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Chaotic Resonance: Hopping Rates,
Spectra and Signal-to-Noise Ratios

Agnessa Kovaleva®, and Emil Simiut

Abstract. We consider a noise-free bistable system with a low frequency signal and
a sccondary harmounic excitation that causes the system to experience chaotic motion
with a broadband partion of the output spectrum. The signal-to-noise ratio (SNR)
is defined on the basis of this braodband spectrum. We present the theoretical hack-
ground for approximalte calculation of the hopping rate, the output spectra and SNR
of the system. Tt is shown that, under a proper choice of the secondary excitation,
the SNR can be enhanced. This phenomenon is referred to as chaotic resonance. We
show similarities between results obitained for chaotic resonance nn the one hand and
classical stochastic resonance induced by random perturbations on the other. As an
example, chaotic resonance in the Holmes-Brunsden oscillator is studied.

INTRODUCTION

Stochastic resonance (SR) is the phenomenon wherein, for bystable systems sub-
jected to noise and a weak periodic signal, the output signal-to-noise ration (SNR)
can under certain conditions be improved by increasing the noise [1,2,3]. It has
recently been shown {4,5,6] that a similar effect can be achieved for deterministic
(i.c., noise-free) systems with a periodic signal and a secondary periodic excitation
that causes the system to experience chaotic motion. Owing to this, the system has
a broadband portion of the output spectrum and, thercfore, a finite SNR. Under a
proper choice of the secondary forcing the SNR can be enhanced. We refer to this
phenomenon, first noted in {6}, as chaotic resonance.

We consider the system

d? L _t d’;
—gg— + U (z,t,p) = ~f_b~é§ + ey coswt, (1)
with a modulated potential
Uz, t, u) = Up(z) — s(t, u)z = Up(x) — puz A cos M, (2)

where Uy(z) is a two-well potential of the Duffing-Holmes type. We assume ¢ < p <
1, A € w. We also assume that the primary low-frequency signal s{t,u) is unable
to induce chaotic transition across the potential barrier, and that the seconaary
forcing helps to bring about such transitions and can lead to SR. Formally this
implies that the Melnikov necessary condition for chaos [7,8] is not satisfied for
v =0, i.e., in the absence of the secondary forcing irregular escapes cannot occur.
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SPECTRA AND ESCAPE RATES

Denote the right and he left potential well by Vo and Y_ (| respectively. Identify
the paths in each of the wells by @y Then (1] £, 7) 1s a process x(1) = x, at /
provided that x{te) = z; at to , and p,(t | t. ) is the conditional probability that
T = 7, al time £ given that x = x; at time Iy

Since z;(t) is interpreted as a chaotic oscillation in the domain within a loop
of the separatrix, we can write u;(1) = z¢(t) + ¢;, where ¢; is the mean valne of
(1) and is taken to coincide with the position of the focus. For the system with
a symmetrical potential we have ¢y =c¢.| = c.

At a given time £ a point can be cither in the right or left well of the potential
(2), or in the flight region between the wells (3., outside the cores defined hy
the unperturbed systems homoelinic orbits). Numerical simulations show that the
time of flight motion is negligible in relation to the time spent in the wells. We
interpret short time flights between the wells as a series of instantaneous impnlses
with independent increments. This implies that the systemn state after each jump
is independent of its previous state before the jump, and the motions separated by
a jump can be taken to be uncorrelated.

Let Thy be the mean residence time in the domains Vi, respectively. The mean
escape rate from the domain is defined as W, = 1/7.,. The rate equations that
govern the presence of a particle in one of the two states are written in the form [2]

[ ‘,V—l (t) - UV.. 1 (t) + L{CH (t)‘ p.+], 7)_] =1 - D41, (3)

with initial conditions p;(t | ¢, 7) = &5 = {1,4 = j;0,¢ # j}. If p < 1, the weakly
perturbed escape rates can be written in the form [2]

Wi (1) = a/2 & ufcos A, {4)
where higher order terms are neglected. From (3}, (4) we obtain

1
perlt [ to, o) = sle™ T OINL; + 1]+ pBZ(X) cos(At = ), (5)

&0

in which Nyy; = 7, j = £1,Z()) = (A\? + &?)"Y? tany = A/a. Equation (5) is
obtained by noting that terms of order u are substantial only for the periodic part
of p,1(t | to, zo) and can be neglected in the aperiodic part.

The autocorrelation function can be written in the form

Kitys|tod)= 3 <zmlt+s|ta)n(t|t)) > (©)
kr=+1

Theoretical investigations as well as experimental results prove that the contri-
bution of the broadband portion of the spectrum of the intrawell chaos may be
assumed to be negligible compared to the contribution of the spectrum of irregu-
lar jumps between wells (see [9] for references and discussion). We can therefore
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negleet the autocorrelation terms ((t + s | foag)a (0] o, 7)) in (6) and con-
stder the broadband spectrum as consisting, in general, ol the spectrum associated
with the intermittent jumps.  On the other hand, since the motions in the re-
wions Vo and Voy are mutually uncorrelated. we can exclude the cross-correlations
0+ s | tae)2®(d ] te. 7)), B # v, [rom {6). Thus the autocorrelation Tunction is
reduced to four terms and corresponds to the two-state model [2]

K{t,s|te,j) = Z cepe(t 4+ s |t e)pe(t | te, J). (7)

K==zl
The power spectrum corresponding to the autocorrelation function (7) is [2]
D(Q) = 22 Z*() + 2mp*(3c)? Z2 (N6 (Q — A) +6(Q + N)], (8)

where 0 denotes the Dirac deltafunction. The SNR at the frequency A can be
found from (8)

B =rm(ud)?/o. (9

Equation (9) is similar to the result obtained for classical SR in [2], [6].

