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Abstract Kinetic parameters for serial pyrolysis reactions were calibrated from thermo-
gravimetric analysis (TGA) data using Bayesian inference via Markov Chain Monte Carlo
(MCMC) simulations assuming a serial reaction mechanism. Calibrations were performed
for high-impact polystyrene (HIPS), bisphenol-A polycarbonate (PC), and poly(vinyl chlo-
ride) (PVC) at heating rates of 3 K/min and 10 K/min. The resulting parameter inferences
are probabilistic as opposed to the point estimates calibrated in previous studies and are vi-
sualized using posterior probability density functions (PDFs) generated by kernel density
estimation (KDE). Correlations between the parameters are identified and discussed. In par-
ticular, it is clear that pre-exponential constants and activation energies for a given reaction
have a strong positive correlation. It is hypothesized that the degree of overlap in the poste-
rior PDFs might be a measure of model adequacy. Point-estimates of the kinetic parameters
were made by finding the mode of the posterior PDFs. For HIPS, it was determined that a
one-reaction pyrolysis model is most appropriate, and that the posterior modes for log(A1)
and E1 are 19.5 log(1/s) and 292 kJ/mol, respectively, for the 3 K/min data. To evaluate the
effect of kinetic parameter uncertainty on predictions of burning rate, samples from the pos-
terior PDF were used to simulate gasification and cone calorimetry experiments using the
Fire Dynamics Simulator (FDS). In some cases, it was found that models with fewer parame-
ters provided better predictions due to over-fitting associated with greater model complexity.
Another important observation is that for the predictions of PVC cone calorimetry, the time
to peak heat release rate can range from around 40 s to 180 s for a number of different
kinetic parameter combinations that all fit the TGA data fairly well. It is argued that the
proposed methodology is necessary for progress in modeling of condensed phase physics
for fire problems as it supports both model validation and engineering predictions.
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1 Introduction

Computational tools for predicting various aspects of compartment and building fires have
found increasing use in engineering practice. The development of these tools has focused
primarily on modeling gas phase physical processes such as turbulence and combustion. In
particular, the Fire Dynamics Simulator (FDS) has been validated for a variety of scenarios
in which gas phase processes dominate such as compartment temperatures, plume temper-
atures, and heat fluxes [1]. However, models for heat and mass transfer in the condensed
phase of burning materials have been much less studied. Because of this, computational pre-
dictions of burning rate and flame spread involve a large amount of uncertainty for common
combustible objects. Since these processes are important for predicting the development of
building fires, it would be of considerable value to reduce this uncertainty by improving
condensed phase modeling capabilities.

Several models for predicting condensed phase burning have been developed includ-
ing the FDS solid phase submodel [2], Gpyro [3], and ThermaKin [4]. For brevity, such
condensed phase models will be referred to as burning models in the following. These mod-
els must overcome several challenges if burning is to become computationally predictable.
One of the principle difficulties faced by burning models is the lack of direct measure-
ment techniques for estimating model parameters. Condensed phase matter is inherently
more complex than gases, and so much of the experimental techniques and theory that have
proven succesful for the gas phase are not applicable for solids and liquids. For thermophys-
ical properties such as heat capacity and thermal conductivity, the measurement problem is
compounded by the fact that detailed models require values for these properties as a function
of both temperature and composition—both of which change significantly during burning.
In the experiments that do exist, it is not easy to seperate the effects of the many relevant
physical properties on the measured quantities.

The process of determining the values of model parameters from experimental data is re-
ferred to as calibration. For condensed phase burning models, many authors have made use
of optimization algorithms to calibrate the many material properties parameterizing their
models [5,3,6]. Some work has been done to determine which optimization algorithms are
most effective for this class of problems. Lautenberger and Fernandez-Pello [7] compared
four algorithms for finding 19 model parameters that best fit synthetic data generated by a 1d
condensed phase burning model. It was found that the shuffled complex evolution algorithm
(SCE), which was first applied to burning model parameter estimation by Chaos et al. [6],
consistently and efficiently found the true parameters used to generate the synthetic data.
However, several problems exist with optimization-based approaches to model calibration.
First, there is no known test for determining if the global optimum has been found. Sec-
ond, the only output of optimization algorithms is a point estimate of the calibrated material
properties—i.e., there is no characterization of the uncertainty in these parameters as im-
plied by the data. Third, the papers referenced above calibrate against data from physically
complex experiments such as gasification, cone calorimetry, or the fire propagation appa-
ratus. In such scenarios, many physical processes influence the measured quantities. Con-
sequently, confounding effects typically arise such that the calibrated parameters assume
unrealistic values, and extrapolation to scenarios different from the calibration experiments
is unjustifiable. It is therefore advisable to use experiments in which only a small number of
parameters influence the measured output. In this paper, thermogravimetric analysis (TGA)
experiments are used for calibration since the measured output depends primarily on the
kinetic parameters.
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Many methods for calibrating thermal decomposition kinetic parameters have been pre-
sented in the literature [8,9]. However, all of these methods are deterministic in the sense
of producing point estimates for the parameter values. Point estimates can be misleading
in that model predictions based on them might be significantly less certain than the TGA
data actually implies. A more robust approach is founded on Bayesian data analysis [10,
11]. The Bayesian approach to model calibration treats the model parameters as quantities
whose values are imprecisely known. These uncertain model parameters are characterized
by probability density functions (PDFs) instead of point estimates. The form of these PDFs
are determined by a calibration process in which Bayes’ theorem is used to update prior
knowledge with experimental data. The value of Bayesian calibration is summarized in a
recent report on predictive computational science [12]:

We prefer the Bayesian approach over traditional deterministic calibration for two
primary reasons. First, unlike deterministic estimates, the solution of the Bayesian
inverse problem is a complete PDF describing what parameter values are consistent
with prior information and experimental observations. Second, the Bayesian formu-
lation requires a complete treatment of uncertainty. This treatment is essential in
making correct inferences from the data.

