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Abstract—The National Public Safety Telecommunications
Council (NPSTC) has defined resiliency as the ability of a
network to withstand the loss of assets and to recover quickly
from such losses. How to measure the resiliency of a base
station deployment is an important consideration for network
planners and operators. In this paper, we propose a resiliency
measurement method in conjunction with a performance metric
such as coverage or supported throughput, where we define the
resiliency as the maximum number of sites that can fail before
the metric falls below a minimum acceptable threshold. Because
the number of combinations of failures increases exponentially
with respect to the number of sites in a given deployment, we
introduce an algorithm that generates estimates of the lowest,
highest, and average values of the metric for a given failure count
while examining a subset of the possible failure combinations. We
use an example deployment to demonstrate how the resiliency
metric can be used to identify sites that have a disproportionate
impact on performance; the network planner can harden these
sites or, for a future deployment, adjust the site placement to
reduce the effect of the high-impact sites.

I. INTRODUCTION

Modern public safety agencies depend on digital communi-
cations systems for situational awareness and to coordinate
operations with other agencies. It is imperative that these
systems be resistant to failure and be able to recover quickly
after failures occur. The National Public Safety Telecommu-
nications Council (NPSTC) has defined the combination of
these two capabilities as a network’s resiliency [1, Section 5.2].
NPSTC has identified resiliency as an important design metric
that will be used in the construction of the National Public
Safety Broadband Network (NPSBN).

The various NPSBN stakeholders, (e.g., network planners,
public safety agencies, and equipment vendors) have an inter-
est in being able to quantitatively measure the resiliency of
proposed and fielded networks. In this paper, we propose a
simple resiliency measure with respect to a minimum accept-
able value of a given performance metric (e.g., area coverage).
The resiliency metric can help to quantify the ability of
a deployment to recover rapidly from failures. Also, our
resiliency analysis can show which sites are low-impact (i.e.,
their loss does not significantly reduce the given performance
metric’s value) or high-impact (i.e., their loss causes a large
reduction in performance). High-impact sites can be reinforced
or augmented with backup systems to reduce the probability
that they will be lost. A network operator can prioritize high-
impact sites during repair and recovery operations.

Resiliency is a well-understood concept in computer net-
work design. Early work in this area [2] defined resiliency
in terms of the disconnection probability in network graphs.
More recent work [3] has focused on detecting failures in
wired networks by comparing multiple resiliency metrics to
minimum thresholds and activating responses to maintain ser-
vices when targets are missed. Our work extends this concept
to the wireless case. While there has been work on wireless
resiliency, it has tended to focus on the impact of mobile
users while assuming a hexagonal grid deployment [4], or has
focused on the robustness of network components, e.g., by
developing analytical failure models [5]. These models assume
that network element failure events are independent and iden-
tically distributed and that failure events follow Poisson arrival
processes. While good for day-to-day operations, these models
do not capture large-scale failure events. To the best of our
knowledge, our study is the first to define resiliency in terms
of a set of metrics and a set of corresponding thresholds for
minimum acceptable performance over the range of possible
base station failure combinations.

In Section II, we develop our method for obtaining the
resiliency metric. In Section III, we describe our algorithm,
which streamlines the analysis by reducing the number of
combinations of site failures to simulate. In Section IV, we
apply our approach to a hypothetical example base station
deployment and use our metric to assess the resiliency of the
deployment, identify low-impact and high-impact sites, and
examine the effect of reducing the number of sites in the
example deployment. We present our conclusions in Section V.

II. THE RESILIENCY METRIC

Our analysis uses InfoVista’s Mentum Planet cellular net-
work planning tool, which allows a user to place base stations
in a given geographical area and to specify their characteris-
tics, such as antenna gain pattern, transmit power, and tower
height1. The tool also incorporates the effects of clutter, such
as buildings, hills, and vegetation. With the base stations in
place, the user can generate a prediction overlay, which gives

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.



the signal strength due to each base station at each location in
the region of interest. The user can specify the physical layer
characteristics of any end-user devices (e.g., smart phones),
along with the traffic that they generate, and use these as input
to the tool’s Monte Carlo simulator. The simulator produces
four coverage metrics: uplink (UL) coverage, downlink (DL)
coverage, combined UL/DL (area) coverage, and population
coverage. Other returned performance metrics include load,
throughput, and the percentage of users served with a given
reliability (i.e., user coverage)2.

