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ABSTRACT

Eight combustion models for burning brands are reviewed. An averaged stagnation-point
burning model, using the chemical properties of wood, is used here. Maximum propagation
distances are calculated for disk-shaped brands lofted in large fires, such as occur after
earthquakes or at urban/wildland interfaces. Lofting in the fire plume and propagation
downwind are approximated here with distinct flow fields: a Baum and McCaffrey model for the
plume and a constant horizontal velocity driving downwind propagation. In the plume, the
brands rise with maximum drag and no lift. During propagation, both lift and drag act on the
brand. It is assumed to have a fixed angle of attack, 35° <o £90°, with respect to the relative
velocity vector. For these a, the disk lift and drag coefficients are C; = 1.17cos(a) and Cy =
1.17sin(a), so that lift increases with decreasing . Analytic expressions for dimensionless
propagation distance, height, and brand size are developed in terms of four dimensionless

parameters: initial lofting height, h’ ; constant horizontal wind, U}, ; angle of attack, ¢; and

[

dimensionless burning parameter, ‘¥'.

Keywords: Post-earthquake fires, urban/wildland intermix fires, brand propagation, spotting
fires.

INTRODUCTION

Burning brands, lofted above large fires and propagated by the prevailing winds, can
cause spot ignitions far from the flame front. These distant and unexpected fires are an
important mechanism for fire spread in post-earthquake and urban/wildland intermix fires. The
20 October Oakland Hills Fire quickly overwhelmed fire fighting efforts, in part due to brand
propagation and spotting hundreds of meters ahead of the fire front [1]. Although spotting has
received considerable attention from the forest fire community {2-7], little research quantifies
brand propagation from structures or rubble piles.

This paper explores the brand combustion data available in the literature and applies one
combustion model to determine maximum propagation distances for disk-shaped brands lofted
from large, single-plume fires. The inclusion of lift forces provides greater brand travel during
propagation than can be achieved by spherical or cylindrical brands. Analytic equations for
brand thickness and propagation height with time are determined as functions of heat release
rate, wind speed, and brand and air properties. Previous studies by Tarifa, et. al., [8, 9] and Lee,
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et al, [10, 11] assume a constant vertical velocity for lofting calculations with particles released
at arbitrary heights. This paper provides a more accurate lofting height by using Baum and
McCaffrey plume model [12] for axisymmetric pool fires. During propagation, the prevailing
winds are approximated as constant and horizontal, and the terrain is assumed flat.

This paper is divided into four sections: Combustion Models, Dynamics, Results, and
Conclusions. In the analysis, equations are developed from brand momentum balances for both
the lofting and propagation phases. The dimensionless results from these equations are analyzed
in the results section and summarized in the conclusions.

COMBUSTION MODELS

The heterogeneous combustion characteristics of brands, coupled with size and shape
histories, are required by large eddy simulations (LES) of fire propagation to calculate fire
spotting distances. Although initial brand conditions such as size, shape, and material properties
can be approximated, quantifying the gravitational and aerodynamic forces during flight requires
that the brand shape, size, mass, and drag and lift coefficients be known as functions of time.
Prior to lofting and propagation, brands are assumed to be smooth-formed; i.e., combustion will
have removed corners and other sharp edges, so that lofted brands can be approximated as
spheres, disks, or cylinders. A small drag coefficient and large mass-to-cross-sectional-area ratio
limits the propagation range of spheres relative to other shapes. Therefore, this paper focuses
primarily on disks. There follows a brief description of combustion brand characteristics from
the literature:

Albini [5, 6, 7] developed a firebrand burning-rate model that is primarily based on
cylinder data from Muraszew [3]. The density and mass of brands after timed combustion
periods were reported for four wood types (Ponderosa pine, western larch, western red cedar, and
Engelmann spruce) and two sizes (5-cm-long, 12.5- and 25-mm-initial-diameter cylinders). The
data scatter is fairly large because some of the pieces fractured during the experiments. Albini’s
combustion model is based on the assertion by Lee and Hellman [10] that the mass Joss rate is
proportional to the rate of air supplied to the surface and on his assumption that dA./dt, the rate
of change of the cross-section, will be small compared to d(p,D)/dt, where D is the time-

dependent brand length in the direction of the wind. The resulting brand model is y=0.0064x,
where y =1- (pSD)/(pSD)0 and x =p,Ut /(pSD)O; ps 1s the time-dependent brand average

density, U is the brand relative velocity, and the subscript “o” indicates initial conditions. Albini

uses this model in several different velocity fields [5, 6, 7]. The data provided by Albini is
limited to one run for each type of wood, initial size, and combustion period.