Bayesian inference has been applied to fire problems by Overholt and Ezekoye [13].
This article is recommended as it contains a more thorough overview of the theory and the
computational framework used in the present paper. A similar study to the present paper was
presented in [14]. In that work, a Bayesian calibration was performed against gasification
data similar to that used in Section 4 of this paper. In contrast, the present paper studies
the feasibility and value of using small scale experiments to perform a Bayesian calibration
and then using the results of the small scale calibration to make predictions regarding more
complicated condensed phase burning scenarios. There are many chemical and thermophys-
ical parameters influencing burning rate. Some of these parameters will have a significant
impact on the model predictions. Since measurements and calibrations can be expensive and
time-consuming, it is advisable to focus only on those parameters to which the model pre-
dictions are most sensitive. Detailed sensitivity analyses of condensed phase burning models
have been performed in the literature [15,16]. Both of these studies found that model predic-
tions assuming nominal polymer property values were either most or second most sensitive
to changes in the pyrolysis kinetic parameters. For this reason, it is of considerable prac-
tical value to characterize the uncertainty in kinetic parameters in order to understand the
uncertainty in model predictions.

A related topic to model calibration is model selection. Logically, model selection pre-
cedes calibration since selection determines the parameters that must be calibrated. In prac-
tice, some degree of iteration between selection and calibration is typically required. Roughly
speaking, a model should incorporate as much physics as is necessary for predicting the
quantity of interest. Including more physics introduces more parameters that must be mea-
sured or calibrated from experimental data. Therefore, it is not reasonable to include un-
necessary physics. Bal and Rein [17] studied model selection in the context of the thermal
degradation of non-charring polymers. By comparing simulation results with data for sev-
eral different models, it was found that complex chemical mechanisms are not necessarily
required to accurately predict surface temperatures and mass loss rate in thermally degrading
poly(methyl methacrylate) (PMMA). Bayesian inference provides a natural framework for
model selection since Bayes’ theorem provides the rule for determining the relative proba-
bility of a model from available experimental data. Several approaches have been suggested
for doing Bayesian model selection including the Bayesian information criterion (BIC) [18]
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and the deviance information criterion (DIC) [10]. Such approaches are a natural extension
of the techniques used in this paper as they make used of the likelihood function discussed
below.

In this study, a more thorough approach to Bayesian calibration, validation, and pre-
diction is demonstrated. First, it is shown that Bayesian inference can be used for thermal
degradation kinetic parameter calibration. Correlations between various kinetic parameters
are observed and studied. Second, the effect of the implied kinetic parameter uncertainty on
solid burning rate simulations is examined. These results demonstrate how model validation
is impacted by uncertainty in material properties as well as how predictions may be more
properly characterized in a probabilistic sense. All of this helps to support condensed phase
burning model development and engineering decision making. Before discussing calibration
results for several materials, the thermal degradation model and the Bayesian inference tools
are presented in the next section.

2 Theory

Bayesian calibration requires (1) a model, (2) data, and (3) an algorithm for evaluating
Bayes’ theorem. In this section, the TGA model to be calibrated and the Markov Chain
Monte Carlo (MCMC) algorithm used are briefly described. The TGA data used for calibra-
tion will be discussed in Section 3.

2.1 Reaction Models

Burning models typically assume a serial reaction mechanism for the thermal degradation
reactions. In a TGA experiment, it is generally assumed that the sample is small enough
such that temperature and concentration gradients are approximately zero. If this assump-
tion is valid, then the state of the system may be described by temperature, T , and composi-
tion. Typically, the composition of combustible materials is quantified in terms of the mass
densites of some number, N, of notional components. These components do not typically
represent distinct chemical species, but rather some composite material whose reactivities
and thermophysical properties may be readily measured. Reaction rates are commonly as-
sumed to be directly proportional to the bulk density of the reacting component. Since TGA
is assumed to be spatially lumped, the control volume may be held constant such that the
composition is described in terms of the masses of the N components present in the sys-
tem, mi. When the temperature is prescribed—as in TGA, the dynamics of the system are
governed by

dm1

dt
=−k1m1 (1)

dmi

dt
=−kimi +νi−1ki−1mi−1, i = 2, . . . ,N−1 (2)

dmN

dt
= νN−1kN−1mN−1 (3)

where ki and νi are the temperature dependent rate constant and the residual mass fraction
corresponding to reaction i, respectively. In this model, the initial conditions for the system
of ordinary differential equations (ODEs) are m1 (t = 0) = m0 and mi (t = 0) = 0, i > 1
where m0 is the initial mass in the TGA sample pan. The rate constants will be assumed
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to have an Arrhenius form such that ki = Ai exp(−Ei/RT ). In a TGA experiment, only the
total mass, m = ∑i mi is measured. In this paper, mass is non-dimensionalized by the initial
sample mass as w≡ m/m0.

Equations 1-3 describe a family of models depending on the number of components.
Each member of this model family may be labeled by the number of reactions, Nr ≡ N−1.
Each reaction is specified by three parameters: Ai, Ei, and νi. There are thus a total of 3Nr
parameters in the model. A constraint on the residual mass fractions is imposed by the
final non-dimensional mass as w f = ∏i νi. Therefore, the total number of parameters to be
calibrated for model Nr is 3Nr− 1. Note that in the following, the pre-exponential will be
represented as logAi for convenience.

2.2 Bayesian Inference

Bayesian inference is a process whereby a probabilistic characterization of knowledge is up-
dated rationally based on experimental data. In this paper, all of the calibration parameters,
θ , are continuously varying, and so the appropriate probabilistic characterization is a PDF,
p(θ). The foundational principle in Bayesian inference is Bayes’ theorem. Bayes’ theorem
is a straightforward consequence of the product rule of probability theory, and relates p(θ)
(referred to as the prior) to the belief about θ given some set of experimental data, d, called
the posterior p(θ |d). Using this notation, Bayes’ theorem may be stated as

p(θ |d) ∝ p(d|θ)× p(θ) (4)

where the constant of proportionality is 1/p(d) and is excluded for simplicity. The likeli-
hood function, p(d|θ), is just the probability of observing the data d given that the model is
true and its parameters equal θ .

Computation of the posterior first requires specification of the prior PDF and the like-
lihood function. In most applications, there is considerable uncertainty in θ . If there is no
reason to prefer one range of values of θ to another, then the prior PDF should be represented
by a uniform distribution p(θ) = (θu−θl)

−1 for θl < θ < θu and p(θ) = 0 elsewhere. For
computational purposes, bounds on the prior must be specified. Sometimes this is possible
by hard physical constraints (e.g., positive mass). Other times, judgement is required based
on some degree of experience with the uncertain parameters. This reliance on judgement is
not as problematic as it might sound since the appropriateness of the selected bounds may
be evaluated after the posterior has been computed. Specifically, if the posterior appears
to be significantly truncated at the bounds of the assumed uniform prior, then it should be
reevaluated with broadened bounds.