To calculate the hopping rate, we need the noise distribution parameters of the
intrawell fictitious noise. In general, a quantitative model of the noise distribution
is not available. Following [6], we assume that it is Gaussian. In this case we can
use the threshold-crossing theory for calculation of the escape rate [10)].

Consider a potential barrier as a threshold to be crossed. Let £ = z* be the top
of the potential well, and z = ¢ be the equilibrium position corresponding to the
bottom of the well. For the equilibrium we have U'(¢) = 0. Then we can write
Ulz*) = Ule) + 30" (c)(z* — )%, or 3(z* —¢)* = [U(z*) —U(c)]/U"(c) = AV. Thus
the escape rates from the right and left wells can be given in the form [10]

. l; AV;
W; = %exp (—— D

), i = +1, (10)

k3

where the variance of chaotic noise D; and the parameter {; are defined by relations

LT o o ! [oem
D, = *27{/ F(Q)dQ, 2= QﬂDlﬁo/oQ Fi(Q) dO (11)

Here F;(Q2) is the power spectrum of the fictitious noise generated by the process
.’Ei(t).
For a system with weak asymmetry we assume

AVip = A% pucos M, Fu () = F(Q) £ uf(Q), Dsy = 0° £ pud, {12)

where A = ~Uy(c)/Uf (¢), u = AcfUg(c), and
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9

dral

F)d, 1° = — /Q*HQ)({Q. (13)

3
I
=
3\\.8

As indicated ecarlier. nonoscillatory terms of order j are negligible in the calen-
Lwion of the spectral density and the SNR. Thus relations (10), (11), (12) vield

y 1
Wiy = %(1 + ;1«—1; cos Al) = p{nonoscillatory terms) (1)
2 g

where « is the hopping rate in the absence of the signal. given by

— , - A -
o == ,:. exp (a;) (];))
JFrom (4), (14) we find

8 = au/2q*

By introducing (15), {16) inte (9), we obtain the SNR in the form

’21, 2 A
R(o) = Ll-——it— oxp <~§> {(16)

As a function of the noise intensity, (o) has a bell-shape, as predicted by the
SR theory [2], that is R(o) — 0 for ¢ — 0, or ¢ — oc. In other words, an increase
of the excitation can result in an improvement of the output SNR. This result for
chaotic resonance was suggested in [6] and found with computer simulation in [4].
As was shown in [4], the dependence of 12 on the forcing amplitude v is similar to
its dependence on the noise intensity [ in a system with random noise. Equation
{17) is consistent with results of [4].

CHAOTIC RESONANCE IN A SYSTEM WITH
NEAR-HOMOCLINIC CHAOS

In general, the quantitative model of the spectrum F({2) is not available. How-
ever, in the special case, when the unperturbed system has a homoclinic attractor
and perturbed orbits pass through the chaotic layer near the homoclinic separa-
trix, the power spectrum can be computed analytically by employing the Melnikov
theory {11]. This homoclinic structure exists in (1) if b = 0. When b # 0, the
homoclinic separatrix is no longer attracting. However, there exists a set of param-
eters for which the most of the perturbed orbits remain in a narrow layer in the
neighborhood of the separatrix. In this case, analytical estimation remains valid.

As an example, we consider the system (1) with the Duffing-Holmes potential
Up(z) = —2?/2 + 2"/4. In this case the broadband part of the spectrum of the
motion within a well can be written in the form (see details in [11])

F(Q) = Fy()/T, Fo(R) = 272 sech® (n(2/2), (17)
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where 17 is the mean time ol passage throngh the stochastic Liver in the svatem
with the unperturbed separatrix. To the leading order term, the parameter s
given by [11]

T Ty = —In(e A", (18}
where A* is the maximum of the Melnikov function [§]
M (w) = vSpr(w) — 40/3, (19)

the Melnikov scale factor for the Duffing-Holmes system is Sy (w) = v27w sech 7.

13y using a simple transformation, we write 0 = Dy /Ty,where the variance D
corresponds to the dimensionless spectral density Fo(§2). As shown carlier, for small
7 an increase in the noise intensity leads to an improvement of the SNR. As seen
from (17), (18), Dy is a fixed parameter and the SNR maximum corresponds to
the minimum of Ty. For given v and b, this minimum depends on the excitation
frequency and corresponds to the maximum of the Melnikov scale factor Sy (w).
This effect was obtained in [4] with computer simulation

CONCLUSIONS

We considered a noise-free bystable system with a low frequency signal and a
secondary harmonic excitation. The effect of the signal and of the secondary ex-
citation is to cause hopping motions associated with chaos, as well as a spectral
density with a broadband portion. We obtained the expression for the output
signal-to-noise ratio (SNR). We referred to the enhancement of the SNR as chaotic
resonance. Our derivations show similarities between results obtained for chaotic
resonance on the one hand and classical stochastic resonance induced by random
perturbations on the other.

The special case of a system with a nearly-homociinic chaotic attractor is stud-
ied in detail. In this case, the spectral density of chaotic noisc can be expressed
explicitly via the Melnikov function. This allows direct caleulation of the SNR and
shows that the maximum SNR occurs when the excitation frequency corresponds
to the peak frequency of the Melnikov scale factor.
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