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The effect of coagulation on an aerosol with a broad initial size distribution was calculated ana-
Iytically for large and small particle sizes for arbitrary time with the assumption of a constant
coagulation collision frequency. It was found for the class of algebraic initial distributions that there
is a long term memory effect so that the large size part of the size distribution is not greatly affected
by coagulation. For such distributions the self-preserving hypothesis of Friedlander and Wang does
not apply. For a Junge-like initial distribution, which is a special case of an algebraic initial distribu-
tion, the size distribution in reduced form is only weakly time dependent and agrees well with
measurements on aging smoke generated from smoldering “punk” and flaming a-cellulose. The
measured size distributions are found to be in quantitative agreement with the expression,
¥v=0.1(3 + 0.1)~2%, where ¢ and » are the reduced number distribution and reduced particle volume,

respectively.

I. INTRODUCTION

An experimental and theoretical study of the
coagulation of smoke aerosols is presented in
this paper. While the theoretical work was
motivated by the experimental study of smoke
aerosols, the results of the calculations are
relevant, at least qualitatively, to any aerosol
or colloidal system with a broad initial size
distribution.

The time evolution of coagulating particles
is described by the Smoluchowski equation :

an(v, 1) °
— = / Tw—, v )nlv—, Onu(’, )dv
ot 0

— 2n(y, l)/ T(v, v )u(v, dv', [1]

where #(v, £)dv is the number concentration in
the particle volume size range v to v + dy,
I'(v, ¢') is the coagulation frequency depending
on the sizes v" and v, and ¢ is the time. To fully
specify the system an initial condition must
be given:

n(v, t = 0) = ne(z). [2]

This paper is concerned with the solution of
Eq. [1] for the case that #((z) is broad, which
we define as a type of distribution for which
some moment, #;, of finite order (¢ finite) fails

to exist,
o0
n; = / ving(v)dv.
0

We have considered the simplest case for the
coagulation frequency, constant I'. Exact re-
sults have been obtained for constant T for
narrow initial distributions, where narrow
means that all the moments of finite order of
the distribution exist. The novel feature of our
work is the analytic treatment of Eq. [1] for
constant I' for cases where the initial distribu-
tion is broad. We show that the nature of the
initial size distribution, whether or not it is
broad, has a large qualitative effect (as much
as orders of magnitude) on the size distribution
at later times.

Finding exact solutions to Eq. [1] with
constant I' for various initial conditions has
been a problem of some interest through the
years. Smoluchowski (1) solved the discrete

[3]

406

Journal of Colloid and Interface Science, Vol. 62, No. 3, December 1977

ISSN 0021-9797

Copyright © 1977 by Academic Press. Inc.
All rights of reproduction in any form reserved.






COAGULATION:OF AEROSOLS

version of Eq. [1] for a monodisperse aerosol,
Schumann (2) treated the case

[4]

and Scott (3) solved Eq. [1] for both a delta
function initial condition and for a Gaussian-
like distribution,

(v + D)+ (v/v0)” exp {— (v/v0)""'}
T + 1) |

no(v) ~ evln,

no(v) ~
[5]

In the above vy is a volume constant and » is
an integer.

It has been shown by Wang (4) and by
Lushnikov (5) for the case I' equal to a con-
stant and #y(v) narrow that the long time
asymptotic size distribution is independent of
the detailed form of the initial condition,

N (0)?

: Vl exp {— 0N ()/V},

n(z, {) 2 [6]
where N (¢) is the total number concentration
at time ¢ and V is the total volume of the
aerosol. Wang claims that the solution is inde-
pendent of the initial condition without quali-
fying that the initial distribution be narrow;
however, his proof implicitly assumes that all
moments of finite order of the initial distribu-
tion exists. Lushnikov proved that the asymp-
totic size distribution is independent of the
initial distribution for the discrete version of
Eq. [1] provided

ny(v) < Ae™P7,

where A and B are constants.

The major interest in this paper is the effect
of a broad initial size distribution on the long
time behavior of the size distribution. The
class of initial distributions treated here is
defined by:

n@) = aw+ e, [8]

where a, b, and e are constants. For & and e
both equal to zero this distribution is known
as the Junge size distribution (6).
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We find from our analysis that for long time
and large particle size the size distribution
“remembers” the initial size distribution. The
size distribution does not approach the limit
given in Eq. [6] for long times as in the case
of a narrow initial distribution. The analytic
demonstration of this result is a novel con-
tribution of this work; this memory effect for
broad distributions is discussed by Junge (Ref.
(6, p- 13)) on the basis of a numerical calcula-
tion for a specific initial size distribution.

