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ABSTRACT

Title of thesis: A BURNING RATE MODEL FOR CHARRING
MATERIALS

Degree Candidate: Gregory William Anderson

Degree and year: Master of Science, 1996

Thesis directed by: Professor James Quintiere

Fire Protection Engineering Department

A one dimensional model has been developed to describe the processes involved in
the transient pyrolysis of a semi-infinite charring material subjected to a constant
radiant heat flux. Material properties are assumed constant with respect to
temperature and time. The model tracks the char layer growth, thermal penetration
depth, surface temperature and mass loss rate.

A review of the physical phenomena involved in charring pyrolysis is presented and the
relevant phenomena included in the model. The integral method is described, and an
example for constant surface heat flux is solved. The derivation of the model divides
the material into three regions: char layer, vaporization plane, and virgin material and

the equations of conservation of mass and energy are applied to each region using the



integral approximation with polynomial temperature profiles. The resulting coupled,
nonlinear, autonomous system of three differential equations and one algebraic
equation is suitably nondimensionalized and solved using Mathematica™ software.
The results generated by the model are compared to existing models and, a method by
which effective properties for use in the model might be deduced from experimental

data is suggested.
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Chapter 1-—- Introduction

Background

Engineering has been described as:

The practice of designing structures we cannot completely describe, out

of materials we do not completely understand, to withstand loads we

cannot completely predict, without ever letting anyone know how

ignorant we really are.

In fire protection engineering this statement is often uncomfortably true. Fire
protection engineers frequently assess the fire hazard of a building or other structure,
using information about the expected building contents and the conditions the building
can be expected to experience. The engineer analyzes this information using models
based on physical laws and develops some judgement as to the degree to which the
building can be considered “safe.” In some scenarios, the engineer can predict the
response with good confidence, in others with fair confidence, and in still others with
poor confidence.

The problem of determining the fire hazard posed by the materials within the
building generally falls into the second or, occasionally, even the third category.
Computer models do exist to assist the engineer, but the current state of the art
imposes some severe restrictions. Rather than specify a plausible ignition source and
use the model to predict the subsequent growth of the fire, current models require the
engineer to specify the growth of the fire, which is often part of the aim of applying the

model in the first place. The reason for this is straightforward: no simple, universally

accepted model exists to predict the behavior of general materials under fire conditions.
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Modelling the behavior of solid materials as they pyrolyse under fire conditions is an
extremely challenging task. There are many physical phenomena that come into play,
and determining how these phenomena interact is daunting at best. Engineers must
make assumptions regarding the nature of the phenomena and their interactions.

The rate at which materials pyrolyse is a key factor in determining the hazard. '
On the fire triangle, (of heat, fuel, and oxygen), the pyrolysis rate determines the
available fuel. To a lesser extent, the pyrolysis rate also determines the heat, since the
heat generated in the fire can be modelled as the product of the heat of combustion and
the mass of fuel burned. Also, a material that does not pyrolyse readily may absorb
substantial energy, leaving less available to ignite nearby objects

Solid materials can be classified by their pyrolysis behavior into two basic
categories: non-charring and charring. Non-charring materials burn away completely,
leaving little to no residue. Charring materials, on the other hand, do not burn away
completely, leaving behind (relatively) substantial amounts of residue. Non-charring
materials can be modelled using theory similar to flammable liquids, with surface
pyrolysis, a constant surface temperature, and a steady state condition. Charring
materials must be modelled by a pyrolysis front penetrating into the material, an
increasing surface temperature, and without a well-defined steady state. The bulk of

this work considers only charring materials.



Previous work

Various approaches to modelling charring pyrolysis have been developed, and
several relevant studies will be reviewed before continuing on the current work. In the
interest of space, only a few of the many studies will be specifically mentioned.

Quintiere[17] presented an approach to modelling the burning rate of solid
materials. He formulates a general model valid for both charring and non-charring
materials by applying the conservation of mass and energy to regions of the material.
The current model employs his method to derive the governing equations for charring
materials and solves them. Igbal[11] previously developed and solved the governing
equations for non-charring materials.

Deiichatsios and deRis [5] developed a one dimensional analytical model for
charring pyrolysis. They assume a semi-infinite fuel bed subjected to a constant
external radiative heat flux, neglecting convective effects. They also neglect the
thermal capacity of both the pyrolysed gases and the residual char matrix. They assume
that pyrolysis occurs in a narrow region, at fixed temperature, and with a constant heat
of gasification. Their model focusses on the pyrolysis process without a flame. They
develop their model from the conservation of energy equation and its first moment,
assuming an exponentially decaying temperature profile within both the char layer and
virgin material. They model conduction through the solid using a radiative interstitial

model, which provides a variable conduction rate. Their model describes the behavior



of the pyrolysis rate for relatively large times, after the initial transient peak. Their
primary finding was that the pyrolysis rate falls off as 1/Vt.

Chen[2] also developed a one dimensional model for charring pyrolysis. His
model, for material of finite thickness and constant properties exposed to a constant
radiative incident heat flux, assumes that pyrolysis occurs in a narrow region, at
constant temperature, and with constant heat of gasification. Like Delichatsios and
deRis, he used the energy equation and its first moment for both the virgin material and
char layer, assuming (different) exponential temperature profiles in each. Chen
developed the model to treat strictly pyrolysis, ie. no flame, and to consider the entire
time of exposure — from heat up to initial pyrolysis to thick char. His results indicate
that the mass loss rate increases to a peak value shortly after the start of heating, and
falls off from there, at a rate asymptotically approaching that shown by Delichatsios
and deRis, 1INt.

Wichman and Atreya[22] present a slightly more involved one dimensional
pyrolysis model. They make the assumptions of a semi-infinite fuel bed, constant
properties, negligible interaction between the volatile gases and the char matrix, and
negligible heat of pyrolysis. They model the pyrolysis process itself using a single step
chemical reaction. Their model breaks the time period into four general regions: an
inert heating period, a short transition regime, a thin char period, and a thick char

region. Their results suggest that pyrolysis initially behaves in a wavelike way and that



the thickness of the reaction zone increases as V't, so therefore the assumption of an
infinitesimally thin reaction zone degrades for large time.

Suuberg, Milosavljavik, and Lilly[19] present an extremely detailed model for
the one dimensional pyrolysis process. This work is composed of both experimental
work and theoretical modelling. Their experimental work provides a great deal of
insight into the physical phenomena involved in pyrolysis. Their mathematical model is
one dimensional, for an infinite slab geometry. They assume that properties are a
function both of temperature and of the fraction of virgin material and pyrolysate.
Pyrolysis is modelled by finite rate chemistry, and includes the heat of pyrolysis.
Radiation effects include variable emissivity and reflectivity. Their work indicates that
chemical kinetics are important, but also that there are two separate kinetic regimes
that must be included. They also find that the assumption of an infinitesimal pyrolysis
zone is valid for incident heat flux greater than 40 kW/m?.

Kashiwagi, Ohlemiller, and Werner[14] performed experiments to study the
pollutants generated in wood burning stoves. In doing so, they heated wood samples
(chiefly white pine and red oak) without flaming using uniform radiant heat fluxes
varying from 2 to 7.8 W/cm’. In addition to monitoring or trapping several species of
products, they reported either sample temperature or mass loss rate for each test
Overview of thesis

Chapter Two contains a detailed description of the pyrolysis. In this chapter,

most of the physical phenomena involved are described, and quantitative relationships



describing those considered relevant are given. Chapter Three contains a brief
description of the integral method used to derive the current model. Here the case of a
semi-infinite material exposed to a constant radiative flux is solved using the integral
approach and compared with an exact solution. Chapter Four explains the derivation
of the current model. Chapter Five presents the non-dimensional groups used in
simplifying the governing equations, and describes the solution method. Chapter Six
compares results from the current model against results from other models. Chapter
Seven outlines a method by which the current model can be compared to experimental
data and effective properties for use in the model might be deduced. Chapter Eight

summarizes the conclusions of this work, and makes some suggestions for future work.



Chapter 2 — Pyrolysis

Introduction

The first step in modelling is formulation. A material undergoing pyrolysis
involves a large number of individual phenomena. This chapter attempts to present
many of these processes aﬁd their relative importance, both within the current model
and in the overall scheme of things. Chapter Four will complete the formulations step.
For more thorough discussions, the interested reader is referred to the references.
Qualitative phenomena

First, consider materials under ambient conditions. Assuming thermodynamic
equilibrium, the material has a uniform temperature distribution equal to that of the
surroundings. In addition, most materials have absorbed (by virtue of the humidity of
their surroundings) some small quantity of water. Finally, most materials undergo a
slow, continuous degradation process;, a chemical reaction that proceeds at an
insignificant pace under ambient conditions.

