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Abstract. A sequence π = (d1, . . . , dn) is graphic if there is a simple graph G with vertex set

{v1, . . . , vn} such that the degree of vi is di. We say that graphic sequences π1 = (d
(1)
1 , . . . , d

(1)
n )

and π2 = (d
(2)
1 , . . . , d

(2)
n ) pack if there exist edge-disjoint n-vertex graphs G1 and G2 such that for

j ∈ {1, 2}, dGj
(vi) = d

(j)
i for all i ∈ {1, . . . , n}. Here, we prove several extremal degree sequence

packing theorems that parallel central results and open problems from the graph packing literature.
Specifically, the main result of this paper implies degree sequence packing analogues to the Bollobás-
Eldridge-Catlin graph packing conjecture and the classical graph packing theorem of Sauer and
Spencer.

In discrete tomography, a branch of discrete imaging science, the goal is to reconstruct discrete
objects using data acquired from low-dimensional projections. Specifically, in the k-color discrete
tomography problem the goal is to color the entries of an m× n matrix using k colors so that each
row and column receive a prescribed number of entries of each color. This problem is equivalent to
packing the degree sequences of k bipartite graphs with parts of sizes m and n. Here we also prove
several Sauer-Spencer-type theorems with applications to the 2-color discrete tomography problem.
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1. Introduction. A sequence of nonnegative integers π = (d1, d2, ..., dn) is
graphic if there is a (simple) graph G of order n having degree sequence π. In this
case, G is said to realize or be a realization of π, and we write π = π(G). If a sequence
π consists of the terms d1, . . . , dt having multiplicities µ1, . . . , µt, then we may write
π = (d µ1

1 , . . . , d µt

t ).

There are a number of necessary and sufficient conditions for a sequence to be
graphic, including the seminal Havel-Hakimi Algorithm [21, 23] and the Erdős-Gallai
Criteria [16]. However, a given graphic sequence may have a large family of noniso-
morphic realizations, and as such considerable attention has been given to the study
of when a graphic sequence has a realization with a given property. Such problems
can be divided into two broad classes, described as “forcible” problems and “poten-
tial” problems in [30]. Given a graph property P, we say that a graphic sequence π
is forcibly P-graphic if every realization of π has property P, and that π is potentially
P-graphic if at least one realization of π has property P.

Results on forcible degree sequences are often stated as traditional problems in
structural or extremal graph theory, where a necessary and/or sufficient condition is
given in terms of the degrees of the vertices (or equivalently the number of edges) of
a given graph. For instance, minimum degree thresholds for the existence of certain
graph structures, such as the threshold for hamiltonicity in Dirac’s Theorem [12], can
be thought of as forcible theorems. Two older, but exceptionally thorough surveys on
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forcible and potential problems are due to Hakimi and Schmeichel [22] and Rao [31],
and a more recent survey on forcible “Chvátal-Type” theorems (in the spirit of [9]) is
due to Bauer et al. [3].

A number of degree sequence analogues to classical problems in extremal graph
theory appear throughout the literature, including potentially graphic sequence vari-
ants of Hadwiger’s Conjecture [15, 32], graph Ramsey numbers [6] and the Turán
problem (c.f. [17]). In this paper, we consider an extension of the classical graph
packing literature to degree sequences. In particular, we prove a potentially P-graphic
analogue to a widely-studied graph packing conjecture of Bollobás and Eldridge [4]
and, independently, Catlin [8], which implies a graphic sequence version of the Sauer-
Spencer graph packing theorem [33]. We conclude by using similar techniques to
prove a pair of related results that have applications to discrete imaging science.

1.1. Graph Packing. Two n-vertex graphs G1 and G2 pack if G1 is a subgraph
of G2, or alternatively if G1 and G2 can be expressed as edge-disjoint subgraphs of
Kn, the complete graph on n vertices. Graph packing has received a great deal of
attention in the literature ([26], [35] and [36] are detailed and useful surveys).