Tarifa, et al., [8, 9] have performed analytical and experimental examinations of spotting
fires. In the former, the brands were assumed to be point masses, with drag acting in the
direction opposite to the motion of the center of gravity; lift was not considered. The
experimental phase involved two wind tunnels: one each aligned horizontally and vertically. In

the horizontal wind tunnel, the brands were attached to a 2-component strain gage by a thin steel :

wire, No strain gage was used in the vertical wind tunnel; rather, the wind tunnel velocity was
adjusted to keep the wire to which the brand was attached horizontal. Brands were ignited by a

RS

butane torch and size changes were recorded by photograph. Spheres (¢ = 10-50 mm), cylinders

(¢ = 6-15 mm, | = 18-36 mm), and square plates (32x32x2 - 32x32x16 mm) of five different
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woods (pine, oak, spruce, aspen, and balsa) were examined and the moisture content was varied
from 2 — 25%. Flaming transition to glowing combustion occurred at low wind velocities and
only glowing combustion was observed at high speeds.

Phillips and Becker [13] have used bark-covered pine sticks, with diameters from 9 to 50
mm, in constant, high-temperature flow between 3 and 19 m/s. The heated wind tunnel was
sufficiently small that it was necessary to calculate U.. from the known wind-tunnel velocity, U.
Over 150 experimental runs were performed, with five runs for each combination of velocity,
temperature, and sample diameter. Temporal mass-loss curves were given for a number of cases,
along with the authors’ equation for mass loss. For small time,

M, —m =14.6-exp[_3T920]-F0-Bi 1)

m

o

oo

where m is the instantaneous brand mass; T.. is the ambient temperature; Fo is the Fourier
number, o t/B2; Bi is the Biot number, h B /k_; o is the brand thermal diffusivity; k is the

brand thermal conductivity; B is the brand volume-to-surface-area ratio; h is the total heat
transfer coefficient; and the subscript “o” denotes initial conditions. For large time, the mass

ratio was found to be
m_-—m - 3267
° =f|Fo-ex 2

[+) o0

The data presented are of limited use because shape and size were not provided as
functions of time. The mass-loss curves appear to have two linear regions in log-log plots that
generally last until more than half of the mass has been consumed. Brands in low temperature
and velocity flow stop combusting well before the brands were consumed. Becker and Phillips
[14] argue that the combusting sticks consist of two zones, char and virgin wood, the radii of
which decrease somewhat independently. Like Albini, Becker and Phillips believe that a
constant char thickness is maintained for large-diameter sticks; for sticks with D, > 20 mm, the
“equilibrium” char layer was determined to be roughly 6 mm when the flow temperature was
above 745 °C.

Muraszew [2] developed a model wherein both the average density and brand size
decrease with time. This paradigm, coupled with Tarifa’s trajectory model, correlates
experimental data [8]. Muraszew notes that although Cq4 varies greatly at low Reynolds number,
such low Re brands are likely to be too small to cause a spot fire; thus Cy is assumed to be a
function of shape alone. The density was approximated by:

PO _ exp; “U ) for ti, <t<80-D, (3)
Po 57-D,
where t;,, =12-D,, with t in seconds and D, in cm. Tl;is equation is used with the terminal

velocity data to determine the effective diameter as a function of time:
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2
D) | we() Po
= . 4
Do ( Wf.o ) (p(t)) ( )

where D is the time-dependent brand diameter, wy is the brand terminal velocity, p is the brand
density, and the subscript “o0” denotes an initial value.