This memory effect also bears directly on
the question of the self-preserving hypothesis.
The following is based on Wang and Fried-
lander’s (7) statement of this hypothesis. For
certain classes of coagulation frequencies

Yv(n, 1) —>¥i(n)

after sufficiently long times (r— =) regard-
less of the initial form of the size distribution,

¥ =n(, HV/N* (), [9]
n=N0)/V, [10]
T = FL‘/V(;L

The form of the function ¥4 (n) according to the
theory of self-preserving size distributions is
determined by reducing the partial integro-
differential equation (Eq. [1]) to an ordinary
integro-differential equation by a similarity
transformation. For the case of constant I, the
similarity solution is identical to the long time
asymptotic solution for a narrow initial dis-
tribution (Eq. [6]),

Y(n) — e [11]

We find that for broad initial size distributions
(Eq. [8]) the self-preserving hypothesis is not
valid. The size distribution retains its alge-
braic form for a long time and does not ap-
proach the exponential form given in Eq. [11].

Our interest in broad initial size distribu-
tions comes from strong evidence for such dis-
tributions for combustion-generated aerosols.
This evidence includes the studies by Husar
(8) on propane flame smoke and our own ob-
servations for smoke generated from flaming
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a-cellulose (similar to filter paper) and smolder-
ing “punk.” We find from our aging studies
that the reduced size distributions of “punk”
smoke and a-cellulose smoke are very similar,
behave as 572 for large 5, and are primarily a
function of  and virtually independent of the
reduced time 7.

The existence of a broad, weakly time de-
pendent size distribution 4s consistent with
coagulation theory. For the special case e = 0
in Eq. [8], which corresponds to a Junge-like
initial size distribution, ¥ is found to be only
weakly dependent on 7 for 7 between 0 and 99
with a shape identical to the experimental
shape to the degree of our experimental pre-
cision. In other words, we find that coagulation
alone is adequate to account for the aging of
smoke aerosol provided one uses a realistic
initial size distribution.

The effect of the initial size distribution on
the long time size distribution has not been
widely appreciated. As an aside, we point out
that Hidy and Brock’s observation (9) con-
cerning the difference between the narrow
similarity form and the broad experimentally
observed form for atmospheric aerosols can
possibly be explained by appreciating that the
initial size distribution is broad. As pointed out
above, the self-preserving theory simply does
not apply to broad initial distributions.

In Section IT we present the analysis based
on the Laplace transform technique for solving
Eq. [1] with the initial condition given by
Eq. [8]. The major feature of the calculation
is the proper treatment of the branch-point
singularity in the Laplace transform of the
initial condition. The saddle-point method,
which has been used by Scott (3) for calcu-
lating the long time, large v solution of Eq.
[1], is not applicable to the class of initial
distributions given by Eq. [8], because these
initial distributions are not analytic. As a guide
to the reader interested in the results only, we
present the salient features of our analysis in
a discussion at the end of Section II.

An electrical aerosol size analyzer was used
in measuring the size distribution of the
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smoke aerosol. Our experimental method and
results are presented in Sections IIT and IV,
respectively.

In Section V the validity of the coagulation
equation as applied to our experiments is dis-
cussed. Specifically, the effect of wall loss, con-
densation/evaporation, and a size-dependent
coagulation coefficient are discussed. Also the
implications of the universality of the size
distribution of smoke is discussed in light of
the calculations.

II. SOLUTION OF COAGULATION EQUATION
FOR CONSTANT T

For constant T, it is convenient to express
Eq. [1] in the following form:

AN / vm', WY@ — o, Nde!, [12]
N 0
where
¥ =n(, HV/N()?, [13]
5= NV, [14]
N =1— N()/No [15]

As has been shown by Scott (3) and Drake
(10), the solution of Eq. [12] can be reduced
to an integral in the complex plane by using
the Laplace transform technique,

wtie eriy(p)dv

1
Y@, \) = — o
a—in 1- M/o(ﬁ)

2mi

1 patin
= —/ er?y(p)dv. [16]
2w

a—iw

The quantity o(p) is the Laplace transform
of the initial condition.

In terms of the reduced variables defined by
Egs. [13]-[15], the first two moments of the
initial size distribution are unity:

/“’ Yo(@)do = 1, [17]

/ ) dpo(B)db = 1. [18]
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Using these results, we obtain the following
expressions for the reduced size distributions
corresponding to the initial distributions given
by Eq. [8]:

Y@\ =0) = a+<(1 + & (e +5)-¢to. [19]

For this initial condition, we obtain the
following expression for ¥o(p) :

Yo(p) = 1+ gerT (=1 — g (pe)**
_7*(*1 -6 ?f)]) €7 il’lthC‘r,
Yo(p) = (1 + QerEaye(pe),

€ = positive integer.

[20]

The T' in Eq. [20] refers to the gamma func-
tion and not to the coagulation collision fre-
quency. The function y*(a, 2) is a single valued
analytic function of ¢ and z possessing no finite
singularities (11). It is related to the incom-
plete gamma function and its integral repre-
sentation is

e

ee1d. 217
T'(a) /0

The function £, (z), the exponential integral,
has a logarithmic singularity at z = 0,

© g2t
E,.(z) = f di.
1 t?)l

The Laplace transforms for the algebraic
initial distributions have fundamentally dif-
ferent analytical behavior compared with
narrow initial distributions in that they con-
tain branch points at the origin in the complex
2 plane while the narrow ones have poles. The
branch cuts arise due to the appearance of the
following expressions in Eq. [20]:

v*(a,3) =

[22]

(pet*e for e # integer,

In (pe) for e = positive integer.