In 1978, Sauer and Spencer [33] proved the following classical theorem.
Theorem 1.1. Let G1 and G2 be graphs of order n with maximum degree ∆1

and ∆2 respectively. If

∆1∆2 <
n

2
,

then G1 and G2 pack.
Likely the most notable open conjecture in graph packing is due to Bollobás and

Eldridge [4] and, independently, Catlin [8].
Conjecture 1. Let G1 and G2 be n-vertex graphs with maximum degrees

∆(Gi) = ∆i for i = 1, 2. If

(∆1 + 1)(∆2 + 1) ≤ n+ 1

then G1 and G2 pack.
If true, Conjecture 1 implies Theorem 1.1. The Bollobás-Eldridge-Catlin conjec-

ture has been settled in several cases, including when ∆1 ≤ 2 by Aigner and Brandt
[1] and Alon and Fisher [2]. The case when ∆1 = 3 was shown by Csaba, Shokoufan-
deh, and Szemerédi [11] for large n utilizing the regularity lemma. For ∆1,∆2 ≥ 300,
Kaul, Kostochka and Yu [25] showed that (∆1 +1)(∆2 +1) ≤ 0.6n+1 implies that the
two graphs pack, which improves the Sauer-Spencer theorem, and is a partial solution
to Conjecture 1. Other partial results were obtained by Corrádi and Hajnal [10] and
Hajnal and Szemerédi [20].

1.2. Packing Graphic Sequences. The notion of packing graphic sequences
was investigated in [7], where the following key definition appears. If π1 and π2 are

(not necessarily monotone) graphic sequences, with π1 = (d
(1)
1 , . . . , d

(1)
n ) and π2 =

(d
(2)
1 , . . . , d

(2)
n ), then π1 and π2 pack if there exist edge-disjoint graphs G1 and G2,

both with vertex set {v1, . . . , vn}, such that

dG1
(vi) = d

(1)
i and dG2

(vi) = d
(2)
i .

It is critical to note here that the order of the terms in π1 and π2 is fixed, so
that the statement “π1 and π2 pack” is not equivalent to “π1 and π2 have realizations
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that pack”. This framework allows for some interesting distinctions between packing
graphs and packing graphic sequences. On the other hand, by fixing the ordering of
π1 and π2, the study of degree sequence packing provides insight into how a pair of
graphs with these degree sequences might feasibly pack, if in fact they do.

Given a sequence π, let ∆(π) and δ(π) denote the maximum and minimum terms
in π, respectively. Further, given two sequences π1 and π2 of the same length, let
π1 +π2 denote the “vector sum” of π1 and π2. One of the main results from [7] is the
following.

Theorem 1.2. Let π1 and π2 be n-term graphic sequences with ∆ = ∆(π1 + π2)
and δ = δ(π1 + π2). If

∆ ≤
√

2δn− (δ − 1),

then π1 and π2 pack, except that strict inequality is required when δ = 1. This result
is sharp for all n and δ.

As was noted in [7], this theorem can be viewed as an “additive” analogue to the
Sauer-Spencer theorem, since ∆1 + ∆2 <

√
2n implies that ∆1∆2 <

n
2 . We modify

and strengthen the techniques introduced in the proof of Theorem 1.2 to obtain our
main results here.

1.3. Statement of Main Results. Throughout the statement and proof of the
following results, given graphic sequences π1 and π2 we let ∆i = ∆(πi) and δi = δ(πi)
for i ∈ {1, 2}. Our main result is as follows.

Theorem 1.3. Let π1 and π2 be graphic sequences with ∆2 ≥ ∆1 and δ1 ≥ 1. If{
(∆2 + 1)(∆1 + δ1) ≤ δ1n+ 1 when ∆2 + 2 ≥ ∆1 + δ1

(∆2+1+∆1+δ1)2

4 ≤ δ1n+ 1 when ∆2 + 2 < ∆1 + δ1,

then π1 and π2 pack.
Theorem 1.3 holds regardless of the orderings of π1 and π2, although these order-

ings are fixed. Given this, we cannot assume that δ(π1) = δ(π2) = 0, as it would be
possible to order π1 and π2 so that the zero terms correspond, which would impact the
relative strength of the hypothesis. It seems feasible that the conditions that ∆1 ≤ ∆2

and δ(π1) ≥ 1 could be replaced by the weaker hypothesis that δ(π1 + π2) ≥ 1, al-
though we are unable to obtain such a result at this time.

Theorem 1.3 implies the following analogue to the Bollobás-Eldridge-Catlin con-
jecture.

Corollary 1.4. Let π1 and π2 be graphic sequences with ∆2 ≥ ∆1 and δ1 ≥ 1.
If

(∆1 + 1)(∆2 + 1) ≤ n+ 1,

then π1 and π2 pack. This result is best possible.
Much as the Bollobás-Eldridge-Catlin conjecture implies the Sauer-Spencer the-

orem, we also obtain the following.
Corollary 1.5. Let π1 and π2 be graphic sequences with ∆2 ≥ ∆1 and δ1 ≥ 1.

