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Abstract—A multi-dimensional computational model for the rise and dispersion of a wind-blown, buoy-
ancy-driven plume in a calm, neutrally stratified atmosphere is presented. Lagrangian numerical tech-
niques, based on the extension of the vortex method to variable density flows, are used to solve the
governing equations. The plume rise trajectory and the dispersion of its material in the crosswind plane are
predicted. It is found that the computed trajectory agrees well with the two-thirds power law of a buoyancy-
dominated plume, modified to include the effect of the initial plume size. The effect of small-scale
atmospheric turbulence, modeled in terms of eddy viscosity, on the plume trajectory is found to be
negligible. For all values of buoyancy Reynolds number, the plume cross-section exhibits a kidney-
shaped pattern, as observed in laboratory and field experiments. This pattern is due to the formation of two
counter-rotating vortices which develop as baroclinically generated vorticity rolls up on both sides of the
plume cross-section. Results show that the plume rise can be described in terms of three distinct stages:
a short acceleration stage, a long double-vortex stage, and a breakup stage. The induced velocity field and
engulfment are dominated by the two large vortices. The effect of a flat terrain on the plume trajectory and
dispersion is found to be very small. The equivalent radii of plumes with different initial cross-sectional
aspect ratios increase at almost the same rate. A large aspect-ratio plume rises slower initially and then
catches up with smaller aspect-ratio plumes in the breakup stage. The Boussinesq approximation is found
to be valid if the ratio of the density perturbation to the reference density is less than 0.1.
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NOMENCLATURE t same as the normalized x coordinate
u,v,w  perturbation velocity components in x, y, z direc-
Ag aspect ratio of plume cross-section, =R,/R, tion, respectively .
d characteristic dimension of plume density profile U homogeneous wind speed
B element core function 4 buoyancy velocity, =./¢Rg,
ge gravitational acceleration a velocity vector
g(x, 1) density gradient w plume horizontal width
h spatial discretization length in the numerical W, Watt=0
scheme x horizontal wind direction
H vertical thickness of plume cross-section x =(y,2)
Hy dimensionless initial plume height, H%¥/R y horizontal direction normal to the wind direction
Iy buoyancy length z vertical direction
m, deficient mass flux of the plume, o, turbulent eddy diffusivity
= —{p¥(y*,z*)UdA B entrainment coefficient
L circumference of plume cross-section I; circulation of a vortex clement
L, Latet=0 é core radius of a vortex/transport element
M number of discretization layers across plume-air  64; area associated with a computational element
interface 5p, density variation across a discretization layer
N total number of computational elements A, combination length
P dimensionless perturbation pressure A; insertion length
Pe, buoyancy Peclet number At time step
R square root of plume cross-sectional area Axi distance between neighboring computational ele-
R, equivalent radius of plume cross-section ments
R* radius of plume cross-section £ plume mass flux ratio
R, major (horizontal) scale of elliptical plume cross- v, turbulent eddy viscosity
section p background air density
R, minor (vertical) scale of elliptical plume cross- p, dimensionless plume density
section o} deficient plume density
Re, buoyancy Reynolds number w streamwise vorticity
Re, stack exit Reynolds number i vortex/transport elcment trajectory
Superscript
*

tAuthor to whom correspondence should be addressed. dimensional quantities.
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1. INTRODUCTION

Accurate prediction of buoyant plume rise and disper-
sion in a turbulent atmosphere is important in many
practical applications. Buoyancy represents one of the
primary mechanisms governing the motion of plumes
generated from sources such as massive fires resulting
from the burning of oil spills, uncontrolled oil wells,
forest fires, and large-scale explosions (Evans et al.,
1986; 1989), and hot exhaust plumes emitted from tall
industry stacks (Briggs, 1975; Weil, 1988a), among
others. Besides. buoyancy, the dispersion of these
plumes, which determines their impact on the local,
and possibly distant environment, is governed by the
meteorological conditions, atmospheric turbulence,
atmospheric stratification, ground terrain, etc. In this
paper, we apply Lagrangian numerical techniques
utilizing vortex and transport element methods to
solve equations governing a plume rising in a cross-
wind in the case of a neutrally stratified atmosphere.
Cases involving inversion layers, continuous atmo-
spheric stratification, large-scale atmospheric turbu-
lence, particulate matter and chemical reactions will
be studied later.

Most plume studies, including analytical and nu-
merical models, and laboratory and field experiments,
can be divided into two categories. The first is con-
cerned with the plume trajectory. Scaling laws for the
trajectory of buoyancy-dominated plumes have been
proposed (Briggs, 1975, Netterville, 1990). In deriving
these laws: (1) the integral equations of volume, mass,
and momentum conservation are applied; (2) an en-
trainment assumption, stating that ambient air influx
velocity into the plume is proportional to the velocity
difference between the plume and the wind, is used;
and (3) a self-similarity profile, Gaussian or top-hat
distribution of momentum, buoyancy and pollutant
concentration in the plume cross-sections, is intro-
duced (see Appendix for detail and extension). The
second category is concerned with the study of plume
material dispersion (Venkatram, 1988; Weil, 1988b),
including the effects of the atmospheric boundary
layer and atmospheric stratification (Deardorff, 1970;
Nieuwstadt, 1992a, b). Fundamentally, plume rise and
dispersion are strongly interrelated (Nieuwstadt,
1992a, b), and fast dispersion often results from strong
entrainment. Buoyancy not only contributes to plume
rise, but also to dispersion. In general, for a buoyant
material, one cannot independently calculate the
plume rise and the dispersion.

Plume rise and dispersion studies have been used
to: (1) improve our understanding of plume dynamics
and the effect of atmospheric and emission conditions
on the spread of pollutants; (2) provide data for atmo-
spheric contamination in specific cases; and (3) con-
tribute, using accurate experimental data, to the de-
velopment of working models. However, these
models, although revealing, can hardly be extended to
more complicated problems, such as plume interac-
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ground terrains, or cases when physical or chemical
transformations of the plume material are important.
Empirical constants built into these models, like the
entrainment rate, are not universal (Gebhart et al.,
1984), and a wide range is reported for their values
(Fay et al.,, 1970; Hewett et al., 1971).