Now, consider that this material has been subjected to an external heat source.
As the applied heat is conducted through the material, a thermal wave front forms and
advances into the material. As the temperature of the material rises, the absorbed
water (which had been in equilibrium) vaporizes at an increasing rate, absorbing some
of the conducted energy. This vaporization process prevents the material temperature
from exceeding the saturation temperature of the absorbed water. The production of

water vapor develops a pressure distribution within the material that drives a fraction of



the vapor out of the material and the remaining vapor into the unaffected material.
Once all of the water has vaporized, the internal temperature again begins to rise. As
the material temperature rises, the degradation reactions accelerate until a critical
temperature is reached. At this temperature, the rate of reaction steeply increases and
the leading edge of a pyrolysis zone develops.

Within this zone the material breaks down. Charring materials tend to be
mixtures, with each component decomposing at different temperatures and into
different materials (non-charring materials tend to be homogenous). The char develops
because the lighter, more volatile materials vaporize first, leaving behind the denser
components. These leés reactive components remain behind and may decompose more
rapidly as the temperature continues to rise. The least reactive components form a
brittle matrix that is the char. The volatile gases generated by pyrolysis accumulate,
augmenting the pressure distribution developed by the water vapor. The volatiles, like
the water vapor, are driven both deeper into the unreacted material as well as toward
the surface. The volatiles driven into the material cool and condense, only to be
revaporized when the pyrolysis front penetrates further. The char matrix is usually
much more brittle than the virgin material and is easily fractured by the internal
pressure gradient, allowing the pyrolysate to escape.

As the char layer grows, it acts in several ways to diminish the pyrolysis
process. First, it acts as an insulator, inhibiting the conduction of heat to the pyrolysis

zone and thus decreasing the pyrolysis rate. Second, the char can absorb energy and



increase in temperature. The surface temperature rises, and re-rediation losses increase
dramatically. After a sufficiently long exposure, these effects inhibit the conduction to
such a degree that pyrolysis effectively ceases.
Simplifying Assumptions

Having discussed many of the phenomena of charring pyrolysis, it is obvious
that many simplifying assumptions should be considered. These simplifications will be
considered here in a qualitative way, and in the next chapter they will be more
rigorously developed.

First, consider the ambient conditions. The temperature within the
material has a uniform distribution T,. In addition, while it is true that there will likely
be some absorbed water, to simplify the current analysis this water is assumed to be
negligible. Finally, the degradation process is a chemical reaction, generally assumed to

be described by a single step, first order, Arrhenious rate equation:

dp -ERT '
— = -Ae
p7 1)

A is the Arrhenious factor, or rate constant; E is the activation energy for the reaction;

R is the universal gas constant; and T is the temperature at which the reaction occurs.
Next consider the effects of an external heat source on the material. As the

material absorbs energy, the temperature rises, and the properties begin to change.

This change is small, and so properties can be evaluated for an average temperature and

assumed constant throughout the process. As the temperature rises, the reaction rate



given by equation 1 increases exponentially. Because it increases exponentially, there is
some point where the rate skyrockets, and the reaction can be considered to proceed
instantaneously. Infinite rate chemistry implies that the reaction occurs over a thin
region. This is the assumption used in the current model. According to Suuberg[19],
this will be valid for imposed heat fluxes greater than 40 kW/m’. Wichman and
Atreya[22] also suggest that the reaction zone broadens over time, and so the validity
of the assumption degrades over time. Nevertheless, for fire conditions, it is hoped that
this assumption will be accurate enough.

Finally, consider the interaction between the volatiles and the char. The char
matrix is brittle, so even a small pressure gradient will quickly fracture it. In addition,
the char layer is thin, so transport time from the pyrolysis zone to the surface will be
short. The volatiles can probably be assumed to immediately exit the material as they
are generated. The paths the volatiles take through the matrix are extremely thin, so
heat transfer between the volatiles and char will take place quickly. Therefore, the
respective temperatures are assumed equal throughout the char layer.

Conclusions

In this chapter, phenomena known to occur during charring pyrolysis were presented.
Inclusion of all listed phenomena would result in a model too complicated for easy
application, so reasonable approximations were developed. In the next chapter, these

assumptions will be further developed analytically.

10



Chapter 3 — Integral Method

Introduction
The full partial differential equation form of the heat equation is challenging to

solve exactly, particularly when there exist inhomogeneities such as heat generation or
consumption terms. Solving the equation exactly requires certain types of boundary
conditions, and these are not always found in practice. Even if the solution can be
determined, it is often too complicated for easy application.

Fortunately, there is an alternative. The approximate integral method provides
a way to derive a solution to a nonlinear, transient heat conduction problem. In solving
the equation exactly, the temperature distribution within the material is determined such
that the heat equation is exactly satisfied for each differential element. In the
approximate integral method, the shape of the temperature distribution is assumed, and
relevant parameters are determined in such a way to fit the boundary conditions and
satisfy the equation for the averagé over the region. This method is relatively insensitive
to the exact character of the assumed profile, whether it be quadratic, cubic, quartic,
exponential, etc.[15] This method is also quite flexible by admitting solutions for many
boundary conditions.

In this chapter, the integral approximation will be explained and applied to a
sample case relevant to this thesis. The charring problem under consideration is
formulated as a semi-infinite solid subjected to a constant heat flux at the surface.

Here, an analysis of this case will be conducted assuming a quadratic polynomial

11



temperature distribution. The results of this analysis will be compared with an exact
solution.
Explanation of method

The approximate integral method was first applied to transient heat transfer
problems in 1958 by Goodman, and the current presentation follows that of
Ozisik[15]. The method consists of four steps: assume a temperature profile, integrate
over the thermal layer, solve the resulting ordinary differential equation, and substitute
into the profile.

The first step is to assume a temperature profile. Polynomial profiles are
commonly assumed, but the method is valid for exponential or trigonometric profiles as
well. The boundary conditions are used to determine the unknown coefficients in the
profile, so one might choose a quadratic polynomial with three unknowns to satisfy
three boundary conditions. In this case, T(x, t)=A(t)+ B(t)x+C(t) x>. The time
dependance of the coefficients arises from a characteristic length 8(t). This length, the
thermal layer, represents the extent to which the applied boundary conditions have
affected the material at time 7, and will typically increase over time. Note that the
introduction of this thermal length may introduce additional boundary conditions. For
example, for a semi-infinite material, at 8(t) the temperature is that of the unaffected
material, and there is no heat conduction _k%La =0

The second step is integrating over the thermal layer. Both sides of the partial

differential equation are integrated once with respect to the spacial variable over the
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characteristic length 8(t). The values at the limits of integration are supplied by the
boundary conditions. This integration will reduce the partial differential equation in x
and t to a first order ordinary differential equation in t.

The third step is to solve the ordinary differential equation. Commonly, the
initial condition 8(0)=0 is used, although in some multi-step problems other initial
conditions might be used if appropriate.

The fourth (and final) step is to substitute the solution to the differential
equation back into the profile. This provides the time dependance for the profile.
Example: Semi-infinite solid & constant surface flux

Consider a semi-infinite solid at a uniform temperature T,. At time t=0, the
material is-suddenly subjected to a constant radiant heat flux, uniform over its surface.

A general schematic for this is given in figure 1.

0
X
d
To T Ts
Figure 1 Schematic for integral method
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The subsequent evolution of the material temperature is governed by the relationship:

AT _ 48T
P 3 3 )
Subject to the boundary conditions:
3/ = - QI = - ?-Z =
1 k ox -0 0 k ox -8 e To © 3)
*=0 () =) ()

Here &(t) represents the depth of penetration of the thermal wave, labeled as d in
figure 1. For x<§, the temperature has risen from the initial value; for x>0, the
temperature remains undisturbed at the initial value.

To apply the integral approximation, a profile must first be chosen. Since there
are three boundary conditions, there must be three unknowns in the profile. Therefore,

for this analysis use a quadratic in x:

T(x,t) = A)x2+B(@®)x+C(?) @)

The idea of the integral method is to use equation 4 together with the boundary
conditions 3(a-c) to solve for the time dependant coefficients A(t), B(t), C(t). Solving

appropriately, the coefficients are:

Ay = 4 By - -2 c@ - 1,+ 400 ©

2kd(7) ® k ® 2k ©
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Substituting into equation 4 and simplifying, the profile takes the form:

_ _ q-lla(t){ _x 2
Teoo)-T, = 4 \l 50 6)

Now that the profile has been assumed, the analysis continues to the next step: using
the assumed profile to transform the heat equation (a partial differential equation) into
an ordinary differential equation.