If ∆1∆2 <
n
2 , then π1 and π2 pack. This result is best possible.

1.4. Sharpness. In [24], Kaul and Kostochka characterized the sharpness ex-
amples for Theorem 1.1. Specifically, graphs G1 and G2 satisfying ∆1∆2 = n

2 pack,
unless n is even, G1 is a matching of size n

2 , and either n
2 is odd and G2 = Kn

2 ,
n
2

, or
G2 is any graph that contains Kn

2 +1 as a component.
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In a similar manner, to see that Corollaries 1.4 and 1.5 are sharp, let n be even

and consider π1 = (1n) and π2 = (n2
n+2
2 , 0

n−2
2 ). These sequences are uniquely realized

as a perfect matching and Kn
2 +1 ∪

(
n
2 − 1

)
K1, which do not pack, regardless of the

orderings of π1 and π2. The proof of the following theorem is inherent in the proofs
of Corollaries 1.4 and 1.5, so we omit the proof in the interest of concision.

Theorem 1.6. Theorem 1.3 is strictly stronger than Corollary 1.4 unless δ1 = 1.
Further, Corollary 1.4 is strictly stronger than Corollary 1.5 unless ∆1 = δ1 = 1.

A k-factor of a graph G is a spanning k-regular subgraph of G. Kundu’s k-
factor Theorem [28], proved independently by Lovász for k = 1 [29], states that a
graphic sequence π = (d1, . . . , dn) has a realization containing a k-factor if and only
if π′ = (d1 − k, . . . , dn − k) is also graphic. Together with Theorem 1.6, this allows
us to partially characterize the sharpness of Corollary 1.4 and completely character-
ize the sharpness of Corollary 1.5. The latter characterization is analogous to the
characterization for graph packing from [24].

Theorem 1.7. Let π1 and π2 be graphic sequences with ∆2 ≥ ∆1 and δ1 ≥ 1.
(a) If (∆1 + 1)(∆2 + 1) ≤ n+ 2 and δ1 6= 1, then π1 and π2 pack.
(b) If ∆1∆2 = n

2 , then π1 and π2 pack unless ∆1 = 1 and π1 + π2 is not graphic.

2. Proofs of Theorem 1.3 and Corollaries 1.4 and 1.5. Let G1 = (V,E1)
and G2 = (V,E2) be graphs. We say a vertex pair (x, y) is a bad pair for (G1, G2) or a
(G1, G2)-bad pair if xy ∈ E1 ∩ E2. Let b(G1, G2) denote the number of (G1, G2)-bad
pairs. We begin by proving Theorem 1.3.

Proof. [Proof of Theorem 1.3] Let π1 and π2 be graphic sequences that do not
pack. Choose G1 = G(π1) and G2 = G(π2) to have the fewest bad pairs among
all realizations of π1 and π2 and let G = G1 ∪ G2. For a given (G1, G2)-bad pair
(x, y) we define I(x, y) = V − (NG(x) ∪ NG(y)). Among all choices of G1 and G2

that minimize b(G1, G2), choose G1, G2 and a bad pair (x, y) such that the size of
I = I(x, y) is maximum. For i ∈ {1, 2}, let Qi(y) be NGi

(y)−NG[x] and define Qi(x)
similarly. If either Q1(x) or Q1(y) is nonempty, assume without loss of generality
that |Q1(x)| ≤ |Q1(y)|. Otherwise, if both Q1(x) and Q1(y) are empty, then assume
without loss of generality that |Q2(x)| ≤ |Q2(y)|.

Throughout the proof we will make use of the following sets. First, let Y =
V (G) − NG[y]. Define A to be a subset of NG1

(Y ) such that every vertex of A has
at least two neighbors in G1 in Y . Finally, let B = NG1

(Y ) − A and R = A ∪ {v ∈
NG[y] : A ⊆ NG(v)}.

We prove Theorem 1.3 by counting the number of edges in G1 between R and
V (G)−R to reach a contradiction. In order to gain the desired count, we first show
particular edge structures in I, Y , and NG1(Y ). We then show that A is not empty
and further that R is a vertex cover of G1.

We proceed by proving a sequence of claims, the first of which follows immediately
from the straightforward fact that 4xy ≤ (x+ y)2 for all real x and y.

Claim 1. (∆2 + 1)(∆1 + δ1) ≤ 1
4 (∆2 + 1 + ∆1 + δ1)2.