Large-eddy simulation of plumes in the convective
boundary layer have recently been performed. In
a large-eddy simulation, one computes the large-scale
turbulent motion explicitly on a computationally
manageable grid, while the effect of the small scales is
represented with the aid of a “subgrid model”. Since
the incorporation of buoyancy effects into turbulence
models has not been well established yet, as pointed
out by Golay (1982), the description of the strong
concentration gradient near the plume interface is not
expected to be accurate. One major effect of plume
buoyancy is to increase dispersion by self-generated
turbulence. This effect is almost completely neglected
in large eddy modeling. Furthermore, grid-based nu-
merical methods, including finite-difference or finite-
element approaches, involve numerical diffusion
which reduces the effective Reynolds number of the
simulations. Using a large-eddy model, Nieuwstadt
(1992a, b) found that, for a modestly buoyant plume,
the calculated concentration distributions were com-
parable with the experimental results. However, the
calculated plume rise did not follow the well-estab-
lished two-thirds law, and the often observed forma-
tion of the two counter-rotating vortices in the plume
cross-section was also not accurately resolved.
Nieuwstadt suggested that these simulation results be
considered with caution.

Numerical simulations of plume rise and dispersion
without invoking entrainment hypotheses are still
needed. A detailed understanding and accurate pre-
diction of the buoyancy-driven turbulent entrainment
process are undoubtedly useful in practice. This paper
is an attempt in this direction, considering only buoy-
ant plume motion in a neutral atmosphere with small-
scale atmospheric turbulence. The computational
model is validated by comparing its results to avail-
able experimental data. Increasing the level of com-
plexity, i.e. considering more interactions between the
plume and its surroundings, will be dealt with in
future publications.

This paper is organized as follows. The assump-
tions and formulation are discussed in Section 2. Sec-
tion 3 is a brief summary of the vortex method and
transport element method. Section 4 focuses on the
study of the effects of buoyancy and small-scale atmo-
spheric turbulence on the plume trajectory. Compar-
ison with the two-thirds power law is presented. In
Section 5, plume entrainment and dispersion charac-
teristics are discussed. Field and laboratory observa-
tions are used in the comparison with the numerical
results. The vorticity generation mechanism, traced
back to buoyancy, is then delineated. The effects of the
initial plume shape and height are investigated. In
Section 6. the validitv of the Boussinesa approxima-
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tion in the buoyant plume study is investigated. Sec-
tion 7 is a short conclusion.

2. FORMULATION

2.1. Scales

Before presenting the governing equations, we de-
fine several important scales in the buoyant plume
problem. Let R denote the length scale of the plume
cross-section, taken here as the square root of the
initial plume cross-sectional area. The atmosphere is
assumed to be neutrally stratified with constant dens-
ity p¥ and uniform horizontal wind velocity U. The
initial plume density distribution is p3 +p; where
pr(y*, z*) is the deficient plume density, which is
negative for a high temperature, low density rising
plume. The deficient plume mass flux is

= —J’p: UdA4>0. (1)

A suitable buoyancy velocity scale is

v=./eRg, )

. _
= <l 3)

where

&=

is the mass flux ratio, i.e. the ratio between the defi-
cient plume mass flux and the air mass flux within the
plume cross-section, and g, is the gravitational accel-
eration. For a typical plume, |p¥/p¥|~O(107"), so
that £~ O(10™1). Thus, for R=0(10 m), a character-
istic buoyancy velocity is ¥=0(3 ms™!). This velo-
city scale is smaller than the usual ambient wind
velocity UxO(5-10 ms™ ).
A buoyant Reynolds number can be defined as

VR

Ve

Reb=

()
where v, is the small-scale turbulent eddy viscosity.}

2.2. Governing equations

The goal of our study is to predict, using numerical
simulations, the downwind trajectory and dispersion
of the plume material, or the distribution of p}. The
problem is illustrated schematically in Fig. 1. The
following assumptions are used to simplify the formu-
lation without removing important physical processes

(1) the plume motion is steady;
(2) the initial plume cross-section is elliptical;

tin this paper, we loosely differentiate between large-
scale and small-scale turbulence using the plume radius as
a characteristic length scale. We only account for the effect of
turbulent eddies whose size is much smaller than the plume
radius. The eflect of these eddies is to enhance turbulent
diffusion. The effect of larger scales will be studied in future
work.
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Fig. 1. Schematic diagram showing the plume trajectory
and coordinate system.

(3) the plume is advected with a uniform wind
velocity U along x*-axis;{

(4) the trajectory length scale is much larger than
the size of the plume cross-section. This assumption
eliminates the small-scale irregularities of the plume in
the wind direction (Weil, 1988a);

(5) wind stratification and density stratification ef-
fects are neglected,;

(6) the effect of large-scale atmospheric turbulence
is neglected and the plume buoyancy dominates the
motion;§

(7) the eddy viscosity v, and eddy diffusivity «,,
modeling the small-scale turbulence, are assumed to
have equal values; and

(8) the fluid is incompressible, as justified by Luti
and Brzustowski (1977) and Briggs (1984).

These assumptions are used to simplify the physical
model; an essential first step in the development and
validation of the numerical scheme. In future work,
these assumptions will be relaxed and the computa-
tional model expanded to include, e.g. atmospheric
density stratification and near-ground turbulence
(Zhang and Ghoniem, 1993).

Denote the perturbation velocity, or the velocity
induced due to buoyancy, by (u*, v*, w*), the compo-
nents in the horizontal wind direction, x*, horizontal

{Note that the transfer of the horizontal momentum is
essentially complete within a few, about 5, exit diameters
from the emission source and the plume thereafter travels at
a horizontal speed indistinguishable from the wind speed
(Csanady, 1973).

