.
[5] B. Bollobás, A. Kostochka and K. Nakprasit, Packing d-degenerate graphs, J. Comb. Theory Ser. B, 98 (2008), pp. 85-94.
[6] A. Busch, M. Ferrara, S. Hartke and M. Jacobson, Ramsey-type numbers for degree sequences, Graphs. Comb., 30 (2014), pp. 847-859.
[7] A. Busch, M. Ferrara, M. Jacobson, H. Kaul, S. Hartke and D. West, Packing of Graphic n-tuples, J. Graph Theory, 70 (2012), pp. 29-39.
[8] P. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ph.D. Thesis, The Ohio State University, Columbus, OH, 1976.
[9] V. Chvátal, On Hamilton's ideals, J. Combin. Theory Ser. B, 12 (1972), pp. 163-168.
[10] H. Corrádi and A. Hajnal, On the Maximal Number of Independent Circuits in a Graph, Acta Math. Hung., 14 (1963), pp. 423-439.
[11] B. Csaba, A. Shokoufandeh and E. Szemerédi, Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three, Combinatorica, 23 (2003), pp. 35-72.
[12] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952), pp. 69-81.
[13] P. Dulio, C. Peri, Discrete tomography and plane partitions. Adv. in Appl. Math., 50 (2013), pp. 390-408.
[14] C. Dürr, F. Guiñez and C. Matamala, Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard: a solution to the 2-atom problem in discrete tomography, SIAM J. Discrete Math., 26 (2012), pp. 330-352.
[15] Z. Dvořák and B. Mohar, Chromatic number and complete graph substructures for degree sequences, Combinatorica, 33 (2013), pp. 513-529.
[16] P. Erdos and T. Gallai, Graphs with prescribed degrees, Matematiki Lapor, 11 (1960), pp. 264-274 (in Hungarian).
[17] M. Ferrara, T. LeSaulnier, C. Moffatt and P. Wenger, On the Sum Necessary to Ensure a Degree Sequence is Potentially H-Graphic, to appear in Combinatorica.
[18] P. Gritzmann, B. Langfeld and M. Wiegelmann, Uniqueness in discrete tomography: three remarks and a corollary, SIAM J. Discrete Math., 25 (2011), pp. 1589-1599.
[19] F. Guiñez, C. Matamala and S. Thomassé, Realizing disjoint degree sequences of span at most two: A tractable discrete tomography problem, Discrete Applied Math., 159 (2011), pp. 23-30.
[20] A. Hajnal and E. Szemerédi, Proof of a Conjecture of Erdős, in Combinatorial Theory and Its Applications, II, P. Erdős, and V. T. Sós, Eds., Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam/London, 1970.
[21] S.L. Hakimi, On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math, 10 (1962), pp. 496-506.
[22] S. Hakimi and E. Schmeichel, Graphs and their degree sequences: A survey, In Theory and Applications of Graphs, Volume 642 of Lecture Notes in Mathematics, Springer, Berlin / Heidelberg, 1978, pp. 225-235.
[23] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat., 80 (1955), pp. 477-480.
[24] H. Kaul and A. Kostochka, Extremal graphs for a graph packing theorem of Sauer and Spencer, Combin. Probab. Comput., 16 (2007), no. 3, pp. 409-416.
[25] H. Kaul, A. Kostochka, and G. Yu, On a graph packing conjecture by Bollobás, Eldridge and Catlin, Combinatorica, 28 (2008), pp. 469-485.
[26] H. Kierstead, A. Kostochka, and G. Yu, Extremal graph packing problems: Ore-type versus Dirac-type, London Mathematical Society Lecture Note Series, 365 , Cambridge Univ. Press, Cambridge, 2009.
[27] C. Kisielowski, P. Schwander, F. Baumann, M. Seibt, Y. Kim and A. Ourmazd, An approach to quantitate high resolution transmission electron microscopy of crystalline materials, Ultramicroscopy, 58 (1995), pp. 131-155.
[28] S. Kundu, The k-factor conjecture is true, Discrete Math., 6 (1973), pp. 367-376.
[29] L. Lovász, Valencies of graphs with 1-factors, Periodica Math. Hung., 5 (1974), pp. 149-151.
[30] A. R. Rao, The clique number of a graph with a given degree sequence. In Proceedings of the Symposium on Graph Theory, volume 4 of ISI Lecture Notes, Macmillan of India, New Delhi, 1979, pp. 251-267.
[31] S. B. Rao, A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences. In Combinatorics and graph theory, volume 885 of Lecture Notes in Math., Springer, Berlin, 1981, pp. 417-440.
[32] N. Robertson and Z. Song, Hadwiger number and chromatic number for near regular degree sequences, J. Graph Theory, 64 (2010), pp. 175-183.
[33] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B, 25 (1978), pp. 295-302.
[34] P. Schwander, C. Kisielowski, M. Seigt, F. Baumann, Y. Kim and A. Ourmazd, Mapping projected potential interfacial roughness and composition in general crystalline solids by quantitative transmission electron microscopy, Physical Review Letters, 71 (1993), pp. 4150-4153.
[35] M. Wozniak, Packing of Graphs, Dissertationes Math., 362 (1997), 78 pp.
[36] H. Yap, Packing of Graphs: A survey, Discrete Math., 72 (1988), pp. 395-404.

[^0]: ${ }^{1}$ Department of Mathematics at Saint Vincent College, 300 Fraser Purchase Rd., Latrobe, PA 15650 (jennifer.diemunsch@stvincent.edu).
 ${ }^{2}$ Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80217 (michael.ferrara@ucdenver.edu, sogol.jahanbekam@ucdenver.edu).
 ${ }^{3}$ Research Supported in part by Simons Foundation Collaboration Grant \#206692.
 ${ }^{4}$ Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-1070; (james.shook@nist.gov).