Tse and Fernandez-Pello [15] have developed a combustion model for spherical brands
that employs a two-diameter system, for mass and size, with parameters that are empirically fit to
Tarifa’s mass and surface area data [8, 9]. The combustion model is used in conjunction with
ambient wind to provide propagation distances for brands caused by power-line arcing near trees.
The effective overall diameter, D, determines the brand mass, assuming constant average
virgin wood and char density, and decreases according to d( )/ dt =-B. The wind effects on

boundary layer thickness are found in 3 =3, (I +0.276Re" % Sc!’? ) The brand regression rate,

d(D*)/dt =—-2+/3B*t , couples the physical brand size, which is used to calculate drag, to the
relative brand velocity through 3. The brands are assumed to extinguish when the mass ratio

falls to m/m, = 0.24, based on a final char yield of p/p,=0.24 from Atreya [16], after which the
temperature decreases by convection and radiation from 993 K.

Woycheese and Pagni [17, 18] have developed three paradigms for brands: burning-
droplet, linear regression, and stagnation-point combustion. The burning-droplet problem
models a spherical fuel particle combusting in an oxidizing, quiescent atmosphere and can be
adopted as a crude first approximation for spherical wooden brands. The surface regression rate
is an underestimate due to the effects of forced convection. The wood is assumed to be a
homogeneous solid [8] and the brand relative velocity is assumed sufficient to remove significant
ash from surface combustion, although adjustment of B or p; may account for a small ash layer.
The regression rate of the spherical brand is :

D In(1+B .
s 40{9-3. T____“(l ) ] 5)
dt P D
where o is the thermal diffusivity of air and B is the mass transfer number for wood, here
assumed to be 1.2 [18]. For brands lofted in a Baum and McCaffrey plume velocity field [12],
there is an initial brand size, D, that provides the maximum propagation distance, and yet is

smaller than the maximum loftable size, D, max; thus, all brands with an initial size
D, €D, £D,_ .. have the same maximum propagation distance.

Constant linear regression is the simplest possible combustion model; it appears to be a
good approximation to some of the literature data. The change in diameter with respect to time
is dD/dt=-E, where the regression rate, E, is a positive numbcr chosen to represent the material
composing the brand; Drysdale [19] suggests E=6.6 x 10° m/s for wood. This model may
provide a useful approximation to the size change of many brand shapes.

The stagnation-point burning problem is useful for burning disks where the angle
between the disk face and the relative wind (angle of attack, ) is near 90°. The mass flux [20]
is



Combustion Models for Wooden Brands 57

= (@JZ_M ®)
dt JolW|/v

where o is the radial coordinate on the disk surface, f(0) = —0.353r @ B®¢"0%5™® " is the mass
consumption number, B is the mass transfer number, and |W| is the magnitude of the brand
velocity relative to its surroundings. Note that h refers to the brand thickness. Reference [21]
defines r=Y,s/Y,, and B=(QY, /v .M, —h_)/L, where s=v,M, /v M, and

Y, =(B-sY,_ )/(1+B). For these equations, Yo.. is the mass fraction of oxygen far from the
disk, vy, , are the stoichiometric coefficients for fuel and oxygen, My , are the molecular weights
of fuel and oxygen, hy, is the specific enthalpy at the disk surface, and Q is the energy released by
combustion of v¢ moles of gas phase fuel. B and r are assumed to be 1.2 and 0.50 for wood [20].
To remove the infinite regression rate at the center of the disk, Eq. (6) is integrated over the
surface of the brand, assuming a constant radius, R, and constant, homogeneous density, to give
an average regression rate,

dh _8(p, )W 2W|ve
- 3(5 - 1(0)= 3[ps . fO) 7

where € = h, / 2R is the length-to-diameter ratio. The inclusion of relative velocity effects into
the combustion rate significantly affects the brand lifetime and maximum propagation distance;
the latter is also influenced by the angle of attack

DYNAMICS

Conservation of brand momentum [22] is given by

-TF, @®)

where m is the disk mass, V is its velocity with respect to ground, and F are the forces on the
brand. If the prevailing winds are assumed to be steady and irrotational, prudent selection of

axes reduces the problem to one of two dimensions, x and z, such that V = Vj + Vzﬁ, where i

and k are the unit vectors in the x and z directions, respectively. As indicated in Figure 1 Fig. 1,
a disk brand in a velocity field is subjected to three forces: gravity, drag, and lift. The gravity
force is

F, = -mgk, ©)

with g the acceleration due to gravity, and the drag force is

F,=F

d,x

i+F, Kk, 10)

where the components of the drag force are
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1 2
Fy « :E/\cpaCd|W]“cos(F) =%AcpaCdjW[Wx (a)

(11)
F,, =%AcpaCd[W]zsin(F)= %AcpaCd[W[Wz (b).