§The effect of plume buoyancy relative to atmospheric
turbulence can be assessed by a Richardson number

(Ap*)R

where Ap* is the density difference across the plume surface,
and w' is a characteristic atmospheric velocity in the vertical
direction. For values of R;>1, corresponding to large
plumes such as fire plumes, buoyancy is expected to be the
dominant effect. For example, consider a fire plume with
R~10m and Ap*/p*~O(10"Y in a w ~O(l ms™") atmo-
spheric turbulence, R;~O(10).
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crosswind direction, y*, and the vertical z*-direction,
respectively. The governing equations are the three-
dimensional

SaiiiilRicivaan,

u*/U <1. We define the dimensionless variables as
follows

steady Navier-Stokes equations with

(» 2)=(y* z*)/R
(v, w)y=(v*, w*)/V
x*U _x*

_?Er
RV U

t=x=

_ P
pt

Pt

Ll ——-(l +£p,).

epd
The length scale in the x*-direction is U ./R/eg,, and
for a reason which will become clear soon, the dimen-
sionless x has been written as ¢. The normalized gov-
erning equations are

ov v dv 1 ap 1 _,

—+—Fw— —=—V% 6
+ 6y+ +l+ap,,ay Rey, ©)
dw ow  ow 1 dp Py I,
— v —tw— — =—1VV 7
6t+vay+waz+1+sppaz+l+sp, Re, v 0
v 6w -0 ®)
8y oz
dop, 0p, dp, 1 _,
—to-—“+w—"=—V 9
ot +e dy tw 0z Pe, Pe ©)

where Pe,= VR/fa, is the turbulent buoyancy Peclet
number (Pe,=Re, in this work) and V2?=3%
dy*+2*/9z*. The perturbation velocity in equations
(6)—9) stands for the instantaneous velocity averaged
over the smallest numerically resolvable scale. The
effects of eddies with even smaller scales are intro-
duced in the form of a turbulent eddy viscosity and
eddy diffusivity. As will be shown in the next section,
the numerical resolution is defined by the size of the
vortex-clement core. Within the element core, vari-
ables are distributed according to an assigned “core”
function which, to simulate diffusion, evolves in time
in a way that depends on Re,. The solution construc-
ted here, thus, can be considered as a large-eddy
simulation of the plume motion in which the large
scales are captured by solving the governing equa-
tions while the small scales are modeled phenomeno-
logically.

Replacing x by t makes equations (6)—(9), governing
the steady plume dispersion, the same as the Navier—
Stokes equations of an unsteady, two-dimensional,
incompressible flow in a gravitational field. The cor-
responding vorticity transport equation is obtained
by cross differentiating these equations to eliminate p
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do do o0 1 dp, ¢

— A0 —tW—t——— 7
ooy e T Uxep ) oy (I+ep
[t%ap 6pp6pJ 1

LGt el LI 2 8

0z 0y | Re, (10)

where w = dw/dy — dv/dz is the dimensionless vorticity.
Note that the Boussinesq approximation, which cor-
responds to setting ¢=0, has not been implemented.
In Section 6, we discuss the range of ¢ in which this
approximation is valid and the characteristics of the
non-Boussinesq solution.

The final governing equations are (8), (9) and (10).
The required pressure gradient in equation (10) can be
obtained from the momentum equations (6) and (7)

ap Dv_(1+¢p))
5’= “(l p)
y Re
(1
6p Dw (1+epp)
_6_2—— _pp_(l+ P) R b

where

D 6 6 0

Dt 6: +waz‘

The initial conditions are defined in terms of the
initial plume cross-section, which is taken here to be
an ellipse symmetric about y=0. The ellipse has a ma-
jor axis R, and a minor axis R, and its center is at
a distance Hy=H3/R above the ground. This choice
is motivated by the observation that as the plume
rises, after the initial momentum-dominated stage, its
originally circular cross-section is distorted into an
ellipse. If we assume that the initial plume has uniform
density, then from equations (1), (3) and (5),
pp=—[dA/R*= — 1. Using the above normalization,
the parameters governing the problems are reduced to
the aspect ratio, Ag=R,/R,, height, Hy, buoyancy
Reynolds numer, Rey, and the mass flux ratio, &. In the
Boussinesq approximation, ¢ is absent from the gov-
erning equations so the number of dimensionless
parameters is reduced to three.

3. NUMERICAL SCHEME

In the grid-free, Lagrangian, vortex method, the
essential ingredient of the flowfield, the vorticity, is
captured by the action of discrete, finite size, overlap-
ping vortex elements whose size, strength and location
are determined by approximately satisfying the gov-
erning equations. The vorticity field, o, is discretized
among vortex elements, with finite cores, which move
along fluid particle trajectories, ;(¢) such that

N
%, =3 i) f5(x—1:(1) (12)
i=1
where I';=w; 8A4;, w; and 84, are the circulation, vor-
ticity and the area associated with the ith element,
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respectively, N is the total number of vortex elements
(Ghoniem et al., 1988b), x=(y, z) and ¢ is time. The
vorticity of an element is distributed according to
a radially symmetric core function, f;, with a charac-
teristic radius, d, such that most of the vorticity is
concentrated within r<d8, where rP=(y—y)’+
(z—z,)>. Initially, the vortex elements are distributed
over the plume-air interface such that the distance
between neighboring elements is h in the two principal
directions. A Gaussian core, f;(r/8)=exp(—r?/6%)/
(&%), leads to a second-order accurate scheme (Beale
and Majda, 1982a, b).
The equations describing the vortex algorithm are:
=a(x() 1) (13)
with initial positions %;(0)=X,, where the advection
velocity is obtained from the desingularized Biot-
i=1 r

Savart law
x (g) (14)
while x(r)=[1—exp (—r?})]2n.

The change in the circulation of each element,
which depends on the local density gradient, is cal-
culated from the vorticity equation as will be shown
shortly. As time progresses, the distance between
neighboring elements increases in the direction of
maximum strain rate. This leads to a deterioration of
the discretization accuracy which requires that 6> Ay,
Ay being the distance between the centers of the
elements. Thus, an algorithm is used such that when
Ax> A, where A; is the maximum allowable distance
between neighboring elements, an element is divided
into two elements. The circulation of each of the two
new elements is one-half of the circulation of the
original element, while the vorticity is the same. The
distance between neighboring elements may also de-
crease due to negative strains. This should be avoided
since while it does not improve the spatial accuracy it
leads to an unnecessary increase in the computational
cost. Thus, when two nearby elements are too close so
that Ay<A., where A, is the minimum allowable
distance between neighboring elements, the two ele-
ments are combined into one whose circulation equals
the sum of the original two elements (Ghoniem et al.,
1988a, b).

The time marching algorithm for the integration of
equation (13) uses Heun’s second-order predictor-
corrector scheme (Dahlquist et al., 1974):

N — . —
i%0=—3 r,e=z 2y+y:)

=i +a) At
(15)
¥ = 05 @) +E

where At is the time step.