Claim 2. If u and v are vertices in G such that xu and yv are not in E(G), then
uv is not in E(G).

Proof. Assume otherwise, and without loss of generality let uv be an edge of G1.
We may then exchange the edges xy and uv with the non-edges xu and yv in G1

to create another realization of π1. Since xu and yv are not in G, this reduces the
number of bad pairs, a contradiction.

Claim 2 immediately implies that I is an independent set in G.
Claim 3. Y 6= ∅.
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Proof. Toward contradiction, suppose that NG[y] = V (G). Thus |NG[y]| = n,
and therefore ∆1 + ∆2 ≥ n. By assumption, (∆2 + 1)(∆1 + δ1) ≤ δ1n + 1, which
implies that

(∆2 + 1)(∆1 + δ1) ≤ δ1(∆1 + ∆2) + 1.

Expanding and rearranging, this yields

0 ≤ ∆1(δ1 − 1−∆2)− δ1 + 1.

However, δ1 − 1−∆2 < 0 and −δ1 + 1 ≤ 0, a contradiction. Consequently, NG[y] 6=
V (G).

Claim 4. Y is independent in G1.

Proof. Otherwise, suppose there are vertices u and v in Y that form an edge in G1.
By Claim 2, both u and v must be adjacent to x. If there is some vertex z ∈ Q1(y),
then removing the edges uv, xy and yz from G1 and adding the non-edges yu, yv and
xz to G1 would create another realization of G′

1 of π1 such that b(G′
1, G2) < b(G1, G2).

If Q1(y) is empty, then since |Q1(x)| ≤ |Q1(y)|, we have that Q1(x) is also empty, and
therefore since we have assumed |Q2(x)| ≤ |Q2(y)| and u ∈ Q2(x), there is some z in
Q2(y). We then exchange the edges yz and xu in G2 and the edges uv and xy in G1,
for the non-edges yu and xz in G2 and the non-edges xu and yv in G1 to again create
realizations of π1 and π2 with fewer than b(G1, G2) bad pairs. Thus, Y is independent
in G1.

Claim 5. NG1(Y ) ∪ {x, y} is a clique in G.

Proof. Let u ∈ Y and w ∈ NG1
(u). By Claim 4, w /∈ Y and therefore w ∈ NG[y].

If w 6= x, then since uy /∈ E(G), by Claim 2, wx ∈ E(G). Thus, NG1
(u) ⊆ NG[x] ∩

NG(y).

Consequently, suppose w,w′ ∈ NG1(Y ) are such that ww′ /∈ E(G). Let u ∈
NG1

(w)∩Y and u′ ∈ NG1
(w′)∩Y (u and u′ need not be distinct). Note that without

loss of generality x 6= w since xw′ ∈ E(G). If u ∈ I, then replacing the edges uw,
u′w′ and xy in G1 with the non-edges xu, yu′ and ww′ contradicts the minimality of
b(G1, G2). Thus u /∈ I, and likewise u′ /∈ I.

Next, assume there is some z ∈ Q1(y). By Claim 2, uz /∈ E(G). Remove the edges
wu, w′u′ and yz from G1 and add the edges ww′, yu′ and zu to create a realization G′

1

of π1 with b(G′
1, G2) = b(G1, G2). However, neither x nor y are adjacent to vertices

in {z} ∪ I(x, y), which contradicts the maximality of I.

It remains to consider the case where Q1(y) = ∅. Similar to the proof of Claim 4,
since Q1(y) is empty, Q1(x) is empty, therefore u, u′ ∈ Q2(x) and there must be
a vertex z in Q2(y). Also note that since u, u′ ∈ Q2(x) the edges xu and xu′ are
in G2. Exchanging the edges wu, w′u′ and xy in G1 with ux and the non-edges
u′y and ww′ creates another realization G′

1 of π1 such that (u, x) is a (G′
1, G2)-

bad pair and b(G′
1, G2) = b(G1, G2). However, by Claim 2 u is not adjacent to

vertices in {z} ∪ I(x, y), and x is not adjacent to vertices in {z} ∪ I(x, y). Therefore
I(u, x) > I(x, y). Hence, NG1

(Y ) ∪ {x, y} is a clique in G.

Claim 6. A 6= ∅.
Proof. For sake of contradiction, suppose A is empty, and therefore NG1(Y ) = B.

Since Y is independent in G1 we have that δ1|Y | ≤ |B|. Thus,

n = |Y |+ |NG[y]| ≤ |B|
δ1

+ ∆1 + ∆2.