The occurrence of branch cuts is a direct con-
sequence of the nonexistence of all the moments
of the initial distribution. This can be readily
seen by expanding the Laplace transform of
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the initial condition ¥ (@, A = 0) as follows:

Yo(p) =/ Y@, N = 0)e»2dp
0

=/ ¢@N=0) f (=89) dv
0 =0 !
w (—1)i

= Z S——_‘)‘” njpjr
=0 j!

where

7; E/ o4, N = 0)dD.
0

The last step above can only be carried out if
all the moments 7; exist. Conversely, if they
do exist and if the growth rate as a function
of jis such that the resulting series has a non-
zero radius of convergence, the sum defines an
analytic function in at least some region about
# = 0. Hence there can be no branch cuts ex-
tending to the origin.

The implications of this difference for the
asymptotic solution are quite profound. As
will be shown below, the presence of a branch
cut gives rise to an algebraic decay to the
distribution function considered as a function
of 7 in contrast to the exponential decay for
the case where ¥o(p) is analytic. Moreover,
this algebraic decay is directly related to the
initial distribution in contrast to Lushnikov’s
postulated two stage evolutionary process (12)
and to the self-preserving hypothesis, both of
which postulate that the initial condition only
affects the initial stage of coagulation. The
algebraic decay does not, however, violate
Lushnikov’s theorem, which states that the
asymptotic distribution is independent of the
initial condition, but rather it lies outside the
scope of the theorem (see Eq. [7]).

The inversion theorem can be used to find
¥ (0, \), since ¥ vanishes as p approaches in-
finity in the complex plane. Because of the
branch-point singularity in ¥¢(p), it is con-
venient to make use of Cauchy’s theorem to
express ¥(7, A\) as a sum of residues plus an
integral along the path from 4 to A’ as shown
in Fig. 1. With some care it can be shown that
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the integrals along the curves ABC and C'B’A’
vanish as | p| tends to infinity and the integral
around the origin vanishes as |p| tends to
zero. We are left with

1 0
Y@, \) = ~—/ e s (se=i™ N)ds
21ri 0
1 0
+

2wt J

e~ "P(se’™, N)ds

+ 27 3 Residues, [23]

where p = se*™ along the negative real axis
with the sign determined by which side of the
cut (4 upper, — lower) the contour is on.
Using Eqs. [16] and [20] and the properties
of the functions v* and E,, we can combine
the first two integrals in Eq. [23],

I'(—e)sin[(1 4+ e)r;]v

¥@,\) =
T
® gmsTgms¢(s¢) T eds
X/O RE+1¢
+ 27i 3 Residues, [24]
€ # integer,
Ri= 14 reT(—e)
X {(se)*<cos [(1 + )] — v*},
It = N> T(—¢)(se) 1+
Xsin [(1 + er];
: 1 = e e *<(se)lteds
ven =4 o R+ I
+ 27 Y Residues,
€ = nonzero integer,
Ri=1— N1+ ¢

X [A<—S€) ~In (9 (isil;!] ’

I, = me*<(se)tt¢/ €,

_Z)H—e

A(z) = Eopez) +Inz- s
1+ ¢!
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So far the result is exact. From this point
on, only the asymptotic behavior for large and
small 7 will be treated. The analysis is valid
for arbitrary N\. Now, the analysis is restricted
to the cases ¢ = 4 and e = 0, both because of
the simplicity in analysis and because of the
similarity to the experimentally observed size
distribution for these cases.

The dominant contribution to (7, \) in Eq.
[24] for large & comes from the first term. It
will be shown below that for large # the first
term in Eq. [24] contributes to ¢ (3, \) a term
proportional to 5% for e = § and a term pro-
portional to 2 for e = (. The residue terms
resulting from poles for Re(p) < 0, if there
are any, would be decaying exponentials and
for large v would be dominated by the alge-
braic contribution from the first term. A pole
on the imaginary axis could lead to a significant
contribution to ¢ (@, \); however, direct nu-
merical calculations have shown that there are
no poles on the imaginary axis and none arbi-
trarily close to the axis.

e=1%

Upon dropping the contribution from poles
the behavior for large 7 is obtained from Eq.
[24] by making a small s expansion (to order

ImP

O
o
(@]

Re P

@]
jw]
R

gl A

Fi6. 1. Contour for integration in the complex plane.
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s?) for the denominator,

—T(=1

¢(i) )‘) == :

™
e (5/2)3ds

< |
o [(L=2N)2 =21 —N\) +1s2(2—\)]

[25]

For X not too close to 1, the integral in Eq.