The choice of the likelihood function depends on what the expected data should look like
if the parameters assume the value θ . The data for TGA is a set of residual mass fractions
at a corresponding set of temperatures, d = {(T,w)k}. Assuming the model is true, then it is
reasonable to expect a Gaussian error in the measurements centered on the model predicted
value. That is, if w∗ (T |θ) is the solution of the model assuming θ , then the likelihood
function is

p((T,w)k|θ) =
1

σ
√

2π
exp

[
−
(
wk−w∗k

)2

2σ2

]
, ∀k (5)

where w∗k ≡ w∗ (Tk) and σ is the unknown standard deviation. If the data are independent,
then the likelihood function for the entire data set is just the product of Eq. 5 over all data
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points, k:
p({(T,w)k}|θ) = ∏

k
p((T,w)k|θ) (6)

In using Eq. 6 as the likelihood function, it is implicitly assumed that the model predictions,
w∗k , are the actual values of the residual mass in the pan. The likelihood function returns the
probability of measuring the actually observed data under the assumption that the measured
data are normally distributed about the actual instantaneous mass in the pan.

In a limited sense, computing the posterior PDF is straightforward given the data and the
choice of an appropriate likelihood function. However, as the dimensionality of the problem
increases, straightforward Monte Carlo simulations become infeasible. Fortunately, the de-
velopment of Markov Chain Monte Carlo (MCMC) algorithms has made the application of
Bayesian inference feasible to many engineering problems [19]. An MCMC algorithm gen-
erates a Markov chain whose equilibrium distribution is the posterior. Thus, the values of θ

generated by MCMC are samples from the desired posterior, p(θ |d). A Markov chain is a
random process in which the steps in the process depend only on the immediately previous
step. In the context of MCMC, the relevant Markov chain is a sequence of values of θ . The
most common algorithm for performing MCMC is the Metropolis-Hastings (MH) algorithm
[20,21]. In the MH algorithm a set of candidate values for θi+1 are sampled from some pro-
posal distribution about θi. The candidate parameter values are then accepted with some
probability defined by what is called the acceptance distribution. In Bayesian calibration,
the acceptance distribution equals one (the candidate is always accepted) if the posterior
value for θi+1 is greater than that for θi. If the candidate is rejected, then θi+1 = θi. Ap-
propriate selection of the proposal and acceptance distributions assures that the generated
Markov chain asymptotically approaches the equilibrium distribution, which is the poste-
rior for Bayesian calibration. In this paper, MCMC is accomplished using an adaptive MH
algorithm [22] with PyMC [23], which is a Python module for Bayesian inference.

3 Calibration

Kinetic parameters were calibrated using MCMC for three materials: high-impact polystyrene
(HIPS), bisphenol-A polycarbonate (PC), and poly(vinyl chloride) (PVC). The TGA data
for HIPS is from Stoliarov et al. [24]. The TGA data for the two charring polymers, PC
and PVC, is also from Stoliarov et al. in [25]. For all three materials, calibrations were per-
formed using data obtained at heating rates, β , of 3 K/min and 10 K/min. Note that in these
references, TGA experiments were also performed at a heating rate of 30 K/min. However,
at higher heating rates, the assumption that the sample is isothermal becomes questionable.
It is generally recommended that for samples on the order of 10 mg that heating rates be kept
less than or equal to 10 K/min [26]. All of these experiments were performed in nitrogen to
prevent oxidation reactions. The calibration data set consists of three replicate experiments
for each material/heat rate combination.

The lower and upper bounds for the kinetic parameters in Eqs. 1-3 that were used to
construct the priors in this paper are listed in Table 1. For the two Arrhenius parameters,
logAi and Ei, the bounds were chosen by trial and error. That is, it was found that the
posterior PDFs were all approximately zero outside of these bounds. The lower and upper
bounds on the residual mass fractions νi are simply logical bounds. Reactions cannot destroy
mass, so νi ≥ 0, and reactions cannot create mass, so νi ≤ 1.

Simulation of TGA data, w∗(T ), were performed by using explicit Euler time integration
of Eqs. 1-3 with a time step on the order of 0.01 s. It was found that such an algorithm
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Table 1 Uniform prior bounds.

Parameter Lower Bound Upper Bound
log(Ai, 1/s) 1 70
Ei, kJ/mol 40 800
νi 0 1

was robust and accurate within the range of model parameters studied. Since details of the
TGA trace at large times are not important, negative masses were prevented by brute force.
Specifically, if the model predicts negative values of the mass of a component in a given
time step, the change in mass in that time step was automatically corrected so that the mass
equaled zero at the end of the time step. The other rate terms in the ODEs were corrected in
a consistent manner.

The number of MCMC samples was chosen by trial and error until the sample trace
appeared well-mixed and the autocorrelation between samples was small. For a single reac-
tion step model, Nr = 1, the number of TGA simulations required was relatively small. For
three reactions, Nr = 3, the number of simulations was much larger and generation of the
complete Markov Chain took up to one week to complete on a 3 GHz, 8 Gb workstation. All
computations were performed in serial. For the Nr = 3 cases, a total of 400 million simula-
tions were performed, the first 200 million were discarded–to eliminate any observable drift
in the Markov chain traces, and every 10 thousandth simulation thereafter was preserved
in construction of the posterior–to destroy any residual correlation between samples as ob-
served in plots of sample autocorrelation. This resulted in a total of 20 000 samples from the
posterior. These samples were used to construct a PDF by kernel density estimation (KDE)
using Scott’s rule [27] to determine the bandwidth.

3.1 High-impact Polystyrene

In TGA experiments, HIPS produces a small amount of residue. Since this residue is non-
carbonaceous, HIPS is generally treated as a non charring material—i.e., a burning slab of
HIPS will not produce a protective char layer. As shown in Fig. 1, the thermal degradation
of HIPS closely follows a single Arrhenius step. Accordingly, Stoliarov et al. [24] assumed
a single reaction and determined the Arrhenius parameters by a linear fit of the natural log
of a calculated rate constant to the inverse of the temperature. The linear fit used TGA data
from heating rates of 3 K/min, 10 K/min, and 30 K/min, and the resultant kinetic parameters
tabulated in Table 2. The quality of this fit can be visualized by comparing the ‘x’ (model)
and ‘o’ (experiment) markers in Fig. 1.