The analysis proceeds by integrating equation 2 over the affected region

0< x< §(t). This integration yields

&)
d dr .
P, f(TIx,t)-To)dr = 'kz =q” @)
0

x=0

Substituting the assumed profile 6 into equation 7 and evaluating the integral and

derivative produces an ordinary differential equation

3.X
48 _ o ®)

which can be easily solved to give the penetration depth 8(t)

8() = J6ar where a=-~ )
pc
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This expression for &(t) and be substituted into equation 6 to give the overall

expression for the profile within the material:

Teny-T. = 408t( vy |’ | (10)
0 2k ‘/6at

The exact solution, given by Incropera and DeWitt [11] is:

= 1/ .1_6 .
T(x,t)—To - ﬂexp(_ x? ] _ q/lxerfc[ X ) (11)

2k 401) &k Jaar

A suitable choice of non-dimensional variables would simplify these equations. Making

the substitutions

. T(x,t)—To . x
I = —7——— Xt = — 12)
4 Ja1 VAL
k

(2)

the integral approximation (equation 10) can be simplified to

« )2
T = 6| 1-Z 3
{3

and the exact answer (equation 11) reduces to

Pt (5 edy)
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These two equations are compared in figure 2, below.
T*

1.2 — Integral Approximation

1t — — Exact Approach

0.5 1 1.5 2

Figure 2 . Comparing the Integral approximation to
the exact solution

The solid line represents the approximation, and the dashed line represents the exact
solution. This figure shows the good agreement between the approximate method and
the exact solution although the exact solution never quite reaches zero.
Conclusions

The approximate integral method is a powerful tool in solving transient heat
transfer problems. In this chapter the method was explained and applied to the case of
a semi-infinite material exposed to a constant radiant heat flux. The exact solution to
this problem is known, and the approximate method compares well against it. This

method (and in fact the test case presented here) is used heavily in the current model.
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Chapter 4 — Pyrolysis Model

Introduction

This chapter completes the formulation of the model of the model introduced in
Chapter Two. First, the basic assumptions fundamental to the model are recounted,
followed by a brief discussion of the form of conservation of mass and energy used.
The conservation equations are applied to the material, and the governing equations are
derived. Then, by choosing suitable dimensionless groups, the forms of the equations
are simplified. Finally the method of solution is presented.
Assumptions

The following theory is based on a number of physical assumptions developed
and justified in Chapter Two. For convenience they are repeated here. The material is
modelled as semi-infinite; that is, having one defined surface and otherwise extending
to infinity in all directions. The material properties (thermal conductivity, density,
specific heat, etc.) are constant over the range of temperatures considered. Pyrolysis
begins instantly when the temperature reaches the pyrolysis temperature, and proceeds
to completion instantly. Pyrolysis requires a fixed energy (heat of gasification).
Vaporization takes place in a region of infinitesimal thickness that advances into the
material. The pyrolysed gases do not accumulate within the char matrix; all volatiles
produced exit the material immediately.

The material is divided into three regions. A diagram is shown in figure 3. The

bottom region is the virgin material. This is the unreacted material affected by the
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boundary conditions. In this region the temperature profile is parabolic and the
material properties are considered those of the unreacted material. The top layer is the
char. The char is the residue that remains after the pyrolysis reaction is completed. In
this region the temperature profile is linear and the thermodynamic properties are those
of the residual char. The vaporization plane separates the virgin material from the char.
Here the virgin material pyrolyses into volatile gases and char. In this plane the
temperature is constant at T, and pyrolysis consumes a fixed energy AH,. Thereisa
fourth region, the substrate, under the virgin material (not shown). The substrate is the
virgin material that has not yet been affected by the boundary conditions. In this region
the temperature profile is uniform at T, and the thermodynamic properties are those of
the unreacted material. The substrate is omitted from further consideration because
nothing of interest happens in that layer.

mdot gr eps sig Ts"™4
Ts

T .
Char
dc
mdot mcharcc, kc, rhoc l
Iy 37
‘v rho t, ) . l
Virgin Material K x
c,k,rho !
d
2 To
Figure 3 Charring material
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In the following sections, mass and energy balances are considered for the vaporization
plane, the virgin material, and the char.

The model is developed for the following case. The material is first in
thermodynamic equilibrium with the environment. At time t=0 it is subjected to an
imposed radiant heat flux q,”. This is considered to be the actual flux absorbed by the
material, i.e., the absorbtivity is assumed constant and included in the flux term. A
temperature profile begins to develop, defining the virgin material region. The transient
development in this phase is identical to the analysis in Chapter Three. At some time
t=t, the surface temperature reaches the pyrolysis temperature, T,, the vaporization
plane forms and pyrolysis begins. The vaporization plane travels into the material,
breaking it down into volatile gases and residue. The gases escape the material, and the
residue left behind defines the char layer. The current model treats the evolution of the
char process from the initiation of the vaporization plane t=t,.

Conservation equations

The governing equations for the current model are derived by applying the
conservation of mass and energy to control volumes enclosing each of the three regions
vaporization plane, virgin material, and char. Here the relevant forms of these

principles are developed.
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Conservation of Mass
The principle of conservation of mass (continuity) states that the rate of mass
storage is equal to the difference between the rate mass enters and leaves the

boundaries of the control volume.

dm:lored =m -m
dt ~ " gained lost

(15)

Conservation of Energy

The principle of conservation of energy (first law of thermodynamics) states
energy can neither be created nor destroyed, merely changed from one form to another.
For the purposes of this work, this means that the rate of accumulation of energy
within the control volume equals the difference between the rates of energy loss and
gain.

dE, : : - ,
= = Coainea™ Ei) (16)

Using the definition of internal energy, the stored energy can be calculated by the

relation

T
Estored = pr ICdT av (17)
T
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Since the temperature distribution within the material is known and assuming constant

properties and one dimensional behavior, this expression can be rewritten as

y
E:rored = pc f(T-TO)dy (18)
0

The control volumes can gain or lose energy by conduction, convection, or
radiation. Where conduction is indicated, it is assumed to follow Fourier's law of

conduction, given by:

" = _kaf(x,t)L 19)
=Xo

ox

where ¢’ is the heat flux, T(x, t) is the assumed profile, and x=x, is the point of
interest. Convection takes place where mass crosses the boundary of the control
volume. Where this is indicated, the enthalpy flow rate is given by rn,"Ah (T), where h,

(T) represents the enthalpy possessed by species » at temperature T, defined as:

T
h(D) = [e,(DdT (20)
To

Obviously, if the specific heat, c,,(T), is constant, this reduces to

> Ypa

h(T) = ¢, (T-T,) (21)
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Finally, energy radiated from a control volume follows the Stefan-Boltzmann equation

and is given by:

g” = eoT* (22)

where € is the emissivity and g is the Stefan-Boltzmann constant (6=5.67 10"* W/m’K*)

Vaporization plane
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Figure 4 Control volume surrounding the vaporization plane

Conservation of mass

The first region to be studied is the vaporization plane. As a plane, this region
has an infinitesimal thickness so the volume, and consequently the mass, is zero.
However, a mass balance can be written for the control volume enclosing the plane.
The control volume is shown in figure 4. The control volume gains mass as the plane

advances into the virgin material and loses mass as the pyrolysis process breaks the
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material into char and volatiles. The infinitesimal thickness means that no mass is

stored, and so the mass gained equals the mass lost. This is expressed as

pvA = (! +m")4 (23)

Using " =p.v and ¢= p/p, equation 23 can be rewritten as

”-’I/

(1-¢)

pv = (24)

The speed of the vaporization plane, v, is also the rate at which the char layer grows,

dé, -
y =
Z (25)
so equation 24 can be rewritten as:
dd m’ :
- = (26)
da p(1-¢)

Alternately, an expression in terms of " can be derived from equation 23 as follows

.l bm”

m
Co(-d)
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Temperature profile

The vaporization plane represents the pyrolysis zone and the pyrolysis process
is assumed to take place at a fixed temperature, T, Therefore, the temperature profile
for the vaporization plane is the single, constant temperature T,.
Conservation of energy

Consider an energy balance on the control volume enclosing the vaporization
plane. Since it contains no mass, no energy can be stored. The endothermic nature of
pyrolysis will be accounted for below. Examining figure 4, the control volume gains
energy two ways: by heat conduction from the char layer, ¢," , and by enthalpy
possessed by the mass entering the control volume, pvAh(T,). The control volume
loses energy two ways: heat conduction into the virgin layer, G,", and by enthalpy
possessed by the char and volatiles left behind by the vaporization plane, " Ah(T,)

and m"Ahy(T,). Expressing this mathematically:

ovh,A(T,)-Almh (T)+i"h(T,) = 4/4-4/4 (28)

Using the conservation of mass equation (23), this can be rewritten as

”'1//

(1-9)

AH, = 4,4, 29)
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where AH, is the heat of pyrolysis, defined to be the difference in enthalpy between the

virgin material and the char and volatiles at the pyrolysis temperature, T,.