[25] can be approximated by expanding the
denominator about s = 0):

5N =
T R ITRY

SA
X l:l + ——“4] . [26]
@+ 31 =N
This approximation is valid provided
ALK (04 2)/0 + 4.
For X = 0, Eq. [26] reduces to the initial dis-
tribution, Eq. [8] with e = 1.
In order to obtain a uniform approximation
for the integral in Eq. [37] in the limit A — 1,

which is equivalent to a long time approxima-
tion, we change to the following set of variables:

$1 = S/<1 - 7\))

@+ =),

The quantity » defined above approaches the
quantity 5 defined by Eq. [107] in the limit of

large #, which is the case of interest here. In
terms of these variables Eq. [25] becomes

1

i

—P(=1(1 — W}
Yo = ——— T
25

e s 3d sy

% / .
o [1 =250 4+ N2 — N)si2]

[27]

Higher-order terms in the denominator of Eq.
[27] would be second order in the limit A —> 1,
because such terms would have a factor 1 — .

The important result that ¢ (», \) is nof a
self-preserving size distribution is apparent
from Eq. [27]. As X\ approaches 1, the major
time dependence for (5, \) comes from the

411

Yr=nV/NZ

109

107]

0! 1 1 1 b 1
05 10! 10
n=vN/V

I'16. 2. The calculated reduced size distributions for
an initial distribution yo = 3[2(y + ) T3 are plotted
for three values of the reduced time 7 (=[No/N (1)—17).

prefactor (1 — \)4, which is approximately 7
for this range of \;
T = F‘\'(;l.

[28]

By a series of changes of variables, the
integral in Eq. [27] can be related to the
complex error function, W. The final result is

(2m)i1 — N
1641602 — N2

Y(n,\) =

42 W (z) — 2iz/mt — 4ig®/m}
m { [ , [29]
by — iay J
where
W(z) = e erfc (—13),

z = ni(ar + iby),
e+ G
e[+ T

ay =

b1=

Journal of Colloid and Interface Science, Vol. 62, No. 3, December 1977



412
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T=9
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1
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= |
|
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9| L 1 !
10 10? 10" IS 10°
n= WV

1'16. 3. The calculated reduced size distributions for
an initially monodisperse aerosol are plotted for three
values of the reduced time. The curves for 7 = 9 and
T = 99 are indistinguishable for > 1.

Another tactic is used in solving Eq. [1] for
small 7. Using the fact that ¥o(p) is analytic

for large p (Eq. [20]), we obtain a small o
expansion for ¢,

Y@\ =301 —5(5 — 3\ +---1. [30]

The variable ¢ as obtained from Eqs. [29]
and [30] is plotted as a function of » for three
values of  in Fig. 2. As stated in the Introduc-
tion, ¥ does not approach a single, universal
size distribution as it does in the case of a
narrow initial size distribution. For comparison
¢ is plotted in Fig. 3 for an initially mono-
disperse aerosol. Compared to the monodis-
perse aerosol the distribution is not nearly so
steep for large 7. The unreduced size distribu-
tion is plotted in Fig. 4. The striking feature of
this plot is that for large v the size distribution
remains almost invariant with time; it remem-
bers its initial condition. This is in marked
contrast to the behavior of a monodisperse
aerosol as illustrated in Fig. 5.

Journal of Colloid and Interface Science, Vol. 62, No. 3, December

MULHOLLAND, LEE, AND BAUM

e=10

The case e = 0 is probably the case of
greatest interest because of the good agreement
with experimental data. This case must be
treated differently from the previous case be-
cause the aerosol volume, the second moment
of the size distribution, is infinite. The unre-
duced size distribution is, as above, a two
parameter distribution,

n(v, t = 0) = as(v 4+ b))% [31]

One parameter is determined by requiring the
first moment of the distribution to equal the
total number of aerosol particles. The second
parameter is determined below by matching
the experimental and calculated size distribu-
tion at one point.

In defining reduced variables it is convenient
to use the parameter bs, which has the dimen-
sions of a volume, as a reducing parameter in
a way previously used by the ratio V/N,

o!

107}

number )
cmd pum?

"(

0%

1
10* io°

v(pem3)
F16. 4. The number size distributions corresponding
to the reduced distributions plotted in Fig. 2 for the

case where No and V are equal to the experimental
values for smoke from flaming a-cellulose, 2.1 X 10°

particles/cm? and 4.7 X 107% pm?, respectively.
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(Egs. (18] 15])):
. n(v, )N obs
TR
v/bs.

The initial reduced size distribution is

vl

Y(,A=0)= (' +1)2

Since the analysis is similar to that for the
case € = 3, the emphasis will be on the final
results. The expression for ¢ (7, \), obtained in
a manner analogous to that used in obtaining

Eq. [25], s

[32]
[33]

1073

Y=nV/N2

103

Y@, N)

e e 35ds

107]

- /: [1—Nes(A(

where A (p) = I (p) — pIn p.