For these equations, A. is the cross-sectional area of the brand, p, is the density of air, Cy4
is the drag coefficient, W = Wj+ W,ﬁ =U -V is the velocity of the flow relative to the

particle, and " is the angle between the relative velocity and the x-axis. The drag force acts in
the direction of W with a strength proportional to the square of IWI.

Similarly, the lift force is

F,=F_i+F Kk, (12)
where the components of the lift force are

Fa =5 A@.CWP cos[T+90° )=~ Ap,C[WW, @

(13)
R, :%Acpac,(w}zsm(rwo"): %AcpaC,IWIWX (b).
Here, C; is the lift coefficient and 90° orients the lift force perpendicular to drag. Hoerner
[23] has determined lift and drag coefficients for circular disks to be

C,=C,sin(o) (a)
C, =C, cos(a) (b),

(14)

where o is the angle of attack as shown in Fig. |, held constant during the brand’s flight, with C,
= 1.17 for 35" £ £90". Combining Eqgs. (8) to (14), the momentum equations become

i(mvx }= lACpa|W[Cn (sin(o)W, —cos(o)W,) (a)
L '
—(mV, )= —,
dt (mv.) 2
Using m=nd’hp /4 and A, =nd'/4, where d is the disk diameter, h is its height, and

A0, |W|C, (sin(a)W, +cos(o)W, )—mg  (b).

ps s its average density, Egs. (15) can be solved for the acceleration equations,

av, _1{p, YC, WY | v, (dh
X — a < - - —_ X
- 5{—93 I————h }sm(a)Wx cos(a)W, ) - (——dt] (a)

av, zl(ﬁalfﬁllvl}smwwz +Cos(@)W, )2 (95]‘-3 (b).

(16)

dt 2| p, 1 hldt

The terms on the right-hand side correspond to acceleration due to drag, lift, and mass loss
(dm/dt<0 V). The additional vertical term gives deceleration due to gravity.
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The propagation problem consists of three phases: lofting, downwind propagation, and
deposition or burnout. The first two phases are approximated as completely separate for this
paper. During lofting, the brand follows the centerline of the plume, which is assumed to be
vertical. For maximum loft, & is assumed to be constant at 90°. The plume velocity, Upp, is
based on the Baum and McCaffrey plume model [12], so that the relative velocity of the brand
within the plume is

W, =(=V)i+(U,,-V,k (17

plume

For propagation, the brand is removed from the plume at the height that results in
maximum spotting distance — removal at greater heights results in burn-out above the ground and
at lower heights in smaller propagation distances — and is immersed in the velocity field of the
ambient wind. The wind above and around a large fire is a complex function of terrain,
atmospheric conditions, and fire size. This study is intended to provide limiting cases for the
maximum propagation of burning brands; therefore, following Tarifa, et al.,[8] a high-velocity,
constant, horizontal wind is used. The relative velocity during propagation is

W, =(U, -V)i-Vk, (18)
where U,, is the constant velocity of the ambient wind.

The lofting and propagation problem has five dependent variables, V,, V,, x, z, and h,
and one independent variable, t; the brand characteristics, angle of attack, and horizontal wind
are parameters. The brand is assumed to begin lofting at t=0 with V,, V,, and x initially zero and
the initial brand thickness, h,, known. The initial brand height is the only condition not known a
priori. For each initial brand size in the Baum and McCaffrey plume model, however, there is a
unique initial height, z,, below which gravity exceeds drag. (During the lofting phase, it is
assumed that oo = 90°, so that there is no lift force.) Brands are lofted when drag exceeds gravity,
so that the minimum lofting height will occur where these two forces balance. With brand and
wind velocities initially zero, W = Uhmlz =2.13U, (z/zc )”2 in the flame, where U, and z. are the

characteristic velocity and height of the Baum and McCaffrey plume,

U, =(Q.e*)Vo.c,T. )" (@
2. =(Q, /p.c, T- g .