Using the HIPS data as input, kinetic parameters were calibrated for serial reaction
mechanisms with one (Nr = 1) and two (Nr = 2) reaction models. The results of an MCMC
calibration may be visualized in many ways. The TGA model prediction using the calibrated
kinetic parameters as inputs can be compared to the experimental data used in MCMC sim-
ulation. Since the result of an MCMC simulation is a set of samples from the posterior PDF,
the calibrated kinetic parameters should be thought of in probabilistic terms. Hence, the ex-
act values of the kinetic parameters are uncertain. Propagation of this uncertainty through
models will be further discussed in Section 4, but the simplest way to predict model re-
sults based on probabilistically characterized parameters is to perform the simulation using
the mode of the posterior PDF. The mode is a reasonable point estimate of the parameters’
values since it is the most probable set of property values. The mode of the posterior was
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Fig. 1 Fits to TGA data for HIPS obtained at a heating rate of 3 K/min.

found by evaluating the KDE PDF at all of the MCMC posterior samples and finding the
maximum value. Simulated TGA of HIPS at a heating rate of 3 K/min based on the posterior
modes from the calibrated kinetic parameters using single and two-step reaction models are
plotted in Fig. 1. As would be expected, the two-step reaction model provides a better fit to
the data but the improvement gained by the additional reaction appears to be marginal. The
posterior mode assuming a single-step provides a better fit to the data than the calibrated
single-step kinetics of [24]. The better fit at high temperatures is simply because the model
of the present paper takes into account the residual mass, but the better fit at temperatures of
370 ◦C to 400 ◦C could be attributed to either MCMC being a better fitting procedure or the
fact that additional heating rate data is being considered in [24].

A second way to examine the MCMC results is to visualize the posterior PDFs. The
univariate posteriors of the activation energy assuming a single reaction step for heating
rates of 3 K/min and 10 K/min are plotted in Fig. 2. Also shown are the modes determined
from the KDE of the bivariate PDF. Both distributions are approximately symmetric, and
there is significant overlap indicating some degree of consistency between the two data sets
with respect to the model. The point estimate of [24] is well into the lower tails of both
distributions. This indicates that a good visual fit to the data can be achieved with relatively
improbable kinetic parameters.

Since the one-step reaction model involves only two kinetic parameters, the bivariate
distribution is the total PDF. Bivariate posteriors are plotted as contour plots in Fig. 3 for
both heating rates. Note that the contours are not distinguishable since the distribution is
so narrow. Also shown in Fig. 3 are the modes of these distributions and the point estimate
of [24]. The distributions are extremely narrow and show a strong correlation between the
pre-exponential and the activation energy. This correlation is often referred to as “kinetic
compensation” [28,9]. It is noteworthy that, while this compensation effect is strong, distinct
peaks do exist. It is therefore not justifiable to assume any point along the line of correlation.
However, even though distinct peaks exist in the PDF, it is apparently not the case that
all fitting techniques will find them as is evidenced by the point estimate of [24]. In fact,
because the posterior PDF is so narrow, it is likely that most local search algorithms will not
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Fig. 2 Univariate posterior PDFs for HIPS assuming one reaction.
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Fig. 3 Bivariate posterior PDFs for HIPS assuming one reaction.

in fact find the true posterior mode—that is, the true “best fit” to the TGA data. Therefore,
it is advisable to perform a more exhaustive global fit procedure, such as that presented in
this paper. While the distributions implied by the 3 K/min and 10 K/min heating rate TGA
data are close, they do not perfectly overlap. Such differences indicate that the lumped,
serial reaction model described in Eqs. 1-3 is not perfectly describing the physics of the
TGA experiment. Some degree of imperfection is acceptable in engineering applications,
and the degree to which approximation is allowed should be determined by the engineering
application.
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Fig. 4 Bivariate posterior PDFs for HIPS assuming two reactions. Red and blue contours correspond to
3 K/min and 10 K/min TGA data, respectively.

Although a single reaction model seems to provide a reasonable fit to the TGA data,
polymer decomposition involves many more reactions. It is worthwhile therefore to con-
sider higher-order models. To this end, a two reaction model, Nr = 2, was considered. The
TGA simulation based on the mode of the two reaction posterior is plotted in Fig. 1, and
it is apparent that the additional reaction results in a better fit at higher temperatures. The
bivariate posteriors for the two reaction model are plotted in Fig. 4. Once again, significant
correlation is observed between the activation energies and pre-exponentials within both
reactions. While correlations are observed amongst the other parameters, the inter-reaction
posteriors (e.g., E1 versus E2) are much broader. Note also that the correlations between
reactions 1 and 2 are positive. In particular, consider the top left plot of logA1 versus logA2.
As the rate of reaction 1 increases so does the rate of reaction 2. This makes sense because
if the rate of reaction 1 increased without a corresponding rate of increase in reaction 2, a
plateau would eventually develop in the TGA trace, w(T ), at the point where component
1 is exhausted but component 2 has not yet begun to degrade. Alternatively, if the rate of
reaction 2 increased without a corresponding increase in the rate of reaction 1, a sharper
drop-off in the TGA trace would develop as w approaches its final value. Similar trade-offs
result in the correlations between the other inter-reaction kinetic parameters. The residual
mass fraction from reaction 1 shows a significant negative correlation with the four other
kinetic parameters. The source of this correlation is not clear.

3.2 Bisphenol-A Polycarbonate

Unlike HIPS, PC forms a significant char layer upon burning. This char formation is man-
ifested in TGA experiments as a final residual mass fraction of around 0.21. A plot of 3
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Fig. 5 Fits to TGA data for PC obtained at a heating rate of 3 K/min.

K/min TGA data for PC from [25] is provided as the ‘o’ markers in Fig. 5. This TGA trace
has a significantly different shape from that of HIPS. Although the mass is initially lost with
an Arrhenius type shape, at large temperatures, there is a long tail representing a gradual
mass loss. A two reaction model could account for this, but since the mass loss associated
with temperatures above 500 ◦C is relatively small, Stoliarov et al. [25] choose to model the
pyrolysis of PC with a single reaction step. Stoliarov et al. [25] determined the Arrhenius
parameters of this single-step model by fitting to the 3 K/min TGA data, and the reported
values of these parameters are listed in Table 3.

Arrhenius parameters were calibrated using MCMC assuming both one-step and two-
step models. The modes of the resultant posteriors were used to simulate the 3 K/min TGA
trace and the results are plotted in Fig 5. The single-step model results in a fit similar to that
of [25]. Naturally, a better fit is obtained with two reactions, and it is seen that the long tail
observed in the TGA data is fairly accurately captured by the two reaction model.