As in the previous case, we expand the de-
nominator to order s* and define reduced

10" T T T T T
10°+
e
N
o \\T=9
\
\\
7 \
107} \ .
T = — ~_\
5 E e
gL RN |
It I (SN
- =0 VoATee9
(Y
0% [ B
b
\ \-\
L 1 \
1 \
! i
1 !
i [
0% |l i B
i !
| |
. 1 H
| !
! !
10 | ! Il | L ]
10°® 0% 102 10°
v{pem3)

F16. 5. The number size distributions are plotted for
several values of r for the case of an initial distribution
of 2.1 X 10° particles/cm?® all of volume 4.7 X 105 ump,

—8)—slns) P42 2522
[34]

i ! L

I
103

1
10"

10'
m=vN/V

an initial distribution ¢ = 0.1 (y 4 0.1)2 are plotted
for three values of 7.

variables to isolate the time dependence:
S1 = S/(l - )\),
n' =+ D ~N).

The resulting integral may be readily approxi-

mated for two limits: large 7’ and 4 of order
unity.

The analysis in the case of large »’ is similar
to that leading to Eq. [267] with the result

(1—;) +10 +~/>]} . [55]

where ¥ = 0.57721- -+ is Euler’s constant, ©°

In the case where 3’ is of order 1, the terms
involving In sy in the € = 0 version of Eq. [27]
are dropped with the result,

—1
’ /’ A) =
Y (', N r, T 0

X Im {—n'rer"nE(—ry)}, [36]
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n( number )
ot

10! L 1 ! 1 L i

10® 10* 0% lod
v(pm®)

Fic. 7. The number size distributions corresponding
to the reduced distributions plotted in Iig. 6 for the
case where No and 77 are equal to the experimental
values for smoke from flaming a-cellulose.

where
—b + i(4a — b%)}
Yy = )
2a
a=N{y[In(1— N — 1]

+ w2+ [n (1 = N,

b= [y +In(1—=N]

I

This approximation is best for #” of order 1 and
121

Finally the result for small =’ is found by the
same technique as was used in obtaining Eg.
[30]:

YN =1—v@2=N.  [37]

The behavior of ¢’ for large n” on a log-log
plot is similar to the experimental results ex-
cept that the two curves are displaced from
one another. The variables ¢ and 7’ defined
above differ by a factor V/Nobs from ¢ and 7
introduced by Wang and Friedlander (Egs.
[9] and [10]). The ratio V/(Nbs) is found to

MULHOLLAND, wL.EE, AND BAUM

be 10 by requiring the theoretical value of ¢
at n = 10 and X = 0 to equal the experimental
¥ (=107%) at n = 10 (see Fig. 9).

As can be seen from Fig. 6 the reduced size
distribution curve is a function of only # for
large 7 for the case e = 0. The unreduced size
distribution plotted in Fig. 7 is time invariant
for large v just as in the case for e = 3. These
two results will be discussed below.

The ¢, 7 size distributions plotted in Figs. 4
and 6 are accurately calculated for large 7
(Egs. [26] and [35)) and for small 4 (Egs.
[30] and [37]) and are less accurately ob-
tained in the intermediate region (uncertainty
about 509) where Eqs. [29] and [36] plus
interpolation are used.

Summary and Discussion of Calculations

We have analytically solved the coagulation
equation (Eq. [1]) for the case of a broad
initial size distribution and find that the solu-
tion is qualitatively different from that of a
narrow initial size distribution. This depen-
dence of the long time behavior on the initial
condition is physically reasonable. The phe-
nomenon of coagulation is a one-sided process;
it allows particles to stick together but does
not allow the particles to tear apart. Coagula-
tion can be contrasted with chemical equilib-
rium where the final state is independent of the
initial state. For example, in the chemical
reaction,

INeN,,

the same equilibrium state will be reached
whether the system is initially all N or all N.
In coagulation there is no mechanism analo-
gous to Ny breaking up into two N atoms;
thus, the large particles present in the initial
distribution will persist for long times.

We have shown that the existence or non-
existence of all finite-order moments of the
initial size distribution is the crucial issue con-
cerning the long time behavior of the size
distribution. For narrow initial size distribu-
tions, the reduced size distribution approaches
the limiting value given in Eq. [11]. In Fig. 3
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it is shown that ¥ has essentially reached the
asymptotic form at 7= 9 for an initially
monodisperse aerosol.

Our major interest in this study is in the
algebraic initial distribution, for which all the
moments of finite order do #nof exist. In this
case it is the unreduced size distribution # (v, #)
that has a simple behavior instead of the re-
duced distribution ¢ () as above. We find that
n(v, £) is almost independent of time for large
v (see Fig. 4); in other words, the size dis-
tribution remembers its initial condition. This
result for the algebraic initial distribution is
analytically demonstrated for the case ¢ = 0
and e = 3 and is likely for any e> 0. The
consequence of this steady-state behavior of
n(v, t) for large v is that the reduced size dis-
tribution is in general a function of both 7 and
the reduced time 7. The case ¢ = 0 is an ex-
ception and will be discussed below. Assuming
n(z, #) to be steady state for large v for any
€ > 0, then one finds that with increasing e
the time dependence of ¥ becomes stronger.