For any performance metric µ, we can define the resiliency
with respect to µ as the number of sites that can fail while
still maintaining at least a minimum performance level, µmin.
Because we have an ensemble of failure scenarios (FS’s)
that result from a site deployment, we compute the site
count resiliency with respect to the maximum, average, and
minimum curves. A deployment is n-site resilient with respect
to a given curve if n is the largest positive integer such that
µ ≥ µmin for f ≤ n, where f is the number of failed sites.
For the example shown in Fig. 1, the hypothetical network
is 0-site resilient with respect to the maximum value of µ,
and 1-site resilient and 2-site resilient with respect to the
mean and minimum values, respectively3. By combining the
resiliencies associated with the worst- and minimum curves,
we get a performance envelope similar to those generated for
wired networks by Smith et al. [3, Fig. 3].

Given a site deployment consisting of N base stations, we
obtain a set of P performance metrics {µ1, µ2, . . . , µP } when
all N sites are active. If the given deployment consists of a
small number of sites, we could proceed by constructing a
complete set of FS’s, where we define a FS to be the set
of sites that have failed. For a given FS, we modify the
deployment in Mentum Planet by deactivating the desired
sites, generating a new prediction map, and finally running
new Monte Carlo simulations to produce new values for each
of our P metrics. This results in a set of values for each
metric that we can plot versus the number of failed sites, as
shown in Fig. 1. This figure depicts results associated with a
hypothetical deployment where N = 3, and is intended for
illustrative purposes only.

III. THE FAILURE SCENARIO PRUNING ALGORITHM

The exhaustive approach described in Section II does not
scale, since an N -site deployment produces 2N FS’s (e.g., full
analysis of a 30-site deployment would require us to examine
more than 1 billion failure scenarios). For some deployments,
the reduction in performance that results from a few site losses
is severe enough that a full analysis is not necessary4. Since
evaluating a single FS with Mentum Planet takes from minutes

2These metrics should be considered jointly when evaluating the overall
resiliency of a deployment.

3A deployment can be m-site resilient with respect to one performance
metric and n-site resilient with respect to a different metric, with m 6= n.

4However, there are
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N = 30, analyzing up to 8 failures requires examining 8.7 million FS’s.
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Fig. 1. Hypothetical plot of metric µ with respect to number of failed sites
in a three-site deployment, with all failure scenario outcomes shown as ×’s.

to tens of minutes for small deployments (on the order of
10 sites) to tens of hours for large deployments involving
dozens of sites and hundreds of users, an exhaustive evaluation
of all FS’s is not feasible.

We solved this problem by developing a heuristic algorithm
that drastically reduces the number of failure scenarios that we
have to simulate while still obtaining accurate estimates for the
minimum, maximum, and average performance metrics versus
the number of site failures.5

A. Algorithm Description

The algorithm first simulates the zero-failure case (i.e., FS ∅,
which is the empty set because there are no failed sites) to
compute the metric, µ(∅), which it assigns to µmin(0), µmax(0),
and µavg(0); these are respectively the 0th elements of the
vectors of minimum, maximum, and mean value metrics that
are the algorithm’s outputs.

Next, the algorithm iteratively progresses through successive
values of the site failure count, n. For n = 1, the algorithm
examines all of the single-failure FS’s by simulating each
one and generating a corresponding value of the metric µ6.
Using this set of values, the algorithm identifies four FS’s
of interest: the FS for which the metric µ is a minimum,
µmin(1), the FS for which µ is a maximum, µmax(1), and the
two FS’s whose associated values of µ are closest to µavg(1),
which is the average value of µ taken over all the single-
failure FS’s. We retain these four FS’s, which we respectively
denote as Fmin(1), Fmax(1), and Favg`(1) and Favgu(1), where
µ
(
Favg`(1)

)
≤ µ

(
Favgu(1)

)
7.