Here, Q is the fire heat release rate, c,, is the specific heat of air, and T.. is the ambient

19)

air temperature. Assuming that o = 90° for maximum loft, Egs. (16) reduce to

= =0 (a)

dv, 1 C Y
s P | o 3u 2| | -5 (b
dt  2{p, }\ h, zZ,

Solving Egs. (20) for z,, assuming that dV,/dt = 0 at t=0, gives

(20)
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_|__28hz,  Tp,
ey 2]

The brands are assumed to launch from this minimum height. Similarly, the maximum loftable
disk thickness can be found by solving Egs. (20) with the maximum plume velocity, Uy, =
2.45U,, which occurs at z, = 1.32. With dV,/dt =0 at t=0

*

2
o =1[22 ]Cuf2450. ) @2
2{p, g

The equations to be solved are

av, _1[p, } Cav(U, =V, f + (U, v,
a 2| p,

o

sin(e)(U, =V, )~ cos(@)(U, -V, ))- % (ﬂ]—j (a)

2 2
c Ju.-v. V+(u-—-v -
E’_X;_:_‘.(B_a_ "\/( Ve )+ (U sin(a)(U,—V, )+ cos(a)(U, -V, ))—-Yi(ﬂ)-g (b)
dt 2 P, \ h h dt
2

ax =V, (c)
dt

dz _ v, (d)

dh _ __E(p_a}\/z\/(Ux—Vx )2 + (U;Vz )zve (—-f(O)) @),

di 3P h

0

where, during lofting, U, = 0 and U, = Uym, and during propagation, U, = Uy, and U, = 0. Except
for a brief startup period during lofting, the change in mass and thickness is slow enough to
allow the brand velocity to adjust to keep the external forces on the brand nearly in balance at all
times. This allows approximate expressions for the relative velocity to be obtained by assuming,
following Tarifa, et al.,[8] that the external forces are balanced. With dV,/dt + (V. /h)(dh/dt) =
0, which is synonymous to Y F =0, Egs. (23)a and b reduce to

W, =W, tan(o) (a)

W, sin(o) + W_cos(a) = 2g(%—ICnhW| } (b) (24,

$

Rearranging Eq. (24)b and using Eq. (24)a yields

W, =| — 2 : Py hg cos() (25)
sin® (o) +cos*(ar) | p, W]

The relative velocities in the x- and z-directions are determined from Eqgs. (24)a and (25),
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Wx =2 p_s w (a)
Pl W
: (26)
Pk IW

Using IWI = \/(WK Y +(W, ), the relative velocity is

W] = /2 Ps by, 27)
Pa
so that W, = cos(a){/2p,hg/p, and W, =sin(a){/2p,hg/p,.

Equation (27) is substituted into Eq. (23)e to give an approximate equation for the brand

thickness history,
1/2 1/4
SN [2E) (200 | (g g)) 28)
de 3{p, \ h p

a

which is separated and integrated, using h=h, at t=0, to give the brand thickness,

314 172 4/3
h.—.(hz"‘—f’“(%—) [;—8) g”“(—f(O))t] . (29)

Solving for t with h=0 gives the burnout time,

3/4
t, = b, . (30)

e 3/4 ve 172 .
2 [p) [h] g"(-£(0)

For the propagation phase, it is convenient to define a time, t,, such that t, = 0 when the
brand is removed from the plume. Then,

4/3

3/4 1/2
h, ={hif;‘ —2(%} (%) g”“(—f(O))tp] 3D

where hy(t,) is the brand size during propagation and h,, is the thickness at brand removal from
the plume. The time to burnout during propagation is then obtained by setting h, = 0,

3/4
t ., = My

p.b 34 172
27/4{%_] (:_8) gm(_ f(O))

(32)
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The brand height during lofting cannot be determined analytically due to the dependence

of Upm on height. During propagation, however, U, = 0: thus an approximate equation for branc
height can be found from Egs. (23)d, (27), and (29),