The case ¢ = 0 required special treatment,
because the total volume of the aerosol is
infinite. It is noteworthy that the size dis-
tribution for this case is only a function of g
for large 7. The reason for the time indepen-
dent form for large % is a combination of the
memory effect of the initial distribution and
the algebraic form of the defining equations
for the reduced variables y and 7. The memory
effect is likely for any broad initial distribution ;
however, only for the case ¢ = 0 does the time
dependence cancel out of the reduced size dis-
tribution. To be more specific if one assumes
that the unreduced size distribution is time
independent for large particle sizes with a con-
stant slope on a log-log plot, then with simple
algebraic manipulations of the reducing factors
in Eqgs. [9] and [[10], one can show that only
in the case where the slope is —2 (e = 0) is
the size distribution ¥ a function of only # for
large n. This reasoning is equivalent to that
used by Liu and Whitby (13) in arriving
at the same result. At that time they thought
an additional physical process was necessary
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for the existence of dynamic equilibrium,
dn/dt = 0; whereas, we find that dun/df can be
essentially zero for large particle sizes in a sys-
tem where coagulation is the only dynamic
process.

HI. EXPERIMENTAL METHOD

This portion of the paper is concerned with
the measurement of the size distribution of
smoke aerosols at various stages of coagula-
tion. Since the smoke aerosol has a broad
initial size distribution smiliar to that assumed
in the theoretical calculations in the previous
section, we are able to test the validity of the
theory for describing the coagulation of real
aerosols.

A commercial electrical aerosol analyzer
(Thermo-Systems, Inc. Model 3030)! was used
for measuring the size distribution of smoke
aerosols in the size range from less than 0.01
to 1 um. The performance of the instrument
has been described by Liu and Pui (14). While
the electrical aerosol analyzer was the primary
instrument for this study, we also used a con-
densation nuclei counter (Environment/One
Corporation Model Rich 100)! to measure the
total number concentration of aerosol particles
and a particle mass monitor (Thermo-Systems
Model 3200A)! to measure the mass concentra-
tion of the aerosol.

The two types of smoke studied are the
whitish smoke produced by a smoldering
“punk” stick and the invisible smoke generated
by flaming a-cellulose. “Punk” is a generic
term applied to an incense-like material pro-
duced in Taiwan for use in religious ceremonies.
The stick consists essentially of a bamhboo core
about 2 mm in diameter covered on the outside
by a coating of finely ground natural fiber
mixed with chemical oxidant. A typical punk
stick was about 3 mm in diameter with a burn-
ing rate of about 4 mm/min. It has the con-

! Certain commercial materials and equipment are
identified in this paper to specify adequately the experi-
mental procedure. In no case does such identification
imply recommendation or endorsement by the National
Bureau of Standards.
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T'1G. 8. The measured number distribution of smoke
from flaming a-cellulose (O, = =0; O, 7 = 4.5; A,
7 = 14) and of smoke from smoldering “punk” (@,
T=0; M r=14; A, 7=281).

venient property of smoldering in a uniform
manner ; unfortunately, it does not have a well-
defined chemical composition.

The other material is similar to filter paper
and consists of pure a-cellulose fibers formed
into a 0.8-mm-thick matt. For burning, 5- by
100-mm strips were used.

In the punk smoke experiment 10 punk
sticks were set smoldering, placed in the
bottom of a 1.8-m? cubical box for about 100
sec, and then removed. The large box volume
was necessary for minimizing wall losses and
dilution resulting from aerosol sampling. The
interior surface of the smoke box was made of
smooth polymeric sheets. A small fan was
positioned inside the box to mix the smoke. By
sampling from three different locations in the
box, we found that the smoke was well mixed
about 2 min after removing the punk sticks
from the box.

In the a-cellulose smoke experiment, eight
strips of a-cellulose were ignited and then held
inside the box for about 40 sec. Care was taken
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to make sure that all strips were flaming and
that they were removed from the box before
any one strip had changed from a flaming to a
smoldering mode.

After allowing 2 min for the smoke to be-
come well mixed, the size distribution was
measured by the electrical aerosol analyzer,
the number concentration by a condensation
nuclei counter, and the mass concentration by
a vibrating quartz crystal mass monitor. The
smoke was passed through a charge neutralizer
hefore allowing it to enter the electrical aerosol
analyzer. For the first two sets of measurc-
ments with the punk smoke, 16 to 1 aerosol
diluters (15) were used in the sampling lines
going to the electrical aerosol analyzer and
the nuclei counter. Typically the size distribu-
tions were measured about 2, 30, and 120 min
after the smoke source was removed from the
hox. The total dilution resulting from smoke
sampling represented less than 5% of the total
volume of the smoke box. No correction was
made for this small dilution in the data
analysis.