For n ≥ 2, the algorithm repeats the following process up to
a desired maximum value of n. For each of the four retained
FS’s from the preceding iteration (Fmin(n − 1), Fmax(n − 1),
Favg`(n−1), and Favgu(n−1)), the algorithm constructs a set
of FS’s, each with n failures. Each FS in the set consists of
the n − 1 sites in the retained FS plus an additional site that
is not in the retained FS (i.e., the added site was active when
there were n− 1 failures). One can view these new n-failure
FS’s as child FS’s of the parent (n− 1)-failure FS.

5We tested the algorithm with the following metrics: DL/UL coverage, area
coverage, population coverage, and the fraction of users served at 50 % and
95 % reliability, but show results for a subset due to space constraints.

6For clarity’s sake, we use one metric in the description. The algorithm
generates multiple metrics in parallel and simulates each FS once.

7In some cases, two or more of these are the same FS.



To get µmin(n), the algorithm creates Fmin(n), the set of
n-failure FS’s that branch from Fmin(n− 1):

Fmin(n) = {Fmin(n− 1) ∪ {S} |S ∈ S \ Fmin(n− 1)},

where S is the set of all the sites in the deployment and
S\Fmin(n−1) is the set of all sites S that are not in Fmin(n−1).
The algorithm simulates the site deployment generated by each
FS in this set, and obtains a corresponding value for µ. Using
the set of values of µ, it identifies the smallest one, µmin(n),
and uses it to get the associated FS, Fmin(n) ∈ Fmin(n).
The algorithm will use Fmin(n) as the parent for the next
iteration when it creates the next set of FS’s, Fmin(n+1). The
algorithm generates µmax(n), the estimated maximum value
of µ with n failures, in a similar fashion. It creates a set of
failure scenarios from Fmax(n− 1), simulates them, and uses
the resulting set of values of µ to obtain µmax(n) and the
associated FS Fmax(n).

The algorithm estimates the mean of µ by generating the
sets of n-failure FS’s that branch from the retained (n − 1)-
failure FS’s Favg`(n−1) and Favgu(n−1) and taking the union
of the two sets to produce the set of n-failure FS’s, Favg(n):

Favg(n) = {Favg`(n− 1) ∪ {S} |S ∈ S \ Favg`(n− 1)}
∪ {Favgu(n− 1) ∪ {S} |S ∈ S \ Favgu(n− 1)}

= Favg`(n) ∪ Favgu(n).

The algorithm simulates all of the networks in Favg(n),
generates values of µ for each, and uses them to compute
the average, µavg(n) =

∑
F∈Favg(n)

µ(F )/|Favg(n)|. The algo-
rithm selects the two FS’s whose associated values of µ are
closest to µavg(n). The FS whose value of µ is the smaller of
the two becomes Favg`(n), and the other becomes Favgu(n).

In order to increase its efficiency, the algorithm keeps track
of the FS’s that it simulates during each iteration, since it
is possible that the sets of FS’s may overlap (e.g., an FS
in Favg(n) may also be in Fmin(n)). The algorithm does not
simulate an FS that has already been simulated; the algorithm
copies the FS’s associated metric value µ and uses it to
compute whatever statistic it is generating.

B. Algorithm Performance

We assessed the accuracy of the pruning algorithm by per-
forming resiliency analyses on randomly chosen deployments
from our previous simulation work [6]. In that study, we used
Mentum Planet to estimate the deployment requirements for
the NPSBN by partitioning the United States into a grid of
20 km × 20 km square regions that we sorted into groups
based on terrain type and population density. We used stratified
random sampling to estimate the total number of sites that
would be required for the NPSBN, given various assumptions
about the network parameters.

In Fig. 2, we show an example plot of the percentage
of users served with 95 % reliability versus the number of
site failures. The figure shows metrics for all of the failure
scenarios as ×’s and plots the true values of the maximum,
minimum, and average metric values (using solid lines) and

Fig. 2. Pruning algorithm and exhaustive simulation in a deployment
consisting of eight sites.

the pruning algorithm’s estimates of these quantities (using
dashed lines). We observe the greatest error in the estimate of
the maximum value of the metric, while the actual value and
the result of the pruning algorithm agree much more closely
for the minimum value of the metric.