The bivariate posteriors assuming a single reaction and calibrated against 3 and 10
K/min TGA data are plotted in Fig. 6. Unlike the case for HIPS, the literature point esti-
mate from [25] falls within the more probable region of the 3 K/min posterior. Also, there
is significant divergence between the posteriors obtained from the two heating rates. This is
further indication that a single-step model is not appropriate for PC.

The two-step model posteriors are plotted in Fig. 7. In contrast to the two reaction bivari-
ate plots for HIPS, there is relatively close agreement between the posteriors obtained at the
two heating rates. This is evidence that an Nr = 2 model is consistent between the two data
sets, a moderate form of validation. Kinetic compensation is observed for both reactions,
but reaction 2 has a broader positive correlation between A2 and E2. Overall, the posteriors
for reaction 2 parameters are much broader than those for reaction 1. This is due to the fact
that the residual mass from reaction 1 is small—i.e., ν1 ≈ 0.3. Consequently, model pre-
dictions are less sensitive to reaction 2 kinetic parameters since reaction 2 accounts for a
relatively small proportion of the total mass loss. In comparison with HIPS, the reaction 1
residual mass fraction does not show a strong correlation with the kinetic parameters. Again,
this is because the TGA data indicate a relatively small value and so the exact shape of the
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Fig. 7 Bivariate posterior PDFs for PC assuming two reactions. Red and blue contours correspond to 3 K/min
and 10 K/min TGA data, respectively.

curve after the first reaction is relatively unimportant as long as the transition point between
the two reactions is maintained. Consequently, there is even less correlation between the
residual mass fraction and the reaction 2 kinetic parameters.
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Fig. 8 Fits to TGA data for PVC obtained at a heating rate of 3 K/min.

3.3 Poly(Vinyl Chloride)

The final material considered in this paper is PVC. Not only does PVC form a significant
char layer, but the TGA data indicate two distinct mass loss peaks with a possible third
reaction corresponding to small mass loss at temperatures greater than 500 ◦C. These char-
acterists of PVC mass loss are shown in Fig. 8. Stoliarov et al. [25] modeled the thermal
degradation of PVC with two serial reactions, and the simulation of this model is represented
by the ‘x’ markers in Fig. 8. A summary of the calibrated kinetic parameters is provided in
Table 4.

The quality of the MCMC calibrations assuming one, two, and three reaction steps may
be assessed by plotting the TGA traces predicted using the posterior mode parameters. These
traces are shown in Fig. 8. The inadequacy of a single reaction step is apparent. However,
the two and three reaction step models are nearly indistinguishable. It is interesting to note
that the MCMC fits in this case are significantly better than the fits obtained in [25] using a
more ad hoc approach to calibration. This is in contrast to the results for HIPS and PC where
the advantages of using the MCMC approach were less apparent.

Bivariate posteriors assuming a two reaction model are plotted in Fig. 9. The point es-
timates of [25] are shown as circles. As with PC, the two-reaction model results in close
agreement between the posteriors derived using both the 3 K/min and 10 K/min TGA data.
In contrast to PC, the breadth of the distributions in A2 and E2 is much narrower indicat-
ing that the data better inform these two parameters. Kinetic compensation is observed for
both reactions, and the point estimates of [25] fall along the kinetic compensation lines even
though the estimates for the first reaction are well outside of the most probable region. The
correlations between the two reactions (e.g., A1 vs. E2) are relatively small. This is due to
the fact that the two reactions are well-distinguished, the first reaction finishing well before
the second reaction begins. Similarly, the residual mass fraction, ν1, shows little correlation
with any of the Arrhenius parameters. This parameter essentially fixes the vertical location
of the plateau in w between the two reactions and is therefore relatively insensitive to the
exact shape of these two portions of the mass trace.
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Fig. 9 Bivariate posterior PDFs for PVC assuming two reactions. Red and blue contours correspond to 3 and
10 K/min TGA data, respectively. Circles correspond to estimates of Stoliarov et al. [25].

Finally, the bivariate posteriors resulting from the MCMC calibration assuming a three
reaction model are plotted in Fig. 10. These posteriors are considerably more complicated
than any of the previous results. This is attributable to the complexity of the model and
the various possibilities for compensation effects between the 8 parameters. Despite this
increased complexity, several patterns are apparent. First, as with all other cases, kinetic
compensation between the intra-reaction Arrhenius parameters is observed. The breadth
of these intra-reaction posteriors increase with their sequence in the serial reaction order.
Second, there is much agreement between the posteriors obtained at the two heating rates
even though this agreement is less pronounced as compared to the two reaction case. Third,
the inter-reaction posteriors typically assume an ‘L’-shape. For example, consider the plot
of E1 vs. E3. The most probable combination of these two parameters is the case of both
being slightly less than 200 kJ/mol implying that both reactions begin at about the same
temperature. If either E1 or E3 is kept constant at this value, then the other may likely assume
a fairly broad range of larger values. That is, as long as one of the two reactions occurs at a
fairly low temperature, the other reaction is relatively insensitve to temperature. This seems
unreasonable unless the residual mass fractions are taken into account. For instance, consider
the case where E1 is kept around 150 kJ/mol while E3 is increased. In this case, reaction 1
is happening relatively fast while reaction 3 is becoming increasingly slow. Now consider
the posteriors of E3 versus ν1 and ν2. In both cases, as E3 increases the more probable
residual mass fractions become smaller implying that the actual mass loss dependent on
reaction 1 increases. Consequently, in the case where reaction 1 is fast, reaction 3 may be
relatively slow as long as the majority of the actual mass lost is associated with reaction
1. A similar analysis reveals that reaction 1 may be slow relative to reaction 3 as long as
reactions 2 and 3 account for the majority of the actual mass lost. Figure 10 also reveals the
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Fig. 10 Bivariate posterior PDFs for PVC assuming three reactions. Red and blue contours correspond to
3 and 10 K/min TGA data, respectively.