5



We proceed by showing that |B| ≤ ∆1 + ∆2 − 2, which establishes the desired
contradiction. By the definition of Y , y is not adjacent to vertices in Y , and therefore
y /∈ B. If x 6∈ B, then |B| ≤ |NG(y)|−|{x}| ≤ ∆1+∆2−2. If x ∈ B, then since x has a
neighbor in Y , Q1(x) 6= ∅. By assumption |Q1(x)| ≤ |Q1(y)|, thus there is some vertex
z in NG[y] not adjacent to x. Now we have that |B| ≤ |NG[y]−{y, z}| ≤ ∆1 +∆2−2.
Inserting this upper bound of |B| into the above inequality we have that

δ1n+ 1 ≤ (δ1 + 1)(∆1 + ∆2)− 1.

By Claim 1,

(∆2 + 1)(∆1 + δ1) ≤ (∆2 + 1 + ∆1 + δ1)2

4
.

so that the hypothesis of the theorem yields

(∆2 + 1)(∆1 + δ1) ≤ (δ1 + 1)(∆1 + ∆2)− 1,

which implies

∆2(∆1 − 1) < δ1(∆1 − 1),

so that either 0 < 0, if ∆1 = 1, or δ1 > ∆2, a contradiction.
By Claim 6, A 6= ∅ and by Claim 5, NG1

(Y )∪{x, y} is a clique in G and therefore
NG1

(Y ) ∪ {x, y} ⊆ R.
Claim 7. Every edge of G1 is incident with R.
Proof. Towards contradiction let zz′ be an edge of G1 not incident with R. By

Claim 4 we know that z and z′ must be in NG[y] − R, so there exist vertices w and
w′ (not necessarily distinct) in A which are not adjacent to z and z′ (respectively).
Also, we have distinct vertices u and u′ in Y such that wu and w′u′ are edges in G1.

We can remove the edges zz′, uw and u′w′ from G1 and add the non-edges wz,
w′z′ and uu′ to form a realization G′

1 of π1. It is possible that, via this edge-exchange,
(u, u′) is a bad pair of (G′

1, G2), implying that b(G′
1, G2) = b(G1, G2) + 1. However,

the sets Q1(x), Q2(x), Q1(y) and Q2(y) are not affected by these exchanges. Now, Y
is no longer independent in G1 and (x, y) is still a bad pair. As in the proof of Claim 4
we now exchange edges to obtain a realization G′′

1 of π1 such that (x, y) and (u, u′) are
no longer bad pairs and no other bad pairs are created. Thus, b(G′′

1 , G2) < b(G1, G2),
a contradiction.

Therefore R is a vertex cover of G1, as desired.
We conclude the proof by finding lower and upper bounds on the number of edges

in G1 between R and V −R, which we denote by e1(R, V −R). The necessary lower
bound follows easily from the assertion that V −R is independent in G1

δ1(n− |R|) ≤ e1(R, V −R).

While ∆1|R| is a straightforward upper bound for e1(R, V − R), we require a
stronger bound to obtain the desired result.

Suppose |R| ≤ ∆2 + 1. Since {x, y} ⊆ R, in G1 both x and y have at most ∆1− 1
neighbors in V −R. The remaining vertices of R each have at most ∆1 neighbors in
V −R. Thus, e1(R, V −R) is bounded above by

(|R| − 2)∆1 + 2(∆1 − 1) = |R|∆1 − 2.
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Combining the upper and lower bounds on e1(R, V −R) yields

δ1n+ 1 < |R|(∆1 + δ1).

By our assumption on |R| we have the following contradiction,

δ1n+ 1 < (∆2 + 1)(∆1 + δ1).

Now assume that |R| = ∆2 + 1 + t, where t is a positive integer. Notice that
|NG[y]| ≤ ∆1 + ∆2 implies that

|NG[y]−R| ≤ ∆1 + ∆2 − (∆2 + 1 + t) = ∆1 − t− 1.

As y has no neighbors in Y , y has at most ∆1 − t − 1 neighbors of G1 in V − R. If
there is another vertex w ∈ R−NG1

(Y ), then w also has no neighbors in Y and thus
has at most ∆1 − t − 1 neighbors of G1 in V − R. If R − NG1

(Y ) = {y}, then R is
a clique. In this case, x has at most ∆1 + ∆2 − |R| neighbors of G1 in V − R. As
∆1 + ∆2 − |R| = ∆1 − t− 1, we have that there are at least two vertices in R with at
most ∆1 − t− 1 neighbors of G1 in V −R.