2/3

dz 28p /2 A4 172
_ EP, 34 ~714) P VE ]
| R (N Y T TR
. AN 4 \ \ ~ /

AN s

Integrating Eq. (33), with z,=0 at (,=t,, brand height during propagation is

43

Si4 . 14
"“ 3T 314 172
4 ___i Py 2vie p 4 27/4{&_] (_EE_J g”"(~f(0))tp] sin(ct) (34

"0 -1(0) AR Y

o

A similar strategy can be used to develop an analytic expression for the propagation
distance. There is no horizontal wind during lofting, but after the brand is ejected from the
plume, U, = Uy, which is assumed constant. Equations (23)c, (27), and (29) are used with U,, to
find a differential equation for propagation

2/3

dx ) 172 3/4 172
Pa '

p H

Q

Integrating, with x,=0 at t,=0, gives

3/3

§/4 2 14
34[93_] [221‘1521 14 12 (36)
x =| AP {h“—z”‘(&} {;’1—3] g'”(—f(O))lp] ~h¥ leos()+ Ut

° 10(~(0)) P,

i}

Although a constant velocity ts used here, any integrable velocity profile is valid for substitution
in Eq. (35).

NON-DIMENSIONALIZATION

Rendering equations dimensionless enables the extraction of maximum information from
the minimum number of parameters. Each equation from the analysis section is non-
dimensionalized using the following variables

V':X— Vv‘:_YV__ U‘:E_ U;:_gl U:V:Uw

U U U, U, U,

7C . xc + h .t 37
7z == X =-—— h'=— t=—

zZ, zZ, h, t.
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where U. and z. are defined by Eq. (19) and t. = z./U, from Eq. (23)d; the characteristic
thickness will be determined in the non-dimensionalization process.

Substituting Egs. (37) into Eqgs. (23)a and b yields

* C W' * *

Ve 1 | 2 T Y, (oW —cosayw? - )y

dt 2{p, h h, " h | dt (38)
* C w’ * *

dV: =—l— P . . LU, sin(a)W;+cos(oc)W:)— VZ' dh, -1 (b).

dt 2| p, h h, ' h | dt

From these equations, the characteristic length is

. 275
hc:(l P cnthC):[C" Po | Q (39)
2 AP, 2 pPs | p.c,T.yg

This is similar to the characteristic diameter found for spheres [17]. The dimensionless
brand acceleration equations are therefore

*

. W . .
| e e —eosew) 8]
(40)
* w* . .
E R B CA RS
The corresponding dimensionless brand regression rate, from Eq. (7), is
q
dh’ W’
— ==Y ———i : | 1)
dt h

where

1 12 1 112 c T 3/10
¥ = —f(0)| 2= Veesg1 _ (0_353r-()_02Bo.61l~o.065nn(8) 24 V8p3§ paj p 2«, 42)
3 4P CUL 3 A p.C, Q.8

is a burning parameter based on the stagnation-point burning problem [20]; regression rates for
¥ =0.01 and 0.005, for h| =2 and 6, are shown in Fig. 2.

The equations for height and distance become

*

vy (a)
g‘. ‘ (43)
ooV (b)
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Equations (40), (41), and (43) are solved simultaneously in each of the two regimes, lofting and
propagation.

During lofting, W" =-V_i+ (U}, - V))k, while during propagation,
W' =(U. - V:)i - V;lz . The dimensionless initial conditions for lofting are x (t" =0) =0,

z'(0)=1z, =0.22(h}), V.(0)=V (0)=0, and h"(0) = h;, where the minimum initial lofting

height was determined by non-dimensionalizing Eq. (21). The initial conditions for propagation
will be developed following the non-dimensionalization of the analytic equations, below. The

maximum loftable brand thickness, from Eq. (22), is h] =6, which is equal to the maximum

dimensionless loftable diameter for a spherical brand.

Using Eq. (37) and the definitions for the characteristic quantities, the approximate
analytic equations are also made dimensionless. The equations for relative velocity become

W=+h" (a)
A :\/_h_'cos(oc) (b) “
W, =h" sin(or) ©).

The dimensionless brand thicknesses during lofting and propagation are

4/3

4)

b = (h;)m N 3‘\7; (a)
4,/h
° 45)
. 473
. . 3Wt
hy =| (h, )" +—== (b),
and the equations for propagation height and distance are
h, 3 ) "
. 4 o ( . V4 t i
z, =——| X2 hp,o) s ]cos(a) (@) ,
5{ ¥ I 4n; (46);

5/3
. .. 4]4yn; . 3Pt . .
xp:thp-—S-{—\—P—— [(hp‘o)”%?;\/—é—] —(hr ) fsin@ ).