We examined site deployments of various sizes (i.e., values
of N ). Fig. 3 shows the maximum observed error between
the pruning algorithm and the actual values of the maximum,
minimum, and average metric values over the set of deploy-
ments. As also indicated by Fig. 2, the pruning algorithm is
most accurate when estimating the minimum metric value, and
does less well for the average and maximum values. Also,
in no case did the minimum and average metric estimation
errors exceed 1.5 %, while the error in the maximum metric’s
estimate was at most about 3.5 %. These results indicate that
the pruning algorithm provides reasonably accurate estimates
of the maximum, minimum, and average values of µ, at a
lower computational cost than an exhaustive evaluation, as we
will show.

The pruning algorithm’s relatively low error rate for the
minimum metric appears to be due to the minimum perfor-
mance’s typically being driven by a small set of high-impact
sites; the pruning algorithm works well in this case since the
FS associated with the lowest value of the performance metric
when there are n failures tends to be the minimum branch
from the FS associated with the lowest-value performance
when there are n − 1 failures. In contrast, for the average
and maximum metrics, there are many combinations of sites
that result in similar performance with a given number of
failures, and the pruning algorithm is more likely to follow
a suboptimal path in these cases.

The number of FS’s that the pruning algorithm examines
varies; greater overlap between the sets Fmin(n), Fmax(n),
and Favg(n) means that fewer FS’s need to be simulated. If
these sets overlap completely for each n, the total number of



Fig. 3. Maximum error due to pruning algorithm in maximum, minimum,
and average metric estimates.

examined FS’s is 1+N+(N−1)+· · ·+2+1 = (N2+N+2)/2.
For the no overlap case, we have to examine 1 FS when n = 0
(the empty set) and N FS’s when n = 1; we assume that
for 2 ≤ n ≤ N − 1, the sets Fmin(n), Fmax(n), Favg`(n),
and Favgu(n) do not intersect, and there are N − n FS’s in
each one8. When n = N , there is only one FS to examine:
S, where all sites are inactive. The resulting upper bound is
1+N+4(N−1)+ · · ·+4(N− (N−1))+1 = 2N2−N+2.
Thus the pruning algorithm’s complexity is O(N2), which is a
significant improvement over the 2N FS’s that the exhaustive
approach requires.

IV. EXAMPLE ANALYSIS

A. Description

In this section, we present an example, hypothetical, site
deployment and apply the resiliency analysis using the pruning
algorithm. The deployment in Washington, DC, consists of
70 sites as shown in the clutter map in Fig. 4a, and we use
the user coverage metric. In Fig. 4b we show the region with
better than 95 % user coverage in green, and we show the
remaining part of the District in red.

B. Impact of site failures on user coverage

We plot the estimates for the minimum, maximum, and
average in Fig. 5 for up to 18 failures. The minimum curve
drops below 95 % when there is a single failure (i.e., 0-site
resiliency), which indicates the existence of a high-impact site.
For more than four failures, the minimum coverage is below
90 %, and at 18 failures, it drops precipitously to around 50 %.
Also, Fig. 5 shows that, on average, the network can have up
to two simultaneous failures while still maintaining at least
95 % user coverage. In contrast, the maximum curve is above
the 95 % threshold for up to 16 site failures. However, the loss
of the particular set of sites associated with this result may be
a very low-probability event.

8This cannot occur in general, but it gives us a loose upper bound.

(a) Site locations

(b) Coverage map

Fig. 4. Example site placement scenario: Washington, DC

Fig. 5. Resiliency results for example 70-site deployment.

C. High and Low Impact Sites

Next, we discuss how the analysis helps identify high-
impact sites that are candidates for additional hardening or
redundancy, and how it also identifies low-impact sites whose
loss does not dramatically reduce performance. The results in
Fig. 5 show that we have a single site whose loss reduces
the user coverage from 95.7 % to 92.7 %. In Fig. 6, we
show the location of this site. We also show, in green and
red respectively, the regions of above- and below-threshold



Fig. 6. User coverage and locations of high-impact sites.