AIiv = hv(Tv)-hc(Tv)+hg(Tv) (30)

The conducted heat fluxes ¢," and §," can be determined using the temperature profiles
within the virgin material and char layer, respectively. Using these profiles (derived in
the next two sections), equation 29 can be reduced to

' ay { gpmW) (_, TO-T) -
(1-¢) 7 X0 XU
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Figure 5§ Control volume surrounding the virgin material

Conservation of mass

Consider a mass balance on the control volume surrounding the virgin material.
This control volume is shown in ﬁgure 5. Mass enters the control volume from the
substrate as the thermal layer grows, and mass exits the control volume as the
vaporization plane advances into the material. In equation form, the conservation of

mass is:

’ dGVA y -
= -pv
7 P Z P (32)
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This equation can be simplified to

1 dm, dd,
= =0 (33)

In order to apply the integral method to the conservation of energy equation, a
temperature profile must be determined. Examining the control volume surrounding
the virgin material in figure 5, note the conditions on the virgin material. At the top
surface x=0, bordering the vaporization plane, the temperature is fixed at T, and there
is a heat flux q,” conducted into the virgin material. At the bottom surface x=3,(t),
bordering the substrate, the temperature is constant at T, and there is no heat
conducted into the substrate. From these four boundary conditions, only three
(Constant temperature T, and T,, and an insulated bottom surface) will be used so that
a quadratic temperature profile will be determined. The profile is assumed to have the

form

T(x,t) = A(t) +B(t)x+C(t)x? 39)

and to have the boundary conditions:

I, =1, T, =1, ’k% =6.<r)= 0 (35)
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Using the analysis from Chapter Three, the temperature profile is found to be:

2
(T_ TO) = (Tv—TO)( 1- avx(t)] (36)

This temperature profile that will be used in the conservation of energy.
Conservation of Energy

Now consider an energy balance on the control volume enclosing the virgin
material, shown in figure 5. Energy is gained by conduction into the material through
the vaporization plane, 4",. Energy is lost from the control volume where mass is
consumed by the vaporization plane, pvAh(T,). Using these relationships, the

conservation of energy is expressed as

80
d .
Apczf(T-To)dy = g-Apve(T,-T,) (37
0

Applying the temperature profile (equation 36) and integrating yields:

pcdd, m'c _ 2k
3 a (1-4) 8,0

(38)
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Figure 6 Control volume enclosing the char layer
Conservation of mass

The third region of the material is the char. It is this layer that separates this
problem from the previously solved thermoplastic problem[11]. Consider a control
volume enclosing the char, shown in figure 6. Mass enters the control volume through
the bottom surface, at y=8,(t), where the vaporization plane deposits char and
generates volatiles. Mass exits the control volume at the top surface, y=0, where the

volatiles escape. Expressed mathematically:

dm
dt

S = A(rh,+m.")-Am,, 39)

surface
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Since the volatiles are assumed to exit the char upon formation, m",,;= m" yx,., and this

can be rewritten:

(40)

Temperature Profile

Before developing the conservation of energy equation for the char, some
temperature profile must be assumed. Consider the boundary conditions of the control
volume. At y=0 (t), the temperature is constant at T,, and the heat flux into the
vaporization plane is ¢,". At y=0, the temperature is T,(t) and the heat flux into the
char is 4.". From these four boundary conditions, the temperature conditions will be
used. Because the char layer is thin, it is unlikely that the temperature profile will
deviate significantly from linear. For this reason, and in the interest of simplicity, there

is no reason to develop a more complicated profile. Assuming a profile of the form:

T(x,t) = A(H)+B(f)x 41)

and using the boundary conditions:

noy =710 TRMN =T, (42)
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yields the profile:

.0 - T, = (T,(t)-m[ 1- 5;0] @3)

that can be substituted into the conservation of energy.
Conservation of energy

Now consider an energy balance on the control volume enclosing the char,
shown in figure 6. Energy is gained by the control volume three ways: the incident
radiation, §,"A; the enthalpy carried by the char deposited into the control volume,
1h,"Ah(T,); and the enthalpy carried by the volatile gas, m"Ahy(T,). Energy is lost from
the control volume three ways: heat conducted into the vaporization plane, ,"A; and
enthalpy carried by the volatiles, m"Ahy(T,); and the surface re-radiation, eoT;.

Expressed mathematically:

8.0

d _
Ap.e. { (T-Tp)dy = )

Alm]'c (T,-T,) enc (T,~Tp)+4,)-A(¢) +1"c (TH-T,) +eaT,0*)
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Simplifying the above equation, and using equation 43, this reduces to

PC. d
2 dt
4! -eoT (1) -k,

[8.(0(TW+T,-2T,)|+m"c(T(®-T,) -m)c(T,-T,) =
(T()-T,) (45)
5,(f)

Using the the product rule for differentiation and the relationship between m," and "

from equation 27, equation 45 can be further rewritten

pece| 40 T(H)+T -2T,)+d th’ +
> ?( 0+T,-2T) c()7
e (T(O-T,)-—2—c (T,-T))| = 4 -eaT, @)~k o-1) )
g s v (l_d)) c v 0 qr s ¢ 6‘:(’)
Conclusions

The four equations constituting the model have been derived from the principles
of conservation of mass and energy. They comprise a system of three ordinary

differential equations and one algebraic equation, shown below:

dac _ ”"//
a  p(1-9¢)

(26)
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w (L (T-T)) (L, (TO-T))
G0y [ Y ] ( Sy ) Gl

pcdd, mlc 2%k

3@ (1-9) 80 ©8)
pccc dac + - + dT.s +
; [dt (T+T,-2T,)+8,0) dt]
n‘z”[c(T(t)—T)— ®_c(T,-T,)| = ¢/ -eoT -k To-1) )
g\'s v (I'Cb) c\"v 0 q, s c bc(t)

The dependant variables of interest are thermal penetration 8, char layer thickness 3.,

surface temperature T,, and mass loss rate m".

This concludes the first phase of modelling -- formulating the problem. The

next chapter begins the second phase of modelling, solving the equations.
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Chapter S — Solving the Model

Introduction

The second stage of modelling is the solution of the governing equations. The
first part of that solution process is nondimensionalizing the equations. Using
dimensional analysis simplifies the problem and also draws attention to natural
symmetries. The second part of the solution process is actually solving the equations.
Solving the equations involves formulating the initial conditions, and in this case, using
a series solution to escape the initial singularity followed by numerical solution using
Mathematica™ software.
Dimensional Analysis

Rather than delve into a complete dimensional analysis, clues to appropriate
dimensionless groups will be taken from previous work with non-charring materials,
intuition, physics, and the organization of the terms in the equations.
Composite parameters

In the course of developing the dimensionless groups, three new dimensional
parameters occur frequently. While these composite parameters arise in part out of
convenience, they have very important physical meanings. The first parameter is the
heat of gasification, L, which represents the energy required to pyrolyse material at the

ambient temperature.

L = AH +c(T,-T,) (46)
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The second parameter, ", represents the net radiative flux at the surface at the time of

ignition.
4o =4, -€oT, @7

The third parameter, 8,, arises from the modelling of non-charring pyrolysis and
represents the depth of penetration of the thermal wave at steady state.

b=t “8)
€4

This parameter forms a kind of characteristic length that will be referenced often in the
dimensional analysis.
Dimensionless groups

The many dimensionless groups involved in a system of this complexity can be
divided into three categories: independent variables, dependant variables, and problem
parameters.

Independent Variables

The system under consideration consists of ordinary differential equations.
There is therefore only one independent variable, time. The dimensionless time, T, is a

modified Fourier number:

_ 401
5

T (49)
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Dependant Variables

The system under consideration contains four equations, and there are
accordingly four dependant variables. The objective of the model is to track the
thermal layer penetration depth, ; the thickness of the char layer, d,; the surface
temperature, T,; and the mass loss rate, m". The dimensionless thermal penetration and

char layer are obtained by scaling to the characteristic length S,.

-0 _ 8
A = 5~ AM) = — (50)
) S o®
The dimensionless temperature can be obtained by scaling to the vaporization
temperature:
Q)
8,(v) = - (51)

Finally, the dimensionless mass loss rate is obtained by scaling to the steady state mass

loss rate for non-charring pyrolysis, given by Go"/L.

m'(H)L

M(x) = /"
(1-9)q,

The additional factor 1/(1-¢) adjusts for the char.
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Problem Parameters

The system under consideration contains nine additional dimensionless
parameters arising from either scenario inputs or material properties. The five most
obvious parameters result from scaling the material properties by the virgin material

properties. These are grouped below without further explanation.

k c c T
¢ = = K=-=< E = < E = -2 0, = — 53
ko o T 9 T © ©3)

The remaining four parameters may be less obvious, and may require some further

explanation.
f, L gL _% do
Y = = = = e n = (54)
L (a) AHV (®) AHv Y © eoT :

A represents the ratio of the sensible enthalpy of the material at the pyrolysis
temperature to the latent enthalpy required to pyrolyse the material at the pyrolysis
temperature. Similarly y represents the ratio of the sensible enthalpy of the material at
the pyrolysis temperature to the latent enthalpy required to pyrolyse the material from
the ambient temperature. P is the ratio of the heat of gasification to the heat of

pyrolysis. 7 represents the ratio of the net radiant heat flux on the surface to the
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re-radiated heat flux. Note that, by the definition of L, A and vy are not independent,

but are related by the expression:

A= —-(1-6p) (55)

1
Y
Dimensionless form of the equations

These fourteen dimensionless groups enable the governing equation to be

reduced to a slightly simpler system, presented below.

