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Two analytical results are presented that are of use to concrete
material technologists. Using a model of concrete in which the
aggregates are spherical, but with an arbitrary size distribution, a
result from statistical geometry can be used to accurately give the
total interfacial transition zone (ITZ) volume for any width ITZ and
any volume fraction of aggregates. In reality, the ITZ contains a
gradient of porosity and therefore a gradient of properties. When
only a small volume fraction of aggregates is present (called the
dilute limit), it is possible to analytically solve for the effect of the
ITZ on the overall concrete properties. This calculation can be
carried out for the effective linear elastic moduli, linear electrical
conductivityfionic diffusivity, and linear thermal/moisture shrink-
age/expansion. The details of the calculation are summarized and
applications described. ADVANCED CEMENT BASED MATERIALS
1997, 6, 99-108. Published by Elsevier Science Ltd.
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t is now well established experimentally that

interfacial transition zones (ITZs) exist around

aggregate (rock, sand) particles in concrete. This
is mainly because the cement paste matrix is itself
particulate. When the cement grains encounter the
“wall” of the aggregate, a region of higher porosity near
the aggregate surface will appear, due to the “packing”
constraints imposed by the aggregate surface [1,2].
Because the average aggregate diameter is much larger
than the average cement grain diameter, the aggregates
on average will appear locally flat to the cement grains,
so the ITZ thickness will depend on the median size of
the cement grains, and not on the aggregate size [3]. The
median diameter of most cements in common use is
around 10 to 30 pm, so this is typically the kind of width
one finds associated with ITZs. In the case where the
cement grains are of the same order size as the aggre-
gate particles, the whole idea of ITZs, at least in the
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sense considered in this article, loses its meaning. This
case is not considered in this article.

The restrained placement of cement around aggre-
gates results in a gradient of porosity, and therefore a
gradient of properties, around each aggregate. The high
volume fraction of aggregates in a typical concrete (60%
to 75%) means that the spacing between adjacent ag-
gregates is only a few times the typical ITZ thickness.
This fact implies that the cement paste in the ITZs can
have a significant volume fraction and can be perco-
lated [4] and, therefore, can have a significant effect on
properties. Of particular interest are elastic moduli,
compressive strength, chloride and sulfate diffusivity,
electrical and thermal conductivity, shrinkage, and
creep. This article is restricted to the (linear) properties
of ionic diffusivity (which mathematically is the same
as thermal or electrical conductivity [5,6], elastic mod-
uli, and thermal expansion.

Analytical results are presented for the volume frac-
tion of the ITZ phase in a model where the aggregates
are spherical and the ITZ is of uniform thickness, and
for the dilute limit of an aggregate surrounded by a
gradient of properties.

Formula for Interfacial Transition
Zone Volume

Lu and Torquato [7] have recently derived an analytical
formula for the statistical geometry of composites that
is basically set up to predict the ITZ volume fraction.
For a packing of spherical particles in a matrix, where
the spheres can have any size distribution, they derived
an approximate formula for a quantity they denoted as
ev(r). Figure 1 shows a schematic view, in two dimen-
sions (2-D), of the geometry of the problem being
considered. If a shell of thickness r is put on every
sphere in the packing, the quantity ev(r) is defined as
the volume fraction of matrix material that is outside all
the spheres and all the shells. Clearly, ev(r) » 0 as 7 —
=, since eventually the shells will overlap enough to fill
up all the remaining matrix material. This function was
designed to take into account the overlaps of these
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aggregate

FIGURE 1. Schematic view of the quantities in the Lu and
Torquato formula [7]. The thickness of every shell is r.

shells, so as to be accurate not just in the small r limit,
where the volume of the shell phase is just the surface
area of the particles times 7, but for all values of r. In the
concrete case, with spherical aggregates, if we take r =
t;r7 to be the ITZ thickness, then clearly the ITZ volume
fraction is just:

Virz =1 = Vige — ev{trz) (1

where V..
concrete.

There are certain assumptions that go along with this
formula. The aggregate size distribution must be
known in terms of the number of particles with a
certain size, not the volume of particles with that size.
Using some simple assumptions, it is easy to generate
this kind of distribution function from a typical sieve
analysis. A recent publication gives details of how this
can be done [8]. Also, the spherical particles must be in
an equilibrium arrangement, that is, arranged as they
would be if they were suspended in a liquid and free to
move.,

Using the result that was derived for ev(r), at r = ¢,
the ITZ volume fraction is then:

is the volume fraction of aggregates in the

Virg =1 = Voo — (1 = Vo Jexpl—mpler + d +gr)] (2)
where p is the total number of particles per unit volume.
Using the size distribution function, the quantities ¢, d,
and g in the equation can be defined in terms of the
number averages of the particle radius and the particle
radius squared:

_ ARY
1= Vi 3)
4(R) 12z,(R?)
d= 4
1= Veg | (1= V)2 @)
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FIGURE 2. Fraction of the matrix phase taken up by the ITZs,
of width r, as a function of r, for a typical concrete, at two
different aggregate volume fractions, 0.27 and 0.75. The
symbols are data points determined by point counting, and
the lines are the result from Lu and Torquato’s formula [7].