In updating the circulation of a vortex element, the
density gradient is required. For this purpose, we use
the transport element method (Krishnan and
Ghoniem, 1992). This method is a natural extension of

) At
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the Lagrangian vortex method in which scalar gradi-
ents, instead of scalar values, are used in the transport
process. The adaptive grid-free form of the calculation
allows one to simulate flow in an infinite domain
while concentrating all the effort around zones of
strong gradients.

To perform the computations, the gradient of the
scalar, taken here as the density p,, is discretized
among a number of discrete elements such that

N
g(x,0)= z Gi() 0 A, f5(x—1: (1)

i=1

(16)

where 3=Vp,. Like vortex elements, transport ele-
ments are distributed where |§]| > 0 and are convected
with the local velocity field. Density gradients are not
conserved along a particle trajectory, but are modified
according to the local straining and tilting of the
material elements. The values of the density are ob-
tained by direct summation over the field of transport
elements

po(5t) t=§: (y yfr,z z) (6) an

where

0p,ilo%: ()]

gi(t)= A,

i (¢). (18)
In equation (18), dp,; is the density variation across
a layer, #;(¢) is the unit vector in the direction of the
density gradient, 8y; is the length of an element along
a layer. With new elements introduced where excess-
ive stretching is encountered, the scheme maintains
high resolution well into the late stages of flow devel-
opment after high concentration of vorticity and
sharp density gradients have evolved. (For more de-
tail, see Krishnan and Ghoniem, 1992 Knio and
Ghoniem 1991, 1992}

In order to simulate the effect of diffusion in both of
the vorticity and density transport equations, oper-
ator splitting is used. For variable vorticity, the diffu-
sion equation is written for each element

6(1),- 1

1
0t Re, (19)

Therefore, for a vortex element with a Gaussian distri-
bution of vorticity, we have

ds* 4
e 222 e 20
dt  Re, (20)
whose solution is
4t
82=02+ 21
Re. (21)

where &, is the initial core radius of the element. Thus,
the effect of diffusion can be simulated by expanding
the core radius as a function of time according to
equation (21). This is done without changing the
shape of the core function or the values of I'; and g;. If
Pe, # Rey (v, #a.), different core sizes should be used
for the vortex element and the transport element.
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In the present study, the boundary conditions at the
ground z=0 are: the normal velocity and the material
flux vanish. These are satisfied by including the effect
of the images of the vortex and transport elements at
z<0. To avoid repeated calculations, we also impose
images of vortex elements at y <0, assuming that the
plume cross-section maintains its initial symmetry
across the original symmetry line, y=0. Since the
plume height is mostly well above the viscous bound-
ary layer, the effect of this thin layer is neglected.

We discretize the zone of finite density gradient
within the plume cross-section into M layers. The
density along each layer is constant. The number of
layers used depends on the distance across which the
density changes from the value inside the plume to the
value in the atmosphere. If this distance is very small,
one layer is sufficient, otherwise more layers are neces-
sary to maintain acceptable numerical resolution. The
number of elements used to describe each layer in-
creases as generated vorticity intensifies and the
plume shape becomes increasingly convoluted.

Before we started the simulation of the cases of
interest, we conducted a numerical study for the pur-
pose of: (1) showing that the numerical solution con-
verges as the resolution is refined; and (2) determining
the optimal values of the numerical parameters which
can be used to minimize the CPU time while main-
taining the necessary accuracy (Ghoniem et al.,
1991)1. The numerical parameters, which control the
accuracy of the numerical method (see Fig. 2), are
found to be optimal for the following values: the
spatial resolution h=0.025, the vortex element core

Fig. 2. Schematic diagram showing the physical para-
meters used to define the geometry of the plume cross-
section and the numerical parameters used to discretize the
vorticity and density gradient fields. The two thin ellipses
show two constant density lines representing the
transitions between the plume core and the surrounding
air. The two thick ellipses show the layers where the com-
putational elements locate (dark dots) initially.

tConvergence and accuracy were defined in terms of glo-
bal or integral parameters such as the plume trajectory and
overall dimensions of its cross-section.
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radius, 6 =1.3 h, the number of layers, M =2, the time
step, At=0.025, the insertion length, A;=5 and the
combination length, A,=4. In the calculation, the
Boussinesq approximation is used, except in Section
6. The density changes from that of plume to the air
density linearly across the plume-air boundary. The
length scale in the direction of the density gradient
between the plume and the surrounding, normalized
with respect to R, is d=0.1.

4. THE TRAJECTORY OF A BUOYANT PLUME

4.1. Review of studies on plume trajectory

The scaling length of buoyant motion in a cross-
wind, called the buoyancy length (Briggs, 1975), can
be defined in terms of the notation adopted in this
paper, as
1

b=

nips
For strongly buoyant plumes, the two-thirds law

7% 3 1/3 x* 2/3
) ()

has been shown to approximate the trajectory, where
z* is the plume center rise and x* is the downwind
distance from the source (Weil, 1988a; Briggs, 1975).
The value of entrainment rate, f, is obtained by fitting
the scaling law (23), to experimental data. It is found
that B also depends on w,/U, where w, is the initial
vertical exit velocity of the plume.

Laboratory and field experiments have been per-
formed to find the value of B. The plume trajectory is
determined by the height of the center of the cross-
section, defined as the average, at each crosswind
section, of the highest and lowest points on the plume
boundary, both identified from photographs (Fay
et al., 1970). It should be noted that this height is not
necessarily the centroid height of the crosswind
plume section if the latter is not vertically symmetric.
Here we distinguish between these two as center
height (local average) and centroid (mass mean)
height. Laboratory experiments (Hewett et al., 1971)
showed that the dependence of the plume trajectory
on the stack Reynolds number, Re,=2w,r /v, where
r, is the radius of the stack, is small, provided the
plume is turbulent at the stack exit. The local atmo-
spheric turbulence effect is found to be small and so it
is neglected in the scaling law.

g.R?
v

Pr

22

(23)

4.2. Extension of the two-thirds law

The conventional two-thirds power law, equation
(23), applies during the stage when buoyancy domin-
ates the plume motion and the initial plume size is
negligible (point source). In the case of a massive fire
plume, the initial vertical momentum is negligible but
the initial plume size is not. To account for the latter,
we extended the two-thirds power law (see Appendix).
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The resulting expression for a strongly buoyant
plume, written in a dimensionless form, is

(V/rBz+1)—1 _—.@x% (24)