(a) From equation 46:

dA
2 (4
¢l —

ﬁs
(0,(r)+1 —290)+Ac(1:) — }+

(B 1)] _K(6x)-1

2
2M()[E,(1-$)(6,(0)- 1)~ $E,(1 -eo>]=7[ N A

(b) From equation 31
2M(r) _ K(0,(r)-1) 2(1-6,)

A A(7) A(T) (56)
(¢) From equation 26
dA, } M)
dr 2
(d) From equation 38
.2...dA +M(1) = _l_
3dt A7)

Solving the equations
Having completed a dimensional analysis on the system, attention can be turned

to arriving at a solution. First the initial conditions will be presented in dimensionless
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form, then a series solution will be developed to avoid the singularity in the initial
conditions, and finally the solution method will be described.

Initial Conditi

In the formulation of the model, the initial conditions are qualitatively stated.
The model equations are valid from the time pyrolysis commences, t,. At this time, the
surface temperature, T,, has just reached the vaporization temperature, T,. No
pyrolysis has occurred, so the char layer thickness, &, is 0 and the mass loss rate, ", is

also 0. The thermal penetration, 8, has a value 6, found from
6i,g = V 6a tx‘g (57)

This was derived in chapter 3. The time pyrolysis begins can be estimated by

_ 2 T, - T, :
e © 5"‘”(—“”—] (58)

Equation 58 can be substituted into equation 57, and the dimensional analysis of the
preceding section applied to find the dimensionless forms of the conditions suitable for

use in the dimensionless system.

- _ _2.2/1_0 32 = 242
Aig =y(Q1 e0) ® Tig = ;Y (1 e0) = ;Aig ® 59)
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The dimensionless initial conditions are presented below:

Aig = Y(l _eo) ) Ac,ig =0 ®) es,ig =1 (©) A’Iig =0 @ (60)

Series. Soluti
An examination of the system at the initial conditions finds a disturbing

complication. The singular term

0 . -1

s,ig -

o|lo

(61)

c,ig

appears in equations 56(a) and (b). To avoid this singularity, adjusted initial conditions

are obtained from a series solution. A series of the form

p(t) = p,+pPT (62)

is assumed valid for T<<1for each dependant variable is substituted into the system.

Neglecting terms O(t?), the equations reduce to a linear system:

41



(a)
2¢Ec[53(6” +6,t+1-260,) +(Ac‘ig+501:)6,]+

2(M, +Mo)E (1-$)(0,,+8,c-1)-$E,(1-6))] =
2 1_(6,‘,,.8«»463,,86,1—1) _K(8,,+6,c-1)
Y n A +Azx

®
2M +Mt _ K(O,,.+8,t-1) 2(1-0,)

A Ac,,.g+50‘c A +At

g

(63)

© )
dA _ M,.g+M1:

4

(@

Since the initial conditions are known, this can be solved for the § terms assuming a
small time increment t*. The adjusted initial conditions are then given by

A'(x) = A,g+[it* Alr) = At
- (a) - ®) (64)
0(r) = 1+0," © M*(x) = MT"

Solution method
With the initial conditions adjusted to avoid the singularity, attention can be
turned to producing a solution for the model. The nonlinear nature of the equation

makes it prohibitively difficult to develop a closed form analytical solution, and the

42



coupling of the differential equations with the algebraic equation makes it difficult to
use canned numerical methods on the whole system. One solution to this dilemma
would be to write a numerical scheme such as Runge-Kutta to the differential equations
and another scheme such as Newton-Raphson to solve the algebraic equation for each
time step of the Runge-Kutta routine. While Runge-Kutta is a dependable scheme, for
best results an adaptive time-step algorithm should be used, and implementing the
adaptive time-step increases the complexity of the program. An alternative would be to
explicitly solve one equation for one dependant variable, and then substitute this
solution into the other three equations This produces a system of three coupled,
nonlinear differential equations that is amenable to canned numerical routines. Once
the solution has been obtained, the values for each time step can be back-substituted
into the remaining equation, and the complete solution thus obtained.

In the current work the second approach is used. Solving equation 56¢ for M

yields:

M) = 295 65
) = 2— (65)
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This can be substituted into the remaining three equations to find:

(@)
dA a0

2E, ah‘(e,(c)n-2eo)+Ac(r)7“;T_*]+

dA, ) L ) ) _(B,(t)"-l) _K(B,(‘c)-l

—— [E,(1-9)(8,(x)-1)-¢E.(1 6,)] = ;[1 . ] A G

() (66)
4db, K(e,(t)—l)_z(l—ao) -
Adt A) A7)

(©

2dA 44, 1
+2 =
3dr dr A(T)

Using Mathematica™ software, the series solution and substitutions can be
collected into a single routine. The function CharSolve was developed to take a
sequence of material property values and return functions for the thermal penetration,
char thickness, surface temperature and mass loss rate. Functions were also written to
prepare labeled plots of the functions and to discretize the functions and return lists of
data more suitable for further manipulation. These functions are included in their
entirety in Appendix I
Conclusion
In this chapter the equations developed in Chapter Four were solved. The relevant

dimensionless parameters to effect the solutions were derived. The equations were



solved by substituting one equation into the other three. The system can be solved and

the fourth quantity is found from the back substitution.
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Chapter 6 — Model results

Introduction

The third stage of modelling is comparison of the solution to known data. After
all, the purpose of modelling is to try to gain some insight into what factors and
phenomena are relevant to a physical process. A model that cannot show reasonable
agreement with data cannot be used to arrive at this insight.

In this chapter, results from the model are presented. They will first be
compared with Delichatsios and deRis[5]. Next they will be compared with Chen[2].
Then, they will be compared with some experimental data presented by Kashiwagi,
Ohlemiller, and Werner[14]

Delichatsios and deRis

Delichatsios and deRis[5] developed a model for the pyrolysis of charring
materials. Their model holds for the later stages of pyrolysis, after the mass loss has
peaked and is declining. Like the present model, they used the integral approximation
to solve the transient heat transfer process and assumed constant temperature pyrolysis
with a constant heat requirement. Unlike the present model, they used exponential
profiles in the char and virgin material and developed the governing equations using a
temperature moment method. Also, they assumed a variable thermal conductivity
within the material based on a radiative-interstitial heat transfer model, with k =T>.

Their selection of k, confers two main advantages: it models the increase in
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conductivity with temperature, and more important, it provides a closed form pyrolysis
rate expression.

Their work has the advantage of resulting in a closed form solution for the mass
loss rate. They develop two expressions for mass loss, one general equation and one
simpler for long times. Figure 7 shows their two equations plotted with the results

from the current work.

mdot (mg/cm”2 s)
Mass Loss Rate

'\
)
0.6 : \ ——DModel
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\
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0.3
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. ~— t-tig (s)
0 200 400 600 800 1000

Figure 7 Comparison against Delichatsios and de Ris

In this figure, the origin has been shifted to the time of ignition. The line marked

deRis 1 represents the more general equation, while deRis 2 represents the longer time
expression. For small time, the general equation seems to track well with the current
model, while the long time equation predicts a higher pyrolysis rate. For long time, the

current model under-predicts the mass loss rate, compared with both equations. This is
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not particularly surprising, since the Delichatsios and deRis model involves a higher
thermal conductivity in the char, permitting more heat conduction and thus providing
more heat to the pyrolysis process. The current model also includes the energy stored
in the char layer, something neglected in the Delichatsios and deRis model. This energy
storage further reduces the energy available for pyrolysis, thus further reducing the
pyrolysis rate. It is important to note, however, that despite the under-prediction -the
current model and the Delichatsios and deRis model do show approximately the same
character for the mass loss expression, m’’ varying with t™*. This relationship is more

clear in figure 8
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Figure 8 Re-scaled plot of deRis vs. the current model
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Figure 8 shows two aspects of the models. First, that th’’ is proportional to t% It also
more clearly shows that the current model decays more quickly that the Delichatsios
and deRis model.