The electrical aerosol analyzer was operated
in the least sensitive range (1 V = 107t A)
and was modified to extend the size range to
1 um by setting the ionizer current at 0.76
X 1078 A. The switching control was set to
skip the first channel, because this channel was
slow (23-sec delay) and provided little informa-
tion in our experiments. To allow additional
time for the higher channels to stabilize, we
adjusted the S-sec adjustment potentiometer
to allow 7 sec between readings instead of 3.
The total scanning time for the 10 channels
was 110 sec.

The background aerosol was filtered room
air with a typical number concentration of
several hundred particles per cubic centimeter
(nuclei counter) and with a mass concentration
less than 10712 g/cm?® (mass monitor). It was
found empirically that no background correc-
tions were necessary because of the high con-
centration of the smoke aerosol. The relative
humidity was maintained at about 409, and
the temperature at 22°C.
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1V. RESULTS AND DISCUSSION Or
EXPERIMENTAL UNCERTAINTY

In order to compare the experimental results
with the model calculations, we have con-
verted the current readings from the electrical
aerosol analyzer into values of the size dis-
tribution, dn(v, £)/dv, by using the calibration
factors of Liu and Pui (14). The size distribu-
tion of punk smoke and a-cellulose smoke
measured at three time intervals are plotted
in Fig. 8. Additional data on the two types of
smoke are presented in Tables I and II. Both
experiments were repeated with almost identi-
cal results, except for the punk smoke data in
the range » < 10™* um®. Because of the small
contribution to the total electrical signal from
the small size particles in the punk smoke, the
signal-to-noise ratio of the output was poor
for small particle sizes. Therefore, the punk
smoke data for v < 10~ um?® are suspect. The
a-cellulose data, on the other hand, are re-
peatable for all the sizes shown.

The most significant observation about the
plots is that in both cases the size distributions
for the larger sizes are not significantly affected
by aging. This is in marked contrast to the
strong aging effect on the small size portion
of the size distribution. Also concerning the
large v part of the size distribution, it is note-
worthy that the size distribution is a straight
line on a log-log plot with a slope slightly less
than —2.0. The significance of this slope will
be pointed out below.

The fact that the size distribution curve of
the punk smoke is on top and to the right of
the a-cellulose curve means that the punk

TABLE I

Coagulation of Smoke from Smoldering “Punk”

Time T N 5o

(sec) (particles/cm3) (:m‘”*)

0 0 2.9 X 108 3.4 X 1073
1120 1.4 1.2 X 108 7.1 X 103
7110 8.1 3.2 X 108 1.7 X 10"

@ ¢ equals the total volume of aerosol particles divided
by the total number of aerosol particles.
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TABLE II

Coagulation of Smoke from Flaming a-Cellulose

Time T

N b
(sec) (particles/cms3) (um3)
0 0 2.1 X 108 4.7 X 1075
1540 4.5 3.8 X 10° 2.1 X 10~
6340 14 1.4 X 105 52X 10

smoke particle volume is larger than that of
the a-cellulose. After about 2 hr of aging, the
average volume (V/N(f)) of the punk smoke
is 1.8 X 1072 um?® compared to 5.2 X 10~ ym?
for the a-cellulose smoke. The corresponding
volume mean diameter is 0.32 um for the
smoldering punk smoke compared to 0.10 um
for flaming a-cellulose smoke.

The size distributions are plotted in Fig. 9
in terms of the reduced variables ¢ and 5. The
universal character of the reduced size dis-
tribution is striking. Not only the data points
at different ages for punk smoke fall on one
curve, but also the data points for a-cellulose
fall on one curve, which—within experimental
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F16. 9. The reduced size distribution points based on
all measured data shown on Fig. 8 and the calculated
distribution (solid line) fory = 0.1(y + 0.1)72.
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error—is identical with the one for punk
smoke!

The accuracy and precision of the electrical
aerosol analyzer has not been fully defined;
however, a qualitative estimate of the relation-
ship between the true and measured size dis-
tribution can be obtained by using the cali-
bration matrix defined by Liu and Pui (14).
We assume a certain input size distribution,
which corresponds to an array of electrical
currents for a perfect instrument, and then
operate on this array with the instrument
calibration matrix to obtain the output current
readings and the corresponding size distribu-
tion. A typical input and output size distribu-
tion are shown in Fig. 10. The only channel
that is significantly distorted by the instru-
ment for this input size distribution is channel
5 (v = 3.93 X 107 um?). This large distortion
can probably be traced to the large jump in
electric mobility of a smoke particle as the
charge on the particle increases from one
charge per particle to two.

The calibration of the electrical aerosol
analyzer is based on spherical or near spherical
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aerosols; if our smoke particles are highly non-
spherical, the results may be quite misleading.
It is thought that punk smoke is a liquid
aerosol so that it would be spherical; less is
known about the shape of the a-cellulose smoke
generated under flaming conditions.