Fig. 7. User coverage and locations of low-impact sites.

coverage with the site lost. Comparing this figure to Fig. 4b,
we observe that the negative impact is confined to the area
around Congress Heights and Joint Base Anacostia-Bolling
in the southeastern portion of the city. Also, the decrease
in coverage is due to the relative isolation of this site; the
presence of an additional site would be likely to reduce the
impact of the site’s loss.

Fig. 7 shows the locations of the 16 low-impact sites as
yellow icons and shows the areas of above-threshold and
below-threshold coverage. The network maintained 95.1 %
user coverage when all the low-impact sites were lost, as
shown in Fig. 5. Comparing Fig. 7 with Fig. 4b, we see little
qualitative difference in user coverage.

Given that the loss of the low-impact sites has no apprecia-
ble impact on the user coverage, one may ask whether those
sites can be removed from the deployment entirely. While
selectively reducing the site count may reduce deployment and
maintenance costs, this tactic has a price: reduced resiliency.
To show this, we removed the 16 low-impact sites shown
in Fig. 7 from the 70-site deployment, and generated a new
set of estimated metrics using the pruning algorithm. Fig. 8

Fig. 8. Resiliency results for example 54-site deployment.

shows the minimum, maximum, and average values of the user
coverage metric for the reduced 54-site deployment. The figure
shows that the elimination of the low-impact sites results in
a deployment that is 0-site resilient even with respect to the
maximum user coverage metric.

Culling low-impact sites also reduces the ability of the
network to handle large-scale incidents that require the de-
ployment of large numbers of public safety resources. To
demonstrate this, we simulated the gas leak incident use case
defined by NPSTC in [7], which models the “report of a toxic
gas leak in a large public assembly building near the National
Mall in Washington, DC.” We considered 118 possible lo-
cations for the incident, which we show in Fig. 9. At each
location, the incident occupies a 1.6 km × 1.6 km square.
The incident command personnel are concentrated in a small
area; the remainder of the 327 responders and 127 vehicles
that compose the response force are deployed uniformly in the
incident area. We simulated background traffic associated with
routine public safety operations, and superimposed it on the
incident traffic. We used the mix of applications and associated
offered loads in Exhibit 9 on p. 26 of [8], but reduced by half,
to generate the background traffic.

Fig. 10 shows the negative effect of the reduced site count:
in the 54-site deployment, 95 % of the users were served in
only 4 % of the incidents, while, in the 70-site deployment,
95 % of the users were served in 48 % of the incidents.
Fig. 10 also shows that the performance gap is greater when
the subscriber coverage threshold is higher. Thus, the surge
capacity of the network suffers when low-impact sites are
pared away, even when none of the remaining sites experience
outages.

V. CONCLUSIONS

The resiliency analysis technique in this paper gives network
operators a useful tool to assess site deployments. The operator
can identify high-impact sites whose loss has a dispropor-
tionate effect on performance. The network operator can then
expend its limited resources to harden these sites or perform



Fig. 9. Incident locations for gas leak study (118 locations).

Fig. 10. Percentage of incidents covered at given threshold for 70-site and
54-site deployments.

additional monitoring and maintenance, using some of the best
practices identified by NPSTC [1, Section 5.3]. Operators can
estimate the probability of below-threshold performance with
respect to multiple performance metrics, which also can inform
decisions regarding which sites to harden. When examining
multiple candidate deployments, an operator can identify those
deployments that “bake in” resiliency (e.g., by having few
high-impact sites) and that in turn free resources that can be
expended on building additional capacity.

We also showed that while low-impact sites need less hard-
ening or redundancy than high-impact sites, removing low-
impact sites increases a deployment’s vulnerability to failures.
An excessive reduction in the number of sites can leave a
network vulnerable to even a single failure, if a high-impact
site is lost. In addition, the overall network capacity will be
decreased by removing sites, which reduces the network’s
ability to handle the additional traffic associated with large-
scale incidents.

(a) 70-site deployment.

(b) 54-site deployment.

Fig. 11. User coverage results for individual incidents using gas leak scenario
and day-to-day traffic.
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