The material properties used in the Delichatsios and deRis comparisons are
given in table 1. These are the defaults for the CharSolve routine, and were selected as
typical values suggested by the literature.

Table 1 Properties for Delichatsios and de Ris comparisons

4" 50 kW/m? L 3000 kl/kg
c 1 kl/kgK 1 kl/kg K
p 700 kg/m’ .05

.08 WmK .05 W/mK
T, 300K 700K
€ 9 1.04 kJ/kg K

Chen

Chen's model [2] follows that of Delichatsios and deRis quite closely. Like
Delichatsios and dqRis, he uses the approximate integral method to solve the transient
heat conduction and develops the equations using a temperature moment method. He
extends their derivation to include the earlier development of the char layer, and he is

able to get analytical solutions by assuming various incident heat flux histories.
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The current model will be compared with his results for a constant imposed

heat flux. Figure 9 shows this comparison.

mdot (mg/cm”2 s)

Mass Loss Rate
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200 400 600 800
Figure 9 Comparison of mass loss rates (Chen and current)

As this shows, the current model predicts an earlier, taller peak than Chen's
model. Figure 10 shows the same graphs with a shorter time scale to focus on the

peak.
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Figure 10  Plot focussing on the peak behavior (Chen and current)

In figures 9 and 10, Chen used a variable thermal conductivity identical to Delichatsios
and deRis. Comparing the results again indicates that the variable conductivity model
predicts a higher mass loss rate in the tail, probably resulting from increased conduction
through the char layer. Figure 11 shows a comparison between the current model and

Chen's for constant char thermal conductivity.
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Figure 11 Comparison to Chen for constant thermal conductivity.

The current model shows good agreement with Chen's. Again, the peak occurs slightly
before and is somewhat taller than Chen's, but the two tails agree extremely well. .

One advantage to making comparisons with other models is that the properties
are often readily available. The properties used in these comparisons are listed in

table 2.
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Table 2 Properties used in the Chen Comparisons

Pr

do" (figures 9,10) | 20 kW/m? AH, 76250 J/kg
q," (figure 11) 30 kW/m? c, 1500 kJ/kg K
c 1500 J/kg K C, 0kl/kgK
1200 kg/m* ¢ 10
2403 WmK k, 2403 W/mK
T, 300K T, 640 K
€ 9

The four properties in italics are those not explicitly specified by Chen. The first two,
¢ and c,, were implicitly determined from Chen's properties. Chen uses a parameter R
that is the ratio of the thermal capacity of the char to that of the virgin material. For
the current model the components of thermal capacity (density and specific heat) are
needed individually, so the specific heat of char was assumed equal to the virgin
material. In this case, ¢ equals R. Finally, since Chen did not explicitly specify T, and
€, they were simply assumed to be typical values.
Ohlemiller, Kashiwagi, and Werner

Comparisons to other models are useful, but a model must compare well to
experiment to be considered valid. Ohlemiller, Kashiwagi, and Werner [14] performed

experiments investigating the pollutant species generated by wood burning stoves, and
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some of their results can be compared with the predictions of the current model. In
these experiments, they exposed small wooden blocks, approximately 3.8 cm cubes, to
a range of heat fluxes in a variety of atmospheres and recorded the mass loss.

Comparisons to experimental data require particular caution. The experiments
may have been conducted in a way that includes phenomena neglected in the model,
and these additional effects must be acknowledged. For example, figure 12 shows two
of Ohlemiller's experimental runs.

mdot (mg/cm”2 s)

Mass Loss Rate
1.,

l\
o.e-l\ Nz

I N - -10.5% 02
0.6 T

! - _
04, = -
0.2-’

t-tig (s)

100 200 300 400 500 600 700
Figure 12 Comparison of mass loss in inert and oxygenated atmospheres

Both runs were conducted at 40 kW/m? using identical white pine samples. The
difference between the two is that the dashed line represents the mass loss in an
atmosphere of 10% O, in N,, while the solid line represents the mass loss in an

atmosphere of pure N,. The oxygenated atmosphere shows a mass loss rate 50%
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greater than the inert atmosphere throughout the experiment, probably resulting from
secondary reaction effects. The current model does not include such effects.

The other primary difficulty in comparing to experimental data involves
selecting appropriate physical properties. There is little difficulty matching properties
in comparisons between models, so differences between outcomes can confidently be
attributed to differences within the assumptions or solution methods. Experimental
results may not report the full set of input parameters required by the model, and this
complicates attempts to draw comparisons. The model must be run for various
combinations of reasonable properties and comparisons drawn from the aggregate set.

Ohlemiller, Kashiwagi, and Werner reported only a few properties in their
results. AAditional properties were primarily determined from data in Janssens[13] and
Suuberg[19]. The baseline property data used in the following comparisons are
summarized in table 3.

Table 3Property values used in Ohlemiller Comparisons

k 095W/mK | [13] k, 016 WmK |[19]

P 360 kg/m® [14] () 25 [14]

c 2600 kg K | [13] c, 3200 kg K | [19]

L 2 MU/kg [13] T, 580 K [13]

g 25,40,70 [14] € 5 [19]
kW/m?
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Figure 13 Base case for 25 kW/m’ vs. Ohlemiller
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Figure 14  Base case for 40 kW/m’ vs. Ohlemiller
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Figure 15

Figures 13, 14, and 15 show the model predictions using the base case data from table

Base case for 70 kW/m? vs. Ohlemiller

3 against the results presented by Ohlemiller for each heat flux imposed.

Unfortunately, these data are only presented for the 10% O, atmosphere, which results
in a 50% increase in mass loss rate (see figure 12). To compensate, the increase is
assumed to be a constant proportion over all three heat fluxes, and the Ohlemiller data
is multiplied by % to counteract the increase. After the data is scaled, the magnitude of
the predicted mass loss peaks seems to match the experiments for all three cases. The
timing of the peaks shows poor agreement in all three cases. This is not readily
explicable. It may reflect a difference in the nature of the initial mass lost. The samples

used in the experiments had been conditioned at 50% humidity, so the initial mass loss
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is dominated by the water vapor for approximately the first 20-30 seconds. Also note
that there is a marked disparity between the predicted tails and tﬁe experimental tails.
Again, no explanation is readily apparent. This probably does not stem from the size of
the samples. The samples were approximately 4 cm thick, so using equation 9, 10 the
thermal wave takes over 2000s to reach the back surface.

To investigate the effect of the assumed properties on the mass loss rate, the
heat of gasification, surface emissivity, and pyrolysis temperature are varied for the
40 kW/m? case. This permits the most direct comparison to experiment since it is the

flux used in the inert atmosphere. Figures 16, 17, and 18 show these comparisons.

mdot (mg/cm”2 8)

Mass Loss Rate

——L=5 MJ/kg
— - -L=2 MJ/kg
— —L=1 MJ/kg
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—— S— — —
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Figure 16  Effects of varying L for 40 kW/m’
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Figure 17  Effect of varying T, for 40 kW/m’
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Figure 18  Effect of varying e for the 40 kW/m’ case
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None of these changes has a particularly significant effect on the agreement between
the model and experiment for the time of the peak or for the tails. They all have a fairly
significant effect on the magnitude of the peak however.

It is interesting to note that the comparison with Chen's model (figure 10)
shows better agreement with Ohlemiller's data. Despite a lower heat flux, the mass loss
tail stays much higher than in the comparisons with Ohlemiller's data. Then again,
Chen's heat of gasification was considerably less than suggested by literature values for
wood. This underscores the importance of having accurate property data for materials.
Conclusions

The current model shows mixed results. It compares well to other models,
even for non-constant properties. The agreement with experiment shows poorer
agreement. The magnitude of the peak mass loss rate agrees well for pyrolysis in an
inert atmosphere, but it is approximately %4 of the experimental value for an
atmosphere of only 10% oxygen, perhaps because of secondary reaction effects. The
time the peak occurs is wildly underpredicted by the current model, as is the long time
mass loss rate. Comparisons of the experimental data against the model using the
property values from Chen show much better agreement, and indicate the need for a

method of determining the heat of gasification.
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Chapter 7 — Applications of the model

Introduction

One of the aims of modelling is to gain understanding of a process. As
discussed in the previous chapter, suitable property values must be used to a model for
the model to accurately predict behavior. While it is possible for the failure of a model
to be inappropriately attributed to faulty properties, many models suffer from a dearth
of available data. One key property about which there is much conjecture is the heat of
gasification. In this section, a method is proposed to obtain this property.

This idea behind this approach is that the pyrolysis process has two significant
regimes. At the onset of pyrolysis, the material behaves similarly to a non-charring
material. As the reaction proceeds, the effect of the char begins to dominate. If the
mass loss peak occurs at the point these two sets of effects are equal, it would be
possible to derive from this information the effective heat of gasification. This
methodology simplifies the governing equations by making assumptions pertinent to the
small time effects and then to the large time effects. In each case a solution for the
mass loss rate is determined. These solutions are then equated, and the target data can
be obtained.