correlation between the residual masses generated by reactions 1 and 2. This correlation is
visualized in the posterior in the lower right corner panel. Note that ν1 has a definite lower
bound of around 0.4. This value is fixed by the plateau in w visible in Fig. 8. In the cases
where ν1 ≈ 0.4, reaction 1 is complete before the other two reactions begin. The relative
proportions at which mass is lost between reactions 2 and 3 is not too significant in such
cases since the first reaction accounts for the majority of the mass loss. Therefore, as is
seen in Fig. 10, a broad range of values for ν2 are probable if ν1 ≈ 0.4. Notice however
that in cases where ν1 > 0.5, there is a strong negative correlation between ν1 and ν2. In
other words, if less mass is lost in reaction 1 (ν1 increasing) then more mass must be loss
in reaction 2 (ν2 decreasing) in order to account for the first mass loss peak—i.e., while
w> 0.4. In these cases, reaction 1 and reaction 2 correspond to the first mass loss peak while
reaction 3 corresponds to the second (at T ≈ 450 ◦C). Although these results are interesting,
and shed some light on the types of tradeoffs that occur in serial reaction networks, it is
apparent from the TGA plot, Fig. 8, that the two reaction model provides a sufficient fit to
the TGA data and that the calibrated parameters are relatively consistent as a function of
heating rate (Fig. 9). For these reasons, a two reaction model seems preferrable to a three
reaction model.
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Table 2 Calibrated kinetic parameter posterior modes for HIPS.

MCMC, 3 K/min MCMC, 10 K/min Stoliarov et al. [24]
log(A1, 1/s) 19.5 19.8 16.1
E1, kJ/mol 292 297 247
log(A1, 1/s) 5.24 8.60
log(A2, 1/s) 26.4 27.2
E1, kJ/mol 104 145
E2, kJ/mol 378 390
ν1 0.897 0.848

Table 3 Calibrated kinetic parameter posterior modes for PC.

MCMC, 3 K/min MCMC, 10 K/min Stoliarov et al. [25]
log(A1, 1/s) 17.3 20.0 18.3
E1, kJ/mol 283 330 295
log(A1, 1/s) 20.9 23.0
log(A2, 1/s) 3.83 6.99
E1, kJ/mol 332 372
E2, kJ/mol 112 157
ν1 0.277 0.274

Table 4 Calibrated kinetic parameter posterior modes for PVC.

MCMC, 3 K/min MCMC, 10 K/min Stoliarov et al. [25]
log(A1, 1/s) 10.6 12.6 33.1
log(A2, 1/s) 7.44 6.70 12.5
E1, kJ/mol 140 161 367
E2, kJ/mol 141 127 207
ν1 0.458 0.466 0.44
log(A1, 1/s) 10.3 23.1
log(A2, 1/s) 10.8 12.7
log(A3, 1/s) 14.5 10.7
E1, kJ/mol 137 269
E2, kJ/mol 184 168
E3, kJ/mol 715 182
ν1 0.457 0.626
ν2 0.500 0.725

3.4 Summary

In this section, Bayesian inference via MCMC was used to calibrate the parameters of one,
two, and three step serial reaction networks for modeling the thermal degradation of three
materials. The resultant posterior PDFs are useful for characterizing uncertainty, identifying
parameter compensation effects, and possibly determining the appropriate level of model
complexity. Although the results of this exercise are most faithfully characterized by the
posterior PDFs plotted and discussed in the previous paragraphs, it is helpful to summarize
the results in terms of point estimates for the various parameters. As mentioned previously,
posterior modes are reasonable point estimates as they represent the most probable single
point in the inferred parameter space. The MCMC derived posterior modes are tabulated in
Tables 2-4 along with the point estimates of Stoliarov et al. [24,25]. In the next section, the
parameter posterior distributions calibrated above are used to make predictions.
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4 Validation and Prediction

Calibrated material properties serve as inputs to models. Ultimately, these models are to be
used to make predictions to aid in engineering decision making. For example, a solid burning
model could be used to assist simulations of fire growth in a building design and therefore
help engineers decide on an appropriate level of fire protection. Before reliable predictions
can be made, however, the model should be validated against experimental data as similar
to the design scenario as possible. Both prediction and validation require the propagation of
calibrated material properties through the relevant model.

In a typical deterministic calibration, point estimates for material property values al-
low for straightforward predictions. When these predictions do not agree with experimental
observations it is not always clear whether the property estimates are wrong or if there is
a significant modeling error. One advantage of Bayesian inference is that information re-
garding the uncertainty in the property estimate is retained. If this uncertainty is propagated
during model validation, then model and parameter uncertainty may be distinguished. If
this uncertainty is propagated during prediction, the decision maker has more information
regarding the probabilities of various outcomes.

In this section, samples from the kinetic parameter posterior distributions presented in
Section 3 are propagated through TGA and burning models. In all cases, the samples are
simply taken from the Markov Chain.

4.1 Thermogravimetric Analysis

Although the MCMC simulations were calibrated against TGA data, it is not generally well
understood how sensitive calibrated kinetic parameters are to heating rates. As was seen in
Section 3, for each material and model combination, the posterior was slightly different for
the two heating rates. Sometimes this difference was large, as in the case for HIPS with
Nr = 2. In other cases, the posteriors resultant from the 3 K/min and 10 K/min heating rate
TGA data were in significant agreement, as in the case for PVC with Nr = 2. Even though
the posteriors differ, it is still possible that the TGA simulations based on these posteriors
would be in significant agreement at both heating rates. That is, the TGA model predictions
at different heating rates might be relatively insensitive to the parameter values within the
range of the calibrated posteriors.

To better understand this, the posterior distributions obtained using 3 K/min TGA data
were sampled and propagated through the TGA model at a heating rate of 10 K/min. For
each combination of material, heating rate, and number of reactions (Nr), the first 100 sam-
ples of the Markov chain were propagated. Since the model is fast, many more samples
could have been used, but it was found that 100 gave a reasonable coverage of the range of
predicted TGA traces.

A plot of the 10 K/min TGA data for HIPS is provided in Fig. 11. The point estimate
parameters from Stoliarov et al. [24] provide a reasonable fit to the data. Recall that these
literature parameters were partially obtained using this 10 K/min data so this is not a case
of pure prediction, but this simulation result was included for completeness and comparison
with the actual predictions based on MCMC calibrated kinetic parameters. Also plotted in
Fig. 11 are the predicted traces using posterior modes obtained from calibration to 3 K/min
data assuming both one and two step reactions. It is apparent that the one reaction model
provides a better fit to the data. This is an example of overfitting, and demonstrates the
importance of not using more complex models than are necessary as this can result in poor
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Fig. 11 Predictions of 10 K/min HIPS TGA data using parameters calibrated to 3 K/min TGA data.

predictions. The lines (there are many so that the lines appear as a shaded region) in Fig.
11 represent simulations generated using samples from the calibrated posteriors as input
parameters. Note that the spread in the two reaction model is much greater than that in the
one reaction model. This can partly be explained by the breadth in the two reaction posteriors
shown in Fig. 4 as compared to that in the one reaction posterior shown in Fig. 3.