Each of the remaining vertices of R have at most ∆1− t neighbors of G1 in V −R.
In particular, if v ∈ B, then v has one neighbor of G1 to Y and at most ∆1 − t − 1
neighbors of G1 to NG[y]−R. If v ∈ A, then v is adjacent to every vertex of A, and
therefore has at most ∆1 + ∆2 − |R|+ 1 neighbors of G1 to V −R, which is ∆1 − t.

Therefore, we have that

e1(R, V −R) ≤ 2(∆1 − t− 1) + (|R| − 2)(∆1 − t) = |R|(∆1 − t)− 2.

Combining this with the lower bound of e1(R, V −R), we have

δ1n+ 1 < |R|(∆1 + δ1 − t).

Since ∆2 + 1 + t = |R|, we expand the right side to obtain

δ1n+ 1 < (∆2 + 1)(∆1 + δ1)− t(∆2 + 1− (∆1 + δ1))− t2.

If ∆2 + 2 ≥ ∆1 + δ1, then we contradict our claim that (∆2 + 1)(∆1 + δ1) ≤ δ1n+ 1.
Otherwise, ∆2 + 2 < ∆1 + δ1. In this case, the right side is maximized when t =
1
2 (−∆2 − 1 + ∆1 + δ1), which yields

δ1n+ 1 <
(∆2 + 1 + ∆1 + δ1)2

4
.

This contradiction completes the proof.
We next prove Corollary 1.4.
Proof. Assume that (∆1 + 1)(∆2 + 1) ≤ n+ 1. Then

(∆2 + 1)(∆1 + δ1) = (∆2 + 1)(∆1 + 1 + δ1 − 1)

= (∆2 + 1)(∆1 + 1) + (∆2 + 1)(δ1 − 1)

≤ δ1n+ 1,

where the last inequality follows from the hypothesis and the fact that δ1 ≥ 1. Thus
the result follows when ∆2 + 2 ≥ ∆1 + δ1.
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Suppose then that ∆2 + 2 < ∆1 + δ1, which implies δ1 ≥ 2 and also that

(∆2 + 1 + ∆1 + δ1)2

4
<

[2(∆1 + δ1)]2

4

= (∆1 + δ1)2.

Note that (∆1 + 1)(∆2 + 1) ≤ n+ 1 implies that ∆1 ≤
√
n, while δ1 ≥ 2 implies that√

δ1n− δ1 >
√
n. Hence (∆1 + δ1)2 ≤ δ1n, and the result follows.

Finally, we give the straightforward proof that Corollary 1.4 implies Corollary
1.5.

Proof. For ∆1 > 1, since ∆1 ≥ ∆2, we have that ∆1+∆2 ≤ 2∆2 and 2∆2 ≤ ∆1∆2,
thus

∆1∆2 + ∆1 + ∆2 ≤ 2∆1∆2.

By assumption, 2∆1∆2 < n, therefore (∆1 + 1)(∆2 + 1) ≤ n+ 1. If, instead, ∆1 = 1,
then 2∆2 < n or 2∆2 + 1 ≤ n, and since (∆1 + 1)(∆2 + 1) − 1 = 2∆2 + 1, we have
that (∆1 + 1)(∆2 + 1) ≤ n+ 1 as desired.

3. Discrete Tomography. Tomography is the process of imaging through sec-
tioning, for example constructing a three dimensional image from a series of 2-
dimensional cross-sections or projections. Of interest here is discrete tomography,
which uses low-dimensional projections to reconstruct discrete objects, such as the
atomic structure of crystalline lattices and other polyatomic structures.

3.1. The k-color Tomography Problem. Numerous papers (c.f. [13, 14, 18,
19]) study the k-color Tomography Problem, in which the goal is to color the entries
of an m× n matrix using k colors so that each row and column receives a prescribed
number of entries of each color. The colors represent different types of atoms appear-
ing in a crystal, and the number of times an atom appears in a given row or column
is generally obtained using high resolution transmission electron microscopes [27, 34].
This is precisely the problem of packing the degree sequences of k bipartite graphs
with partite sets of size m and n.