The time to burnout, in the plume or during propagation, can be calculated from

* V/4
) afn 374 h |
t :__(Lj);@[& (b).

@7

e
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* *

The initial conditioris for propagation are z'(t, =0)=z,,, x (0) =0, h"(0)=h,,,

p.o’
V! (0) = U, —+/h; cos(@), and V,(0) = —\/E‘;-sin(oc), where the initial propagation velocities
follow from Eqs. (44). Relative velocities during propagation, as determined numerically, are

shown in Fig. 3, plotted against the analytic estimates based on /h; . The relative velocity,

‘W" = \/(Wx )2 + (W )2 , 1s the solid line, while the x- and z-components are the dashed and

dash-dot lines, respectively. The analytic solutions, from Eqs. (44), are the dotted lines near each
of the three aforementioned curves. It is clear that, although the analytic solution tracks the
magnitude of the relative velocity extremely well, the velocity in the x-direction is overestimated
and that the velocity in the z-direction is underestimated to compensate. These differences most
likely occur because the angle of the relative velocity vector, I', and the angle of attack, a,
cannot be equal at all times if o is fixed. The relative velocity in the x-direction decreases faster
than that in the z-direction; as a result, I" increases with time. The external forces in the x-
direction decrease, slowing the brand’s progress. The final relative velocities in Fig. 3 are non-
zero because the brand is assumed to have a small residual mass upon landing, as would be
needed to supply the required ignition energy.

RESULTS

The propagation results for combusting, disk-shaped brands are presented in this section.
Similar results for spherical brands have been reported elsewhere [17]. The regression rate for
brand thickness is based on a stagnation-point combustion model for brands with constant radius
and density. Brands are lofted from their minimum initial height in the plume to find the
relationship between height and thickness. The launching height and propagation distance are
determined by removing the brands from the plume at the maximum height from which they can
return to the ground while still burning. Brands released from greater heights will be smaller,
and thus will completely combust in the air; lower heights provide larger brands at impact and
thus result in shorter propagation distances.

In previous work [17], the selection of the initial propagation size required iteration. The
brand’s launching height was adjusted until the maximum propagation distance was realized.
Here, it is possible to determine the initial propagation height and size without iteration, using
the analytic equations for propagation, in conjunction with the numerical results for lofting.
Figure 4 provides the brand thickness as a function of height in the lofting phase. The initial
propagation height, which is has a one-to-one correspondence to h’, is provided by Eq. (46)a,

with t, = 0. The point at which the lofting and initial propagation heights intersect determines
the height from which a brand can leave the plume and reach the ground with negligible mass, as

shown in the inset of Fig. 4. The dimensionless initial propagation thickness, h;‘o, is given in

Fig. 5 as a function of h, ¥, and . After the initial propagation height and thickness have been

determined, the analytic equations can be solved for brand propagation height, thickness, and
distance as functions of time. As shown in Fig. 6, the agreement between the maximum
propagation distances determined numerically and analytically is quite good. The analytic
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solution for W = 0.005 is within a fraction of a percent of the numeric values. Thus, an
approximate maximum propagation distance can be calculated analytically.

The dimensionless initial propagation thickness is a function of o, ¥, and h’; there is n¢

dependence on U, . These thicknesses, ratioed to the thickness for ¥ = 0.01, are only a functic
of W for h’ >2, as

.
vrﬁiﬂ« =5.33(w ', 4P
1

POuqa

which is valid for 0.003 <¥ <0.03. Using Eq. (48) in conjunction with h’ (h") for ¥ = 0.01

from Fig. 5 enables the calculation of the dimensionless initial propagation thickness. The
dimensionless propagation thickness, height, and distance can be determined from Egs. (45) to
(47) once the initial propagation thickness is known.

.

", and

The dimensionless maximum propagation distance, x is a function of o, ‘¥, h_,

max ¥

.