4.3. Simulation results

Three simulations, with same initial circular cross-
section, R, =R, =0.5642 R, were performed for differ-
ent buoyancy Reynolds numbers. In all cases, the
initial plume height is H-=30 and hence the ground
effect is negligible. Figure 3 shows a comparison be-
tween the center trajectories of the three plumes and
the extended two-thirds law, equation (24), for §=0.7.
Since more computational elements are required in
calculating the higher Reynolds number flow, those
cases were terminated earlier. It is seen that the rising
plume trajectory is generally independent of the buoy-
ancy Reynolds number (at least when buoyancy dom-
inates). Thus, the effects of molecular diffusion and
small-scale turbulence on the trajectory are negligible.
This is consistent with most experimental observa-
tions (Hewett et al., 1971). The computed trajectories
are not smooth because of the fluctuations associated
with the buoyancy generated turbulence. The traject-
ory agrees well with the extended two-thirds law when
p=0.7. The conventional (point source) two-thirds
law, equation (23), with the suggested (Briggs, 1984)
entrainment ratio of $=0.6 is also shown.

The plume starts with w,=0. As it is accelerated,
the generated vorticity at plume surface changes the
shape of the cross-section and modifies the vertical
velocity. Detailed study of the plume cross-sectional
shape and entrainment characteristics are delayed to
the next section. Here, it suffices to mention the fol-
lowing. Part of the initial potential energy of the
plume is transformed into kinetic energy which is
distributed between the plume and the surrounding
atmosphere. The rotational velocity induced by the
plume sets up an entrainment field towards the plume

6F 3
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Fig. 3. Trajectories of plume center for A, =1, H, =30,

and different buoyant Reynolds numbers, obtained
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center. The plume rising velocity is much smaller than
that of a solid body of same density because the plume
potential energy does not completely transform into
plume kinetic energy as in the case of a solid body.

The effect of the initial plume height is determined
by simulating the rise of two plumes whose initial
cross-sections have the same circular shape but with
Hr=1 and 30. The first case is close to the situation of
a ground fire, while the second is designed so that the
ground does not affect the plume motion. Figure
4 shows that the two trajectories are very close. The
plume trajectory is thus almost independent of the
initial height, with the plume released closer to the
ground staying slightly lower than the one released
higher. We emphasize that this conclusion applies
only when the atmosphere is calm, i.e. when atmo-
spheric turbulence near the ground is weaker than the
buoyancy effects. In future work, we plan to extend
our modeling to include the effects of wind shear and
atmospheric turbulence.

When the initial shape of the plume cross-section is
that of an ellipse, the aspect ratio may have some
effect on its trajectory. Figure 5 exhibits the three
trajectories, Ax=1,2, 3. We can see that the larger
Apg plume rises slowly at the beginning, then at around
x =15, surpasses the lower A; plume.
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Fig. 4. Trajectories of plume center for Az=1, Re, =10°
with and without ground effect.
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As will be shown in the next section, the plume
cross-section, over most of its history, resembles an
inverted kidney-shape. Thus, its centroid (mean mass
center) is not the same as its center. To confirm this
conclusion using our numerical simulation, we plot
the centroid and the center trajectories in Fig. 6. These
plots show that the calculation of plume rise in terms
of the center height may underestimate the maximum
concentration near the ground. Although the traject-
ory of the centroid is of more interest, it is difficult to
measure in practice,

5. DISPERSION

5.1. Review of plume dispersion studies

Plume dispersion is strongly related to its traject-
ory. In the literature, however, most studies calculate
the pollutant distribution as if a non-buoyant plume
was released from the maximum height it reaches. The
most widely used model is that of Pasquill-
Gifford-Turner which adopts the Gaussian plume
equation and assumes that the lateral and vertical
dispersion parameters are given by the Pasquill curves
(Turner, 1970; Gifford, 1975; Seinfeld, 1986). As men-
tioned before, rise and dispersion, being manifesta-
tions of the same dynamics, are interrelated, (Nieuw-
stadt, 1992a).

It is often observed that the distribution of the
plume material does not fit a Gaussian profile. Rather,
the plume cross-section is kidney-shaped (Briggs,
1975; Abdelwahed and Chu, 1978, etc.). In their labor-
atory experiment, Hewett et al. (1975) showed that the
cross-section was not completely circular, but kidney-
shaped, and Briggs (1975) proposed a distribution of
various quantities within this kidney-shaped cross-
section. Moreover, under certain conditions, the
plume could split into two separate plumes. Fanaki
(1975) observed that bifurcated plumes, forming two
lumps with an in-between region where the pollutant
concentration is relatively low, traveled downwind
forming two counter-rotating line vortices. It was also
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Fig. 6. Trajectories of plume center and centroid
for Ag=1, H, =30 and Re,=10°.
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suggested that bifurcation may reduce the rise of the
plume and lead to a horizontal scale larger than the
vertical scale. An instrumented aircraft was used to
measure the concentration profiles within a bifurcated
plume (Janseen et al., 1990). These measurements con-
firmed the persistent nature of the two line vortices
even after evidence of the plume was no longer pre-
sent. Janseen et al. (1990) concluded that the Gaussian
concentration profiles could not be used to represent
the inhomogeneities in the concentration field.

The double-vortex structure has also been observed
in experimental (Tsang, 1971), analytical {Csanady,
1965) and numerical (Lilly, 1964; Meng and Thomson,
1978) studies on rising two-dimensional thermals. The
significance of these observations in the study of
plumes stems from the fact that the equations govern-
ing the dynamics of bent-over plumes, equations
(6)—(9), are identical to those governing rising ther-
mals. Thus, it is expected that the governing dynamics
of both flow phenomena to be similar.