3.2. Sauer-Spencer-Type Theorems. A sequence π = (a1, . . . , ar; b1, . . . , bs)
is bigraphic if there is a bipartite graph G such that π = π(G) with partite sets
X and Y , and the degrees of the vertices in X and Y are a1, . . . , ar and b1, . . . , br,

respectively. Two bigraphic sequences, π1 = (a
(1)
1 , . . . , a

(1)
r ; b

(1)
1 , . . . , b

(1)
s ) and π2 =

(a
(2)
1 , . . . , a

(2)
r ; b

(2)
1 , . . . , b

(2)
s ) pack if there exist edge-disjoint bipartite graphs G1 and

G2, both with partite sets X = {x1, . . . , xr} and Y = {y1, . . . , ys}, such that for
j ∈ {1, 2},

dGj
(xi) = a

(j)
i

for 1 ≤ i ≤ r, and

dGj
(yi) = b

(j)
i

for 1 ≤ i ≤ s.
The following is a tomographic analogue to Corollary 1.5.
Theorem 3.1. Let π1 and π2 be bigraphic sequences with parts of sizes r and s,

and ∆i = ∆(πi) and δi = δ(πi) for i ∈ {1, 2}, such that ∆1 ≤ ∆2 and δ1 ≥ 1. If

∆1∆2 ≤
(r + s)

4
8



then π1 and π2 pack.
The other main result of this section, which takes δ1 into account, improves on

Theorem 3.1 when δ1 ≥ 3.
Theorem 3.2. Let π1 and π2 be bigraphic sequences with parts of sizes r and s,

and ∆i = ∆(πi) and δi = δ(πi) for i ∈ {1, 2}, such that ∆1 ≤ ∆2 and δ1 ≥ 1. If

∆1∆2 ≤ δ1
(r + s)

8

then π1 and π2 pack.
As before, we say a vertex pair (x, y) is a bad pair for (G1, G2) or a (G1, G2)-bad

pair if xy ∈ E(G1) ∩ E(G2).
Let π1 and π2 be bigraphic sequences that do not pack, choose G1 = G(π1) and

G2 = G(π2) to have the fewest bad pairs among all realizations of π1 and π2 and let
G = G1 ∪ G2. Fix a (G1, G2)-bad pair (x, y) and let X and Y be the partite sets of
G, where x ∈ X and y ∈ Y . Let IX = X − NG(y) and IY = Y − NG(x). We now
have the following lemmas, the first of which is analogous to Claim 2.

Lemma 3.3. The set IX ∪ IY is independent.
Proof. Suppose otherwise, so in particular let z ∈ IX and z′ ∈ IY such that

zz′ ∈ E(G). Exchanging the edges xy and zz′ with the non-edges zy and z′x decreases
the number of (G1, G2)-bad pairs, contradicting the choice of G1 and G2.

Lemma 3.4. The subgraph of G induced by NG1(IY ) ∪ NG1(IX) ∪ {x, y} is a
complete bipartite graph.

Proof. First, note that by Lemma 3.3 and the definition of IY , x is adjacent
to every vertex in NG1

(IX) and likewise, y is adjacent to every vertex in NG1
(IY ).

Suppose then that there is some w ∈ NG1
(IY ) and w′ ∈ NG1

(IX) such that ww′ is
not an edge in G. Now we have that there is some z′ ∈ IY and z ∈ IX such that wz′

and w′z are edges in G1. Exchanging the edges w′z, wz′ and xy (all in G1) with the
non-edges ww′, xz′ and yz decreases the number of bad pairs in G, a contradiction.

We are now ready to prove Theorems 3.1 and 3.2.
Proof. [Proof of Theorem 3.1] Observe first that each vertex in NG1

(IX) (respec-
tively NG1

(IY )) can have at most ∆1 neighbors in IX (resp. IY ) so that

|IX |+ |IY | ≤ ∆1(|NG1
(IX)|+ |NG1

(IY )|).

We further have that

n− (|NG(x)|+ |NG(y)|) ≤ |IX |+ |IY |,

and

|NG1
(IY )|+ |NG1

(IX)| ≤ |NG(x)|+ |NG(y)| − 2 ≤ 2(∆1 + ∆2)− 4.

Taken together, these yield that

n− (2(∆1 + ∆2)− 2) ≤ ∆1(2(∆1 + ∆2)− 4),

so

n

2
≤ (∆1 + 1)(∆1 + ∆2)− 2∆1 − 1.

As ∆1∆2 ≤
n

4
, it follows that

2∆1∆2 ≤ ∆2
1 + ∆1∆2 + ∆1 + ∆2 − 2∆1 − 1,

9



so that

∆1∆2 −∆2 ≤ ∆2
1 −∆1 − 1.