A similar plot is presented in Fig. 12 for PC. The one reaction MCMC mode results
in a slightly better prediction than the point estimate of Stoliarov et al. [25]. This is in
contrast to the case with HIPS where the point estimate of [24] performed slightly better.
The difference in the case of PC is that both the MCMC mode and the point estimate of
Stoliarov et al. are both true predictions, whereas in the case of HIPS only the MCMC mode
was predictive. The two reaction MCMC mode give comparitively mixed results. Although,
unlike the one reaction mode, it captures the T > 500 ◦C tail, it underpredicts the initial
mass loss temperature by slightly more than the one reaction model. In this case, the spread
between the two models is comparable. The predictive ability of these models, even in a
relatively moderate extrapolation to a higher heating rate would appear to be weaker for PC
than for HIPS. This might be attributed to the neglect of some relevant physics such as mass
transfer.

The same scenario is considered for PVC, and the results are plotted in Fig. 13. For
this case, two and three step serial reaction mechanisms are used. As with PC, the MCMC
mode-based predictions performed better compared to the point estimate of Stoliarov et al.
[25]. The three reaction mode caputres the second mass loss dip (T ≈ 475 ◦C) better than the
two reaction mode. The spread in the sampled predictions covers the data for both models,
but the breadth of w curves for the three reaction model is slightly larger. Because the data
falls within the uncertainty of the predictions, it is likely that both models are appropriate.
This is an example of how a model might be validated in a probabilisitc sense.

The ability of MCMC calibrated kinetic parameters for predicting TGA has been inves-
tigated. It was found that point estimates of these parameters based on the posterior modes is
more successful for predictions than more ad hoc point estimates typically presented in the
literature. It was further demonstrated that a probabilisitic characterization of the model pa-
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Fig. 12 Predictions of 10 K/min PC TGA data using parameters calibrated to 3 K/min TGA data.
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Fig. 13 Predictions of 10 K/min PVC TGA data using parameters calibrated to 3 K/min TGA data.

rameters gives a more detailed account of the predictive capability of the model by providing
practitioners with the probabilities of various possible outcomes.

4.2 Burning Rate

Ultimately, TGA is an experiment used for property calibration. A more interesting engi-
neering problem is the prediction of the burning rate of materials. Two relevant experiments
for burning rate are gasification and cone calorimetry. In these experiments, heat and mass
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transfer, in addition to thermal degradation chemistry, are significant contributing physical
processes.

All simulations were carried out using the Fire Dynamics Simulator (FDS) version 6.1.0
[29], at SVN revision number 19823. Both gasification and cone calorimetry simulations
relied on the FDS solid phase submodel, which allows for one-dimensional heat transfer,
multicomponent thermophysical properties, and serial chemical reaction mechanisms. The
properties for all cases were those suggested by Stoliarov et al. [24,25], and the FDS input
files were based on those for the “FAA Polymers” case in the FDS Validation Guide [1].
Since property values are unknown for intermediate states, only the reaction models corre-
sponding to the number of reactions in [24,25] were used. That is, for HIPS and PC only
Nr = 1 was simulated, and for PVC only Nr = 2 was simulated. In future work, it would
be valuable to see the effect of additional reactions on the FDS simulations using crude es-
timates of the other material properties for intermediate states. Although replicate burning
rate experiments were performed, the data are not available, and so experimental uncertainty
is not plotted in the following figures. Uncertainty in burning rate is significant, though, and
can approach up to 25 % in the vicinity of the peak [25].

The first burning rate experiment considered was the gasification of HIPS using the data
presented in [24] obtained using the NIST gasification apparatus [30]. The experimental data
along with sampled predictions are plotted in Fig. 14 for a nominal external heating flux of
50 kW/m2. A total of 1 000 samples were taken from each of the 3 K/min and 10 K/min
posteriors and propagated through the FDS model. It is apparent that there is relatively little
scatter in the gasification rate predictions based on the MCMC generated kinetic parame-
ter posteriors. The MCMC posterior sampled kinetic parameters and the point estimate of
Stoliarov et al. [24] all result in similar FDS simulation results. The 3 K/min samples pre-
dict a slightly faster gasification process than the 10 K/min samples, which in turn predict a
slightly faster gasification than the point estimate of Stoliarov et al. All cases predict a peak
gasification point that is slightly too low and too soon. The fact that the experimental data
do not fall within the scatter implied by the uncertainty in the kinetic parameters indicates
the presence of error in the model or in the other thermophysical properties input into the
model.

The gasification simulations were relatively fast in terms of CPU time since no gas phase
combustion was included. Therefore a large number of samples of kinetic parameters could
be propagated through FDS. For the remaining two materials, predictions were made of cone
calorimetry [31] in which it was necessary to include the effects of the above surface flame.
Several scenarios for PC were studied in [25], but in the following only the 5.4 mm thick
sample exposed to a heating rate of 50 kW/m2 was considered. The plot of the measured
and predicted heat release rate (HRR) is given in Fig. 15. Because the gas phase combustion
slows down the simulation considerably, only 55 samples were taken from each of the two
heating rate posteriors. As was the case with HIPS, the sampled solutions are tightly grouped
and mostly agree with the result obtained using the point estimate of Stoliarov et al. The
simulations based on the posterior calibrated against the 10 K/min TGA data tend to better
predict the data for times greater than about 250 s relative to the predictions from parameters
calibrated against the 3 K/min data. The MCMC sampled solutions all takeoff somewhat
slower than the data and the literature point estimate, and they generally underpredict the
first peak in HRR. Since the amount of energy contained in the material is the same for all
solutions, this initial tendency to underprediction in HRR is made up for by a larger HRR
at times above around 400 s. This observation is more in line with the experimental data as
compared to the literature point estimate. Although all of the simulations agree reasonably
well with the cone calorimetry data for small times, the divergence between model and
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Fig. 14 Predictions of HIPS gasification experiments with an external heat flux of 50 kW/m2.