Investigations into the mechanism of the formation
of this kidney-shaped cross-section and bifurcation
have followed two lines. The first suggests that the
interaction between the crosswind and a non-buoyant
jet may be the cause of this distortion. McMahon
et al. (1971) described the process of vortex shedding
that occurred when a crossflow felt the presence of
a non-buoyant jet as essentially a solid object. The
effect of this vortex shedding, associated with the
pressure drag on the plume, was to distort the shape
of the plume and induce streamwise (with respect to
the plume stream) vorticity into the flow. Crabb et al.
(1981) and Sherif and Pletcher (1989) performed sev-
eral experiments and showed that a wake forms be-
hind a non-buoyant jet due to the presence of cross-
wind. Near the exit of a stack, moderate wind devel-
ops shear stresses on the opposite sides of the plume
thereby inducing vorticity with opposite signs at these
points. The effectiveness of this mechanism depends
on the initial momentum of the jet. On the other hand,
Hewett et al. (1971), using 547 measurements within
the plume cross-section, showed that a kidney-shaped
section formed even when the initial momentum was
negligibly small. This suggest that the bifurcation phe-
nomenon be independent of the plume initial mo-
mentum. '

Another mechanism proposed to explain this dis-
tortion is buoyancy. The bent plume is more buoyant
at its core where the density is the lowest and thereby
rises faster at center. Turner (1959) assumed that the
flow within the plume was similar to that generated by
a vortex pair with fixed circulation and showed that
the bifurcation of the plume results from the lateral
separation of the vortex pair. However, how the
plume acquired this circulation was not explained in
detail. Scorer (1958) concurred that the internal circu-
lation, induced by buoyancy, caused the plume to
bifurcate while Moore (1966) indicated that for a non-
turbulent flow, the plume remained continuous and
bifurcation might persist for thousands of meters
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downwind. Khandekar and Murty (1975) claimed
that the existence of an atmospheric elevated inver-
sion layer was crucial to the separation of these vor-
tices.

Having realized the kidney-shaped structure of the
rising plume. Schwartz and Tulin (1972) developed
a model based on the dynamics of a vortex pair. The
trajectory evaluated using this model also followed
the two-thirds power law. Recently, the role of the
concentration fluctuations in plume dispersion has
come under investigation (Sykes, 1988). Since our
numerical simulation can capture some of the small-
scale fluctuations, it can provide some insights into
the mechanism of the distortion of plume cross-
section.

5.2. Plume cross-section and vorticity generation

Figure 7 depicts the evolution of the cross-section
of a plume with Re, =103, while the table shows the
associated minimum dimensionless density which
characterizes the maximum pollutant concentration
at different locations. Due to the symmetry with re-
spect to the plume center line, only half of the cross-
section is shown. In this case, the ground effect is
negligible since Hy=30. It is clear that, as indicated
before, the center of the plume is higher than the
centroid (mass mean height). The figure shows that
a plume experiences three stages after its release:

(1) A very short acceleration stage, during which
the deformation of the plume is very small, ie. the
plume rises like a solid body. The rising vertical velo-
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city of the plume increases at an almost constant
acceleration.

(2) A long double-vortex stage, during which vor-
ticity generated on both sides of the plume forms two
large-scale eddies tightly wound around the two hori-
zontal ends of the plume. During this rollup stage,
large entrainment of outside air into the plume core
takes place on the lower side.

(3) A plume breakup stage, during which the plume
is divided into two major lumps and several small
blobs which diffuse much like passive pollutant. This
stage can be also called bifurcation stage. Clearly, the
plume dispersion in this way is more efficient than the
uniform plume dispersion as described by Gaussian
models.

The mechanism of vorticity generation due to
buoyancy, which is responsible for the evolution ob-
served here, can be understood by examining the
vorticity equation, equation (10). The vorticity gen-
eration term is proportional to the horizontal density
gradient when, for simplicity, the Boussinesq approx-
imation is invoked. For a plume of initially elliptical
shape, the two large-scale, counter-rotating, stream-
wise vortices are formed due to the opposite horizon-
tal density gradient, as shown in Fig. 8a, leading to
a large-scale rollup which changes the plume shape
significantly from that described by the traditional
Gaussian type concentration distribution. The two
eddies induce a velocity field which moves the plume
upwards. After this large-scale rollup, the plume-air
interface is stretched and distorted, secondary vor-
tices, with the same or the opposite sign of vorticity,

X 0 2 4 6

8 10 12 14 16

Pp.min -1.00| -1.00| -0.81

-0.74

-0.70| -0.64| -0.63{ -0.57| -0.50

Fig. 7. The evolution of the cross-section of a plume with A, =1, H, =30, and Re, =10 shown at different downwind
locations, x. The corresponding minimum dimensionless deficient plume density are listed in the table. All frames are from
z=28 to 38 and the horizontal scale is the same as z.
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Fig. 8. A schematic diagram showing the mechanism of
(a) large-eddy generation and (b) small-eddy genera-
tion.

are generated and the plume motion becomes. turbu-
lent as shown in Fig. 8b. In all stages, turbulence
within the plume is far from Gaussian, and the plume
dynamics resemble that of a trailing vortex behind an
aircraft rather than that of a homogeneous turbulence
field.

While the plume trajectory appears to be insensitive
to the Reynolds number, or small scale diffusion, the
entrainment and mixing within the plume cross-sec-
tion are related. Figure 9 shows the plume cross-
sections at x=4.5 for four different buoyancy
Reynolds numbers. In all cases, the formation of the
two large vortices on the sides of the plume contrib-
utes significantly to the redistribution of the plume
material. The density field is smoother at lower
Reynolds number. Figure 10 depicts the development
of the plume cross-section at high Reynolds number,
Re, =103 The patterns of the large-eddy formation
and small eddy generation are shown. The small-scale
perturbations developed at the top surface are rapidly
growing along the vortex sheet, rolling into small
eddies and propagating down towards the bottom
side.

A detailed description of the acceleration stage,
which is important in calculating the circulation of the
two large eddies that govern the plume buoyant dy-
namics, has not been given in the literature (Turner,
1959). In this work, this total circulation is evaluated
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from the numerical results and is displayed in Fig. 11.
The total circulation is obtained by summing over the
circulation of all the vortex elements which lie on
either side of the symmetry line, i.e. for one-half of the
plume cross-section. As shown in the figure, right after
the acceleration stage, the total circulation reaches
a constant value and is sustained for a long time (at
least up to the termination of our calculation,
x=17.5), consistent with Turner’s hypothesis. This is
somewhat surprising since the plume cross-section
continues to deform. To reconcile these two observa-
tions, we examine the two components of vorticity
whose summation lead to the total circulation (see
Fig. 8b). Figure 11 shows the positive circulation,
obtained by summing over the elements whose circu-
lation is positive; the negative circulation, obtained by
summing over the elements whose circulation is nega-
tive. The total circulation can also be obtained by
algebraically adding the positive and negative circula-
tions. As expected from the schematic diagrams in
Fig. 8, while the negative circulation grows steadily,
secondary rollup forms positive circulation which, at
the late stages, grows at the same rate as that of the
negative circulation. Thus, beyond the early large-
scale rollup stage, the total circulation on either side
of the plume remains constant.