However, then

∆2 ≤ ∆1 −
1

∆1 − 1
,

a contradiction, since ∆1 ≤ ∆2.
Proof. [Proof of Theorem 3.2] By Lemma 3.3, IX and IY are independent, so

every vertex in IX ∪ IY must have at least δ1 neighbors in NG1
(IY )∪NG1

(IX). Also,
as in Theorem 3.1, each vertex in NG1

(IY ) ∪ NG1
(IX) has at most ∆1 neighbors in

IX ∪ IY . Therefore,

δ1(|IX |+ |IY |) ≤ ∆1(|NG1(IY )|+ |NG1(IX)|)

so that

|IX |+ |IY | ≤
∆1

δ1
(|NG1(IY )|+ |NG1(IX)|) .

Again, we have that

|NG1(IY )|+ |NG1(IX)| ≤ |NG(x)|+ |NG(y)| − 2 ≤ 2(∆1 + ∆2 − 2).

Let r + s = n, so that

|IX |+ |IY | = n− (|NG(x)|+ |NG(y)|) .

Combining the above equations yields

n− 2(∆1 + ∆2) + 2 ≤ 2
∆1

δ1
(∆1 + ∆2 − 2).

By isolating ∆2,

δ1n

2(∆1 + δ1)
−∆1 +

2∆1 + δ1
∆1 + δ1

≤ ∆2.

Notice that ∆1 + δ1 ≤ 2∆1, so we have

δ1n

4∆1
≤ ∆2 + ∆1 −

2∆1 + δ1
∆1 + δ1

.

By assumption, ∆2 ≤
δ1n

8∆1
, so

2∆2 ≤ 2

(
δ1n

8∆1

)
≤ ∆2 + ∆1 −

2∆1 + δ1
∆1 + δ1

,

which implies

∆2 ≤ ∆1 −
2∆1 + δ1
∆1 + δ1

.

Since
2∆1 + δ1
∆1 + δ1

> 0, and ∆2 ≥ ∆1, we arrive at a contradiction, completing the

proof.
Acknowledgement: The authors would like to thank the anonymous referees, whose
suggestions greatly improved the exposition of this paper.
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pp. 477–480.

[24] H. Kaul and A. Kostochka, Extremal graphs for a graph packing theorem of Sauer and Spencer,
Combin. Probab. Comput., 16 (2007), no. 3, pp. 409–416.

[25] H. Kaul, A. Kostochka, and G. Yu, On a graph packing conjecture by Bollobás, Eldridge and
Catlin, Combinatorica, 28 (2008), pp. 469–485.

[26] H. Kierstead, A. Kostochka, and G. Yu, Extremal graph packing problems: Ore-type versus
Dirac-type, London Mathematical Society Lecture Note Series, 365 , Cambridge Univ.
Press, Cambridge, 2009.

[27] C. Kisielowski, P. Schwander, F. Baumann, M. Seibt, Y. Kim and A. Ourmazd, An approach
to quantitate high resolution transmission electron microscopy of crystalline materials,
Ultramicroscopy, 58 (1995), pp. 131–155.

[28] S. Kundu, The k-factor conjecture is true, Discrete Math., 6 (1973), pp. 367–376.
[29] L. Lovász, Valencies of graphs with 1-factors, Periodica Math. Hung., 5 (1974), pp. 149–151.

11



[30] A. R. Rao, The clique number of a graph with a given degree sequence. In Proceedings of the
Symposium on Graph Theory, volume 4 of ISI Lecture Notes, Macmillan of India, New
Delhi, 1979, pp. 251–267.

[31] S. B. Rao, A survey of the theory of potentially P -graphic and forcibly P -graphic degree
sequences. In Combinatorics and graph theory, volume 885 of Lecture Notes in Math.,
Springer, Berlin, 1981, pp. 417–440.

[32] N. Robertson and Z. Song, Hadwiger number and chromatic number for near regular degree
sequences, J. Graph Theory, 64 (2010), pp. 175–183.

[33] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B, 25
(1978), pp. 295–302.

[34] P. Schwander, C. Kisielowski, M. Seigt, F. Baumann, Y. Kim and A. Ourmazd, Mapping
projected potential interfacial roughness and composition in general crystalline solids by
quantitative transmission electron microscopy, Physical Review Letters, 71 (1993), pp.
4150–4153.

[35] M. Wozniak, Packing of Graphs, Dissertationes Math., 362 (1997), 78 pp.
[36] H. Yap, Packing of Graphs: A survey, Discrete Math., 72 (1988), pp. 395–404.

12