Small time (T=T,)

For the short time approximation, the material is treated as a non-charring

material. For this case, the surface temperature is constant at the pyrolysis temperature

and no char layer forms.
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T _‘(1) T v @) 60(1) =0 ®) 67)

In nondimensional form

8,(1)

1 g AM=0 (68)

Given these conditions only equations 56b and d convey meaningful information.
Substitution of equations 68a and b into equation 56b presents an apparent singularity.
This can be resolved by assuming the singular term, physically, is the incident radiant

heat flux in the dimensional equations. Making the substitution, the equations become:

By o g (T T)

(l‘¢) v = 9 5 (69)
.p—c-dbv-t- m”c :H 70
3 @ (1-¢) (70)
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Which, after dimensional analysis, become:

2M(x) _ 2_2(1-8))

Solving equation 72 for M and substituting into equation 71

1+l(l'eo)_ _al-A
2T Pob g

This ordinary differential equation can be solved with the initial condition

A(ty) = A, = Y(1-6,)

giving

1-A
1-4,

- xp(-(A -8,)-2B( —fig))
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(74)

(75)

(76)



the right-hand side of equation 76 can be approximated by a one-term Taylor expansion

for A=A, and T~T, to give an approximate expression for A

A,

4

1-4,
A=A +2B( —t,g)( g] 77

Finally, equation 71 can be solved for M (and equation 77 substituted in)

-8y o A(1-8,)

A 1-4, (78)
L [T )

ig

M= p

Long Time (t>>1y)
In the long time approximation, the process has almost reached the steady state.

In this case, A is considered large. Combining equations 56b and c for these

conditions:
da,  1[a K(6,-1)
Z 22 A, (79)
This ordinary differential equation can be solved using the initial condition
A (7, g) =0 (80)



to find an expression for A,

A, = Jﬁ(e’__—ll(t_tig) (81)

2

Additionally, in this case the surface temperature has reached an equilibrium

where re-radiation nearly equals the incident flux.

g =eeT! = T == (82)

s

This can be expressed nondimensionally as:
8, = yn+l (83)

Finally, solving equation 56b (with the assumption that A is large) for M and

substituting equations 81 and 83

- MEG-D) AK(Y=1-1)
A
g J AR(Y+1 Diee) 84)
2 8
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Implementing the approach
The basis of this approach is the idea that the mass loss peak occurs where
these two approximations shift dominance, ie where they are equal. Assuming this

occurs at T, Tpey can be found by equating the two expressions for M.

M - AK(YR+1-1) b A(1-8,)
" 1-A,
J AK(“['T]-Q-] —])( Ai8+%p(‘cpeak-‘rig)[ xg] (85)
2

A

18

tpeak-tig)

Alternatively, one could obtain the peak mass loss and the time at which it occurs from -

experimental data, and choose the parameters of either equation (78 or 84) to match.
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Figure 19, demonstrates this approach.

M (--)

" . a a R tau (_-)
0.2 0.4 0.6 0.8 1

Figure 19 Comparing the short and long time approximations

The solid line represents the short time development, while the dashed line represents
the long time mass loss behavior. The idea behind this approach is that the peak mass
loss will occur at the intersection of the lines. As fig 19 demonstrates, the peak

predicted by the model is quite different.
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Figure 20 Compare approximations against model predictions

Figure 20 indicates that this approach is not quite successful. The mass loss peak
occurs quite a bit before the prediction and also quite a bit below. This may be because
the long time approximation overestimates the surface temperature. Equation 84 was
developed by assuming 0, had reaches a stationary value, and shows that M varies in
proportion to v (6,-1). At the peak, 6, may be as little as % of the stationary value, and
so the predicted peak may be off by as much as 50%. A correction factor, £, can be

introduced such that

4, —
Mremed = Q Mprcdicted = Q AK( n+1 -l)
86
\JAK(4\/11+1-1)(1_1) (86)
2 8
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The correction factor corrects the mass loss rate for the surface temperature less than
its maximum value. A careful selection of £ can shift the long time curve to match the

model mass loss rate, as shown in figure 21.

M (--)
Mass Loss Rate
/

1.2 e

/ ——Short

1 —-—-Long
0.8¢ \ / ——DModel
0.6}
0.4
0.2
- - . tau (--)

0.2 0.4 0.6 0.8 1

Figure 21 Comparing the corrected long time approximation to the
predicted peak

For these plots the properties used in this plot are given in table 4.

Table 4 Properties used in the demonstration of the application
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Conclusion

In this chapter a method for deriving the heat of gasification was developed
using the current model. By solving the governing equations approximately for the
long and short time behavior, the mass loss peak value and the time at which it occurs
can be determined. Because the assumption of a stationary surface temperature (used
in the long time solution) is not really valid, a correction factor was introduced, and the
approximate solution yields good agreement when used with an appropriately chosen
correction factor. If the surface temperature at peak mass loss is known, it can be used
in the equations in place of the stationary value.

This approach might be used to derive the heat of gasification from
experimental data. An iterative procedure of choosing a heat of gasification and
comparing the experimental data with the approximate solution, then refining the guess
until there is good agreement. This is not demonstrated as part of this work, merely

presented.
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Chapter 8 — Conclusions

The current work has developed a model for charring pyrolysis. The pyrolysis
process is modelled for the following physical assumptions:
. Constant incident radiant flux
. Negligible convection at the surface
. Isothermal pyrolysis
. Constant material properties
. Semi-infinite material

This model divides the material into three regions;, char, vaporization plane, and
virgin material. The equations of conservation of mass and energy are formulated for
each region. Transient heat transfer processes are modelled using the approximate
integral method assuming polynomial temperature distributions. The resulting four
equations are solved for the behavior of the thermal penetration, the char thickness, the
surface temperature, and the mass loss rate. The equations contain a singularity at the
onset of pyrolysis; this singularity is addressed by assuming one term series solutions
for each of the four variables and thus “stepping away” from the initial singularity. The
equations were solved using a Mathematica™ program.

The results from the model were compared with two other models and to some
experimental data. The results compare well to the other models, while they compare
poorly to the experimental data. This probably results from the difficulty in selecting

values of material properties. In comparing to other models, all property values are
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available. For experimental data, a full set of property values cannot, in general, be
found.

A method has been suggested by which an effective heat of gasification can be
deduced from experimental data. In this method, small time and large time
approximations to the governing equation are made. By equating these two
approximations (with an appropriate correction to the large time approximation) the
time or magnitude of the mass loss peak can be predicted. The heat of gasification can

then be chosen such that the prediction matches the experimental data.
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Appendix I — Mathematica Routine

Off[ General::spell1,General::spell]

normL=L==dHv+c(Tv-To), (*heat of gasification*)

normqo=qo==qi-eps sig Tv"4;(*surface heat flux after ignition*)
normM=M==mdot/(1-phi) L/qo;(*steady state mass loss for non-charring*)
normtau=tau=—4 alpha t/ds"2;(*dimensionless time*)

normds=ds==2 k L/(c qo);(*steady state penetration depth for non-charring*)
normd=Delta==d/ds;

normdc=Dc==dc/ds;

normTs=Ths=Ts/Tv,

normTo=Tho=To/Tv;

normgam=gam==c Tv/L;

normdt=d==Sqrt[6 alpha t],

normtig=tig=2/3 k rho ¢ ((Tv-To)/qo0)"2;

normcg=lamg=—=cg/c;

normcc=lamc==cc/c;

diffeq1=Dc'[tau] = M[tau]/2;

diffeq2=M[tau](lamg(-2 + 2 Ths[tau]) + 2 phi (-lamc + lamg + lamc Tho - lamg
Ths[tau])) + lamc phi (2 - 4 Tho + 2 Ths[tau]) Dc'[tau] + 2 lamc phi Dc[tau] Ths'[tau]
= 2/gam + (kc (1 - Ths[tau]))/(k Dc[tau]) + (eps sig Tv"4 (2 - 2 Ths[tau]"4))/(gam
qo),

diffeq3=(2 dHv M[tau])/(c Tv) = (kc ( Ths[tau]-1))/(k Dc[tau])- 2(1-Tho)/Delta[tau],
diffeq4=M]tau] + (2 Delta'[tau])/3 =1/ Delta[tau],

icond={igDelta -> gam (1 - Tho), Mig -> 0, igDc' -> 0,
igThs -> 1, igtau -> (2 gam”"2 (1 - Tho)"2)/3};