As mentioned before, Turner (1959) suggested
a model in which the plume dynamics are represented
by a pair of streamwise vortices of a given circulation
which remains constant during the plume dispersion
phase. Our results suggest that this model, although
crude, may be a reasonable representation of some
aspects of plume motion and that the total circulation
of the large structure indeed converges towards a con-
stant value. It is apparent that the saturation of the
total circulation and the fact that the kidney-shaped
coherent structure is fairly long-lived is what makes
the entrainement assumption in integral models ap-
proximately valid. It is interesting to note that in the
normalized variables used here, the total circulation is
of order unity.

Since the dynamics of the plume cross-section can
be approximately modeled by two windwise line vor-
tices, the weak effect of a flat ground terrain shown in
Fig. 4 can be justified by considering the interaction
between the vortices and their two images, as illus-
trated in Fig. 12. Since the induced velocity by a vor-
tex decays away from its center as 1/{x—x,|, where
X, is the vortex center, and since in this case | X — %, | is
proportional to twice the initial plume height, the
ground effect weakens as Hy increases from 1 to 30,
As shown in Fig. 12, the net velocity induced by the
images on the plume has a horizontal component
pointing towards the plume center. Thus, when the
ground effect is measurable, it leads to a reduction in
the horizontal spread. Let W, the maximum horizon-
tal distance between any two computational elements,
represent the width of the plume in the y-direction.
Figure 13 shows W(x) of two plumes, with and with-
out the ground effect. In both cases, the width of the
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Fig. 9. Plume cross-sections shown for different buoyant Reynolds numbers for Ag=1, H, =130, at x=4.5.
All frames are [rom y=0 to 2.5 and z=30.5 to 33.5.

plume grows almost linearly with the downwind dis-
tance x. The presence of kinks is mainly due to the
non-uniform rollup of the eddies. Without the ground
effect, the plume expands slightly faster. Within the
limitations of this model, the results suggest that the
ground effect on the plume width is negligible. This is
similar to the conclusion reached before regarding the
ground effect on the plume trajectory. As mentioned
before, wind shear effect may change these con-
clusions, especially close to the ground.

The effect of the aspect ratio of the plume cross-
section on the plume trajectory, shown in Fig. 5, can
be explained by the rate of vorticity generation along
the plume surface and its dependence on the plume
shape. Since the rate of vorticity generation is propor-
tional to dp,/dy, for plumes of same cross-sectional
area, a large Ag-plume has smaller portion of interface

where vorticity can be generated. Thus, in the early
stages, the rise of a large Az-plume is slower than that
of a small Ag-plume. However, the faster generation
of vorticity also accelerates the entrainment process,
thus limits the buoyancy strength hence eventually
delaying its rise after x=15.

5.3. Entrainment and entrainment assumptions

There has been a growing realization that the trans-
port properties of many turbulent shear flows are
dominated by semi-deterministic large-scale vortex
structures. Turner (1986) proposed using large-scale
engulfment as a basis for the entrainment hypothesis.
Viscous diffusion may only be important at the final
digestion of external fluid into the turbulent flow and
the evolution of the smaller-scale motions, but not in
determining the overall rate of mixing.
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x=3.5 x=4.5

Fig. 10. The evolution of the cross-section of a plume at different downwind locations for Ax =1, H; =30, and Re, =105, All
frames are from z=29.0 to 33.5 and y=0.0 to 4.5.
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Fig. 11. Absolute values of the positive circulation,

negative circulation, and the sum of the two (total

circulation), taken over the right half of the plume,
Ag=1, Hr=30, and Re, =103

Our numerical simulation confirms these observa-
tions. Figure 14a shows the induced velocity in the
plume cross-section. For comparison, the unit velo-
city vector and the plume surface are also shown on
the same plot. The material surrounding the plume is
engulfed toward its center from below. Most of the
entrainment into the plume core is induced by the two
large eddies. The entrainment is thus neither homo-
geneous nor isotropic. Clearly, the nearby atmosphere

2,

A /e

@ \)

Fig. 12. Schematic diagram showing the

ground effect on the plume rise and dispersion.

Dashed arrows are the velocity vectors in-

duced by two images. The solid arrows acting

on the vortices are the image-induced total
velocity vectors.

is disturbed due to the presence of the plume, and the
density distribution within the plume is distorted due
to this large-scale entrainment. The strong wind and
swirling motion often observed in the presence of
a fire can be explained by the powerful entrainment
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currents established by the dynamic field of a rising
plume as represented by the two large eddies. Figure
14b shows the plume motion in terms of the locations
and velocity vectors of the computational elements
used to discretize the outer surface of the plume cross-
section.

The total inflow at any position x depends on the
geometry and dynamics of the flow. From experi-
mental measurements, the entrainment constant in
equation (A7) is often taken as f=0.4, which is differ-
ent from B=10.6 used in equation (23). This inconsist-
ency in the integral model has been pointed out by
numerous authors (Briggs, 1975). Since the plume is
not of exact circular form, we define an equivalent
radius R.q so that

n
7R, =1 HwW (25)
where H is the maximum vertical extension of the
plume cross-section, defined here as the distance be-
tween the highest and lowest computational elements,
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representing the plume vertical thickness. From our
numerical solution, following the acceleration stage,
R., is found to change almost linearly with x, almost
independent of to the aspect ratio and the plume
release height, as shown in Figs 15a and b.

5.4. Plume circumference

Another measure of entrainment is the circumfer-
ence of the plume cross-section, defined by the sum-
mation of the distances between adjacent computa-
tional elements along the interface between the plume
material and air. Since the plume surface is wrinkled
due to local vorticity generation, the actual periphery
is much longer than that calculated by simple circular
or elliptical circumferences. During the acceleration
stage, there is not much variation of this length as the
plume rises undistorted, as shown in Fig. 16 for
x < L.5. The stretching of the circumference is distinct-
ly faster during the small-scale rollup, when several
areas of plume experience local stretching around
concentrated vortices, than during the large-scale rol-
lup. While the ground effect is negligible, the circum-
ference increases faster for smaller A; which is consis-
tent with the fact that this plume experiences stronger
vorticity generation.