0 100 200 300 400 500 600

t, s

0

100

200

300

400

500

H
R

R
,

kW
/m

2

MCMC sample, β = 3, K/min

MCMC sample, β = 10, K/min

MCMC mode, β = 3, K/min

MCMC mode, β = 10, K/min

Stoliarov et al., experiment
Stoliarov et al., model

Fig. 15 Predictions of PC cone calorimetry experiments with an external heat flux of 50 kW/m2.

experiment at larger times must be attributed to model error or inaccuracies in the non-
kinetic thermophsyical properties used to describe PC in the FDS solid model. It is also
observed that the peak HRR at about 300 s is not predicted by any of the simulations. This
is possibly due to the fact that the model does not account for an apparent second reaction
seen in the TGA data.

Finally, cone calorimetry of PVC was simulated for the case of a 6 mm thick sample
exposed to a heat flux of 75 kW/m2 [25]. The simulation times were long, and so only 65
samples from the MCMC generated kinetic parameter posteriors were propagated through
FDS. The results, along with the experimental data, are plotted in Fig. 16. Similar to the
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Fig. 16 Predictions of PVC cone calorimetry experiments with an external heat flux of 75 kW/m2.

TGA predictions for PVC, there is significantly more scatter in the predicted burning rate as
compared to the other two materials. There is somewhat more scatter in the predictions based
on the 3 K/min calibrated parameters. The MCMC sampled solutions generally provide
better overall fits to the data as compared with the predictions made using the point estimate
of Stoliarov et al. The point estimate solutions corresponding to the MCMC posteriors are
seen to over predict the peak HRR time and under predict the peak HRR. At larger times,
however, the MCMC posterior mode predictions are closer to the experimental HRR as
compared to the point estimate solution of Stoliarov et al. [25].

It is also helpful to examine the scatter in FDS model predictions for specific quantities
of interest. For fire safety applications, the peak HRR, HRRmax, and the time at which this
peak HRR occurs, tmax are of particular interest. These quantities roughly characterize the
severity of a fire fueled by the studied material. The values of these quantities predicted by
the FDS model are plotted in Fig. 17 for each of the sets of kinetic parameters sampled from
the posterior PDFs. The experimentally measured HRRmax falls within the range of the
sampled model predictions, but the experimentally measured tmax is approximately 50 %
less than the majority of the sampled predictions. It is also noteworthy that there exists a
cluster of sampled FDS solutions with tmax in the range of 160 to 190 s. This means that
there are sets of kinetic parameters that provide reasonable fits to the TGA data that result
in over predictions of the time to peak HRR by almost an order of magnitude. Such an over
prediction could lead to engineering decisions that endanger property and human life. This
is further demonstration of the importance of rigorous model validation in order to avoid
making potentially dangerous engineering decisions.

5 Conclusions

In this paper, Bayesian inference methods were used to calibrate parameters for a simple
class of thermal degradation models. The calibrations were performed using MCMC and
TGA data at two heating rates. Resultant from these calibrations are samples from the poste-
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Fig. 17 Predicted maximum HRRs and times for PVC cone calorimetry.

rior distributions implied by the TGA data and the assumption of broad uniform prior PDFs.
These samples were used to construct KDE estimates to the posterior PDFs. To demonstrate
the value of this type of calibration, a subset of the MCMC generated posterior samples
were propagated through TGA and FDS burning rate models.

The calibrations demonstrated that the proposed methodology is both feasible and valu-
able. It was shown to be feasible by the breadth of examples considered. Specifically, three
materials were studied each at two heating rates each with two models for a total of 12
unique scenarios. The materials studied were sufficiently different to be representative of a
broad range of realistic engineering polymers. The methodology was shown to be valuable
by the increase in information provided by bivariate posterior PDFs. These PDFs reveal the
uncertainty and parameter correlations implied by the TGA data. This information goes well
beyond what is encoded in typical point estimate approaches to parameter calibration. The
results indicate that overlap between posteriors obtained from different heating rate scenar-
iors might be a measure of the adequacy of the model.

A further value of the Bayesian inference approach to parameter calibration is that it
generates data that can be used to characterize uncertainty in model predictions. This uncer-
tainty quantification allows for a more rigorous approach to model validation. In particular,
if the uncertainty in the model prediction implied by the uncertainty in the kinetic parameter
uncertainties covers the experimental data, then more accurate predictions could be made
by more precisely measuring the kinetic parameters. This was the case, for instance, in
the 10 K/min TGA predictions for PVC. On the other hand, if the sampled predictions are
tightly grouped and do not cover the experimental data, then better future predictions will be
more readily achieved by either improving the model to incorporate more physics or better
characterizing other material properties used in the model. This was the case, for instance,
in the gasification predictions for PC. In some cases, it was found that simpler calibrated
models made better predictions than more complicated models. This is a warning against
the dangers of overfitting. Finally, it was shown that point estimates for material properties
in burning models can lead to faulty engineering decisions. This was the case for predic-
tions of the burning rate of PVC in which it was found that some of the MCMC sampled
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kinetic parameters, which provide reasonable fits to the TGA data, can result in an order of
magnitude over prediction in the time to peak HRR.

The proposed methodology might be improved in several respects. First, better algo-
rithms could be used for doing the MCMC. The Metropolis-Hastings algorithm was used in
the present work, but more sophisticated algorithms have been developed that could open up
the methodology to more complicated models. Second, other material properties relevant to
condensed phase burning should be calibrated. For example, differential scanning calorime-
try (DSC) data could be used to produce posterior PDFs for thermodynamic properties such
as specific heat capacity and heats of reaction. This information, coupled with the kinetic in-
formation presented in the present paper, could be used to more thoroughly characterize the
uncertainty in model predictions. Such a characterizations would be extremely helpful for
progress in modeling of condensed phase physics for fire problems as they give information
on the relative amount of model error as opposed to material property measurement error.
Third, alternative kinetic models could be explored. The present paper only calibrated serial
reaction models. Some systems might be better characterized by an equal number of par-
allel reactions describing multiple competing components. Fourth, more detailed models of
TGA and the burning rate experiments could be studied. In particular, heat and mass transfer
could be modeled in the TGA to see if the difference in results at different heating rates are
attributable to transport effects. Furhtermore, oxidative reactions could be incorporated into
both TGA and burning rate experiments. A final area for improvement in the methodology
introduced in this paper would be to study the impact of calibrating against combined sets
of TGA data—that is, in using TGA data from multiple heating rates to produce a single
posterior. Such an approach might better characterize the kinetic parameter uncertainty and
could possibly result in a different degree or uncertainty in model predictions.
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