V. DISCUSSION AND CONCLUSION

Before comparing the experimental results
and the model calculations, we consider the
validity of applying the coagulation equation
to our experiment. Physical processes that
might conceivably play an important role in
the aging of smoke in addition to coagulation
include collisions with the wall, settling, and
condensation/evaporation. Empirically we find
that the drop in the mass concentration is less
than 239, over a 2-hr period during which
time the number concentration drops by a
factor of at least 10. This small decrease in
mass concentration over the 2-br period indi-
cates that settling is not significant. Even for
the largest particle size measured with the
electrical aerosol size analyzer, 0.75-um diam-
eter, the settling process would result in only
a 109, drop in mass concentration for that
size. If condensation/evaporation were signifi-
cant mechanisms, then the mass density would
increase/decrease with time while the number
concentration remained constant.

Additional evidence that condensaticn/
evaporation are not significant mechanisms for
punk smoke came from measuring the size dis-
tribution for values of the relative humidity
over the range 20 to 809,. Changing the humid-
ity had a small effect on the size distribution.

In order to assess the significance of wall
loss during the aging experiment a separate
experiment was run with a low initial particle
concentration, 28,000 particles/cm?® of punk
smoke for a period of 7.2 X 10* sec (20 hr).
We obtained a wall loss coefficient, b, of 1.0
X 107% sec™! by fitting the experimental num-
ber concentration vs time data to an equation
obtained by integrating the macroscopic rate
equation:

dN/dt = — T\* — bN. [38]
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This value is within the range of values of b,
7.3 X 107% to 1.1 X 1075 sec™, reported by
Devir (16) for 1.0-um dioctyl phthalate aerosol
in still air. Using the experimentally deter-
mined T' of 4.0 X 107 cm?/sec and & of
1.0 X 107%, we find from Eq. [38] that the
rate of particle loss from the wall is equal to
that from coagulation at a concentration of
2.5 X 10* particles/cm®. During the coagula-
tion experiment, the number concentration at
the end of the experiment was more than five
times this number, which means that coagula-
tion was by a factor of five the dominant
process even at the end of the experiment. At
the start of the experiment this factor was in
the range of 80 to 100.

Perhaps the least valid assumption in the
model calculation is that the coagulation fre-
quence I is size independent. In the continuum
regime,

2kT 1 1
I = —'(Dl“f‘])z)(—‘l“—); [39]
3 D

1 1 2

where D is the particle diameter and g is the
viscosity. Over 809, of the smoke aerosol
particles measured have particle sizes within
a factor of five or six and, according to Eq.
[[39], this corresponds to a range of about a
factor of two in T'. It is not expected that the
large size part of the size distribution will
change qualitatively from the constant I' case
as a result of using a size dependent T', because
it takes many collisions of small particles with
one large one to change its size significantly.
On the other hand, one expects a large effect
of the form of I' on the small size part of the
distribution. Hidy (17) has shown that for an
initially monodisperse aerosol the small size
part of the distribution is much more sensitive
to the size dependence of T' than is the large
size part.

In any event, a more quantitative statement
of the effect of a size dependent I" on a broad
initial size distribution must await a numerical
study of the coagulation equation. The major
thrust of this study is that a realistic treatment
of the initial condition is very important and
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leads to qualitative agreement with experi-
mental results even for a simplistic choice of
the coagulation frequency.

One of the most striking experimental results
of this study is the time independence of the
size distribution for large ». For an initial con-
dition similar to the experimental one, the
coagulation calculation gives the same result.
This must be judged as a major success for the
calculation.

Another significant experimental result is
that the reduced size distribution can be ex-
pressed as a function of a single variable. By
matching the model calculation to the reduced
experimental size distribution at one point, we
obtain quantitative agreement between the
model calculation and the experimental results.
The generality of the theoretical argument
that shows that broad self-preserving size dis-
tribution must have a slope of —2 adds
credibility to the measured size distributions.
As shown in Fig. 9, the model size distribution
is not strictly time independent for 5 around
0.1. The experimental accuracy is not adequate
to allow one to test the model against the ex-
periment for this range of 5. As mentioned
above, this is also the size range where one
would expect significant deviations from the
model calculation because of the assumption
of constant T'.

We find that the reduced experimental size
distribution is accurately described by the fol-
lowing formula :

¥ =01(n+0.1)2 [40]

This is almost identical to the reduced size
distribution of atmospheric aerosols for large
7 found by Liu and Whitby (13). (The pre-
factor is 0.07 instead of 0.1.) The correspond-
ing unreduced size distribution is obtained
from Eqs. [9] and [10].

n(v,2) = 0.0V[o + 01V/N@® T2 [41]

The practical application of Eqgs. [40] and
[41] to various phases of fire research such as
the variation of smoke detector sensitivity
with the aging of smoke is of considerable
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importance and will be the subject of later
studies.

Perhaps the deepest finding of this study is
the identification of a basic question: Why
does the size distribution of smoke behave as
72 for large particle volume? We have shown
that coagulation does not affect the large size
part of the size distribution curve. It is up to
the theory of smoke formation to answer this
question.
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