Comparison between Figs 15 and 16 shows that the
equivalent radius is a better measure of entrainment
since the length of the plume suffers from the evolu-
tion of several small eddies which do not contribute
significantly to entrainment. We also note that the size
and strength of the small scales is a function of the
buoyancy Reynolds number, as shown in Fig. 9.

6. THE BOUSSINESQ APPROXIMATION

In practice, the Boussinesq approximation is a con-
venient simplification when small density variations

(b)

Fig. 14. (a) The buoyancy-induced velocity field and plume outer surface for Re, =10, A,=1, and H, =30 at x=4, and (b)
positions and velocities of the computational elements. Both frames are from z=29.0 to 33.0 and y=0.0 to 3.0.
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are involved in fluid motion (Spiegel and Veronis,
1960). In many flows, including that of a plume, using
the Boussinesq approximation renders the problem
self-similar with respect to the density ratio and hence
reduces the number of independent parameters. How-
ever, before using this approximation in extensive
modeling, it is important to determine the limits with-
in which the error introduced by the assumption is
acceptable.

Invoking the Boussinesq approximation is equiv-
alent to setting ¢=0 in the vorticity and momentum
equations. We performed numerical experiments at
e=|p}/p¥l=0, 0.01, 0.1 and 0.5 for an initially circu-
lar plume at Hy; =30 with Re, = 103, to study the effect
of the Boussinesq approximation on the solution for
different density ratios.

Figures 17 and 18 show the plume trajectory and
equivalent radius, respectively. The curves corres-
ponding to cases with ¢=0, 0.0l and 0.1 are almost
indistinguishable. This suggests that the Boussinesq
approximation is valid when £<0.1, i.e. when, in the
case of a plume with a circular cross-section, the
density ratio |pX/p¥|<0.1. This restriction may be
relaxed somewhat depending on the inaccuracies al-
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without ground effect, (b) with different aspect ratios.

lowed in the calculation. For most fire and exhaust
plumes, £<0.1 is usually satisfied.

The curve with £=0.5, ie. |pp/p3|=0.5, shows
some departure, which increases at a longer time,
from the Boussinesq approximation solution. It is
evident that the Boussinesq approximation underesti-
mates the plume rise and equivalent radius.

7. CONCLUSION

A Lagrangian model of buoyant plume rise and
dispersion in a calm neutral atmosphere is developed
in connection with vortex and transport element
methods. The computed plume trajectory is compared
with the experimentally based two-thirds power law.
The transition from the early stages of buoyancy-
dominated plume to the later stages, when atmo-
spheric turbulence begins to dominate the plume
motion, is calculated. The main conclusions of this
study are summarized in the following.

(1) The plume trajectory is insensitive to the small-
scale atmospheric turbulence. The plume trajectory,
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for the case of Ax=1, follows closely the extended
two-thirds power law.

(2) The plume experiences three stages which have
distinctive characteristics; (i) a short acceleration
stage, (ii) a long double-vortex stage, and (iii) a plume
breakup stage.

(3) The plume cross-section is found to be kidney-
shaped. The process of double-vortex formation and
plume bifurcation can be explained by the baroclinic
vorticity generation mechanism.

(4) The effect of a flat ground on the plume traject-
ory and dispersion is small.

(5) The aspect ratio of the plume cross-section is an
important parameter. Large Az plume rises slower
initially and then catches up with small Az plumes
during the breakup stage.

(6) The entrainment field is dominated by large-
scale engulfment which is neither isotropic nor homo-
geneous.

(7) The Boussinesq approximation is valid for
e=lpy/p31<0.1.

The long-term plan of our effort is to extend the
modeling approach introduced in this paper to in-
clude several important effects such as: (a) atmo-
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spheric density stratification; (b) wind shear; and (c)
atmospheric turbulence of scales comparable to and
larger than the plume characteristic dimension. The
parabolization of the equations in the wind direction
introduced here, which, in essence, restricts the vortic-
ity to the streamwise component only and treats the
flow within the plume cross-section as being two-
dimensional, is expected to be sufficient in the study of
(a). However, in order to investigate (b) and (c), the
other vorticity components will have to be included in
the formulation and the three-dimensional problem
be treated in full.
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APPENDIX

The motion of a buoyant plume can be modeled by the
following equations (Briggs, 1984)

thZ
U= 2pweRe (A1)
d(R¥2w* Ap*
U_(__W_)=R-z '_p_ (A2)
dx* *
d Ap*
U—(Rr*¢ 22 }=0 (A3)
dx* 3

pertaining, respectively, to the conservation of mass (entrain-
ment assumption), momentum and energy, where R* is the
radius of the plume cross-section, w* is the vertical velocity
of the plume, p?* is a reference density, taken as the ambient
air density, Ap* is the density difference between the plume
and surrounding at downwind location x*, U is the mean
wind speed, g, is the gravitational acceleration and # is an
entrainment constant. In the above equations it is assumed
that U is uniform and that the plume density and vertical
velocity have “top-hat™ profiles (ie. constant Ap* and w*
from 0 to R*). Moreover

e Ad
w* =

v T (A4)
R* (x* =0)=R* (AS)

*{x*=0)=0 (A6)



where z* is the mean plume rise, R? is the radius of the initial
plume size. Equations (A1) and (A4) show that

R*=R}+ f2*. (A7)
In a neutrally stratified atmosphere, equation (A3) shows
that
Ap* F
Rv2g, =2 b (A8)

.~ =constant=—
M U

where Fy=|p3/p3l R*?Ug, is the buoyancy flux. From
equations (A2) and (A4), we find that

L4 Ry
i v “)

Combining equations (A5), (A7) and (Aé), we obtain the
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..... \ e
following expression for the plume height
(A10)

3BF,
Z* +RYP — R =——x*2,
@ ) YIE

This is the extended two-thirds law. If Bz* » R?, the conven-
tional two-thirds law for a point source plume is recovered.
Using the procedure outlined in Section 2, we can write
equation (A10) in dimensionless form: the x-direction length
scale is I, =U \/(R)/(|p%/p2|g,) and the length scale in both
y and z directions is I,=R. The buoyancy length scale in
equation (22) can be written in terms of the scales used in this
study as

(All)