U., ., as shown in Figs. 7 through 9. Figure 7 illustrates the effects of cvand h’ on x__; greater

max ?

distances are achieved with larger brand sizes and smaller angles of attack, as expected. The
largest propagation occurs for o = 35°, the smallest angle for which the assumption of a constant
normal coefficient is valid [23]. Figures 8 and 9 provide three-dimensional representations of

x ., asfunctions of ¥ and h] for o = 35° The distances shown in Fig. 8, for U, =4, are

max

approximately twice as far as those in Fig. 9, for U, =2.

CONCLUSIONS

Brand momentum conservation was used to determine the maximum propagation
distances of wooden, disk-shaped brands lofted on the centerline of an axisymmetric pool fire in
a constant horizontal wind. Brand thickness was assumed to decrease according to a regression
rate from axisymmetric stagnation-point burning. Numerical solutions were used in the plume
since the centerline velocity depends on height. During propagation, analytic expressions were
developed since the ambient wind is assumed constant. Dimensionless maximum propagation

distances were determined for a range of dimensionless initial thickness, h; < 6; burning
parameter, 0.003 < ¥ <0.03; ambient wind, U}, <4 and angle of attack, 35° < €90°.

A dimensionless propagation distance of x* = 1350 was obtained for the maximum
dimensionless initial lofting thickness, h; =6, in a constant dimensionless ambient wind,
Uy, =4, at a constant angle of attack, o = 35°, with an average dimensionless burning

parameter, ¥ = 0.01. This corresponds to a propagation distance of approximately 7.9 km for a
wooden disk with an initial thickness of 7.4 cm and an initial aspect ratio of 10:1. The brand is
lofted above a 90 MW fire and propagates in a constant 30 m/s wind. The large propagation
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distance is much greater than that for spherical brands [17], and illustrates the added spotting
danger provided by lift associated with aerodynamic brands.

Future work will implement burning models for various brand shapes developed from

wind-tunnel experiments. These brands will be inserted as Lagrangian particles into LES fire
plume models [24-26], which describe the interaction of the flow field from large fires with
complex terrain and ambient winds.
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FIGURES

Figure 1
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Figure 2 Dimensionless brand thickness as a
function of dimensionless time for two initial
thicknesses and two ¥, as determined from the
stagnation-point burning model.

Schematic of the external forces on a
disk brand in a velocity field.
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NOTATION

Ac
B,
B

Qo

N<gg ST e ow T

Cross-scctional area of brand
Brand volume-to-surface-area ratio
Mass transfer number,
(Qv,./v.M, —h,)/L
Coefficient for force equations, Eqgs. (4, 6, and
7)

Specific heat of air

Brand diameter

Force

Brand thickness

Average brand thickness

Total heat transfer coefficient
Specific enthalpy

Unit vectors in x- and z-directions

Brand thermal conductivity

Brand mass

Molecular weights of oxidizer and fuel
Effective latent heat of pyrolysis

Velocity of brand relative to its surroundings
Velocity of surroundings

Initial value of dimensionless stream function,
F(0) = 0,353 002 0611-0.0651In(B)
Propagation distance of particle from center of
fire

Energy released by combustion of vf moles of
gas phase fuel

Rate of heat release for the fire

Mass consumption number, Y __s/ Y,
Disk radius

Stoichiometric ratio, viM, /v M_
Time

Ambient temperature

Brand terminal velocity

Particle velocity relative to ground

Mass fraction
Vertical height of particle

GREEK

e N Brand thermal diffusivity

o Angle of attack between disk and relative
velocity vector

r Angle between x-axis and relative velocity
vector

€ Length-to-diameter ratio

\% Kinematic viscosity of air

Vo, Vi Stoichiometric coefficients of oxidizer and fuel

p Density

o Radial coordinate on disk surface

SUBSCRIPTS AND SUPERSCRIPTS

a
bm

Air

Baum & McCaffrey
Characteristic

Drag

Disk surface
Gravity

Time of ignition
Lift

Maximum

Normal

Initial

Ambient, oxidizer
Propagation

Solid

Wind

Component in x- or z-direction
Dimensionless

DIMENSIONLESS GROUPS

Fo
Bi

Fourier number, 0 t/ Bi

Biot number, h B /k