Options[CharSolve]={

qi->50 1073, (*net incident heat flux w/m”2*)
cc->1000, (*specific heat of char j/kg K*)

kc->.05, (*thermal conductivity of char W/m K*)
phi->.05, (*char fraction*)

rho->700 , (*kg/m"3*)

c->1000, (*specific heat of virgin material j’kg K*)
k->.08, (*thermal conductivity of virgin material w/m K*)
Tv->700, (*Temperature of pyrolysis K*)

L->3000 10”3, (*heat of gasification j/’kg*)

cg->1040, (*Specific heat of volatiles j/’kg K*)
kg->.03, (*thermal conductivity of air w/m K*)
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eps->.9, (*surface emissivity*)

sig->5.865 10"-8, (*stephen-boltzmann constant W/m"2 K"4*)
rhoc->phi rho, (*kg/m"3%)

dHv->L-c(Tv-To), (*heat of vaporization j/kg*)

alpha->k/(c rho), (*thermal diffusivity m"2/s*)

gam->c Tv/L, (*energy stored in solid at vaporization temp vs. heat of
gasification*)

qo->gi-eps sig Tv™4, (*net incident heat flux w/m"2*)

Tho->To/Tv, (*dimensionless initial temperature*)

lamc->cc/c, (*specific heat ratio for char*)

lamg->cg/c, (*specific heat ratio for volatiles*)

stau->.00351, (*small time used in series analysis*)

specend->50igtau,  (*ending conditions*)

To->300 (*Initial Temperature*)};

varlist=Map([First,Options[CharSolve]],

Clear[SmallTimeSolve];
SmallTimeSolve[properties_List]:=Module[
{seriessoln,stauig,steq1v,steq2v,steq2va,steq3v,steq4v,soll},
seriessoln={
Ths[tau]->1+sTs (tau), Ths'[tau]->sTs,
Dc[tau]->sDc (tau),Dc'[tau]->sDc,
Delta[tau]->igDelta+sD (tau),Delta'[tau]->sD,
M[tau]->Mig+sM (tau),M'[tau]->sM};

stauig=stau//.properties,

{steqlv,steq2va,steq3v,steqdv}=
{diffeq1,diffeq2,diffeq3,diffeq4}// Join[seriessoln,properties,icond];
steq2v=(steq2va//ExpandAll)/. {tau™_->0},
allsteqs={steq1v,steq2va,steq3v,steq4v}/.tau->stauig//N,
sol1=FindRoot[allstegs, {sM,35,45},{sTs,1,5},{sDc,.1,.3},{sD,7,15} , MaxIterations->2
50];
(seriessoln[[{1,3,5,7}])//.Join[sol1, {tau->stauig} ])/.stauig->igtau+stau
]
Clear[Findtau,Findtime]
Findtau[time ,opts___]:=tau/.Solve[ {normtau,normds} tau,ds][[1]}/.
t->time//. Thread[varlist->(varlist/. {opts}/.Options[CharSolve])]
Findtime[time_,opts___]:=t/.Solve[ {normtau,normds} t,ds][[1]}/.
tau->time//. Thread[varlist->(varlist/. {opts}/.Options[CharSolve])]
SetAttributes[Findtau,Listable],
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SetAttributes[Findtime,Listable],

CharSolve::usage=

"CharSolve takes an optional list of property assignment rules and calculates
the solution to the charring pyrolysis case. It returns a list with the following
structure:\n

{smtau,taubegin,tauend, Dfn[t],Dcfn[t], Ths[t],M[t]}";

Clear[CharSolve],

CharSolve[opts___]:=Module[
{initconds,icondv,initcondsv,taubegin,tauend,detemp,detemp2,ndim,useopts,
dsol,dcsol, Tssol,mdotsol,tbegin,tend,tig},

useopts=Thread[varlist->(varlist/. {opts}/.Options[CharSolve}/. {opts}/.Options[CharSo
Ive])];

initconds=SmallTimeSolve[useopts];

detemp={diffeq1,diffeq2,diffeq3,diffeq4 }//.useopts,
solM=Solve[detemp[[3]],M[tau] ]J[[1])//Simplify;
detemp2=detemp[[{1,2,4}])/.soIlM//Simplify,

initcondsv=initconds[[ {1,2,3}])//.Join[ {Rule->Equal} icond,useopts],
{smtau,taubegin tauend }={stau,igtau+stau,specend}// Join[icond,useopts];

desol1=NDSolve[
Join[detemp2,initcondsv],
{Ths[tau],Dc[tau],Delta[tau]},
{tau,taubegin,tauend}];

Deltasol[tau_J}=Delta[tau}/.desoll,
Dcsol[tau_}=Dc[tau])/.desoll;
Thssol[tau_]=Ths[tau]/.desol1;
Msol[tau_]=M{[tau}//.Join[desol1//Flatten,solM];

ndim={smtau,taubegin,tauend,Deltasol[tau],Dcsol[tau], Thssol[tau],Msol[tau] }//Flatten
]

Clear[CharPlots]
CharPlots[rawsolution_List,opts___]:=Module{
{dplot,dcplot, Tsplot,mdplot,allplots,tn,tb,te,toffset, pbegin,solution},

{tn,tb,te}=rawsolution[[{1,2,3}]];
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toffset=tb,
pbegin=tb-tn,
solution=rawsolution/.t->t+pbegin;
Off[InterpolatingFunction::dmwarn];
dplot=Plot[100 rawsolution[[4]],{t,0,te},
PlotLabel->"Thermal Penetration",
AxesLabel->{"t (s)","d (cm)"},DisplayFunction->Identity],

dcplot=Plot[1000 rawsolution[[5]],{t,0,te},
PlotLabel->"Char Layer Thickness",
AxesLabel->{"t (s)","dc (mm)"},DisplayFunction->Identity];

Tsplot=Plot[rawsolution[[6]], {t,0,te},
PlotLabel->"Surface Temperature",
AxesLabel->{"t (s)","Ts (K)"},DisplayFunction->Identity],

mdoplot=Plot[100 solution[[7]],{t,0,(te-toffset)},
PlotLabel->"Mass Loss Rate",
AxesLabel->{"t-tig (s)","mdot (mg/cm"2 s)"},DisplayFunction->Identity],

mdplot=Plot[100 rawsolution[[7]],{t,0,te},
PlotLabel->"Mass Loss Rate",
AxesLabel->{"t (s)","mdot (mg/cm”2 s)"},DisplayFunction->Identity];

On[InterpolatingFunction::dmwarn};
allplots=GraphicsArray[ { {dplot,dcplot},{ Tsplot,mdplot} } ],

Show[Switch[(SelectPlots/. {opts}),

Thermal,dplot,

Char,dcplot,

Temp, Tsplot,

Mass,mdplot,

MassOffset,mdoplot,

_allplots],DisplayFunction->$DisplayFunction]
]

Clear[CharLists]
CharLists[solution_List,opts___ ]:=
Module[ {times, functions, fullist,selectfns},

selectfns=Switch[(SelectLists/. {opts}),
Virgin 4,

76



Char,5,
Temp,6,
Mass,7,

- {4’5’6’7}],

times=solution[[{1,2,3}]];

functions=solution[[selectfns]];

fullist=Table[ Thread] {t,functions} ], {t,0,times[[3]]} ];
If[Length[First[fullist]]>2,

Partition[Partition[#,2], Length[#]/8]&[Flatten[ Transpose[fullist]]],
fullist]

]

On[General::spell1,General::spell]
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NOMENCLATURE

A pre-exponential factor, area
A(t) coefficient in temperature profile
B(t) coefficient in temperature profile

C(t) coefficient in temperature profile

c specific heat
E internal energy
E activation energy

AH, heat of vaporization (pyrolysis)

h specific enthalpy

e

thermal conductivity
heat of gasification

L
M dimensionless mass loss flux

m’’  mass loss flux

n general species

p placeholder in series solution expression
q" heat flux

G",  heat flux conducted into the vaporization plane from the char
4",  heat flux conducted from vaporization plane into virgin material

4",  net surface heat flux at the onset of pyrolysis
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gas constant

temperature

time

volume

vaporization plane velocity

spacial variable; used in quadratic temperature profiles

spacial variable, associated with linear temperature profile

thermal diffusivity

dimensionless distance

depth of thermal penetration
surface emissivity
Stefan-Boltzmann constant

char fraction

dimensionless time

dimensionless temperature
density

dimensionless thermal conductivity
dimensionless specific heat
dimensionless heat of gasification

dimensionless heat of vaporization/pyrolysis
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B ratio of heat of gasification to heat of vaporization/pyrolysis
n dimensionless heat flux

Q correction factor in application of the model

Superscripts/overscripts
* dimensionless variable, or small time increment

~ coefficient of perturbation from ignition conditions

Subscripts

ig ignition

0 initial or ambient condition

v virgin material, vaporization/pyrolysis condition
c char

g gas, volatiles

vp vaporization plane

s steady state
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