3 4 82z,(R) 16Az3(R?)
$=31-v,p ta-v,rtaa-v,p ©

where z, = 2up(R%) /3, Ais a parameter equal to 0, 2, or
3, depending on the analytical approximation chosen in
the theory [7], and ( ) indicates an average over the
aggregate size distribution. In all our work on model
spherical aggregates, A = 0 was always the best choice
to use, as decided by comparison to numerically exact
model data, although the value of A did not seem to
make much difference. The term controlled by the value
of A was a small contribution to the prediction of the
ITZ volume fraction.

Figure 2 shows a comparison of the above formula to
numerical model data for a typical concrete distribution,
with aggregate particle sizes ranging from 0.1 to 10 mm,
which is a range of a factor of 100 in size. Even for
distances r that are larger than the usual width of the ITZ,
the formula evidently correctly handles the large amount
of overlapping of the ITZs, for two different values of V.,
0.27 and 0.75. Figure 3 shows the same formula applied to
a system with 27% by volume of monosize aggregates,
where it does not work quite so well. This is because the
formula was derived for spherical particles that were
arranged like they would be if they were really suspended
in a liquid, according to equilibrium statistics. Our models
are made by randomly placing spherical particles in the
cement paste and not allowing them to move after place-
ment. For monosize particles, it is well known that after
about 20% volume fraction of particles are present, the
statistics of the two kinds of particle placing gradually
become different. If our monosize particles were arranged
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FIGURE 3. Fraction of the matrix phase taken up by the ITZs,
of width 7, as a function of 7, for monosize aggregates, at an
aggregate volume fraction of 0.27. The symbols are data
points determined by numerical point counting, and the lines
are the result from Lu and Torquato’s formula [7].

according to equilibrium statistics, then the formula
would agree with numerically exact model data to better
than 1% accuracy [8]. So, in Figure 3, our system does not
meet the conditions necessary for the analytical formula of
eq 2 to hold, although the agreement between theory and

~model is still quite good, especially for the usual ITZ
thickness values (10 to 40 m).

In principle, the formula should not apply to our
models for the reason given above. However, somewhat
surprisingly, for a very wide particle size distribution, the
statistics of the two kinds of particle placing are seemingly
almost the same, as the formula fits the typical concrete
distribution extremely well (Figure 2). This is an interest-
ing result and deserves closer study to determine under
what conditions the statistics of the two different particle
arrangements become nearly the same. Experimentally,
the aggregates in a concrete are probably in a close-to-
equilibrium arrangement, if gravitational settling is not
too important, there is a wide size distribution of aggre-
gates, and the aggregates are reasonably spherical. There-
fore, the formula should work well in real concrete as long
as these conditions are met.

Mathematical Analysis of Dilute Limit
for Diffusivity/Conductivity

The dilute limit of a concrete composite occurs when
the aggregates are present at a very small volume
fraction, so that the effect of each of the aggregates can
be treated independently, without any contribution
from each other. In this limit, an overall property, P,
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normalized by the bulk property in the absence of
aggregates, P, ,, is given by:

=1+ {myc+ O+ ... | - (6)
Pbulk

where ¢ is the volume fraction of aggregates present,
and (m) is a dimensionless number determined by the
aggregate shape, size distribution, the ratio of P,/
Py, and the geometrical and physical properties of the
ITZ. The angular brackets indicate an average over the
size distribution of the aggregates. As an example, for
the special case of a spherical aggregate of radius r and
zero diffusivity, surrounded by an ITZ of thickness t;;,
and diffusivity D;;,, embedded in a matrix of diffusiv-

ity Dy, the exact result for m can be found [9,10]:

D
2@ — )="2 — (1 + 24)
Dbulk

m = (Ba) (7)

D
2(e — D=2+ (1 + 20)
Dbulk

where the parameter a = [(r + t;7,)/7]> contains all the
dependence on the particle and ITZ geometry. In real
concrete, the ITZ has a gradient of properties, which is
treated in this article. In the following, cases where P is
either the bulk modulus, the shear modulus, the ther-
mal expansion coefficient, or the electrical conductivi-
ty /ionic diffusivity will be discussed. 7

If the problem can be worked out where the spherical
aggregate is surrounded by N shells of general thick-
ness and properties, then any type of gradient of
properties can be handled simply by using as many
shells as necessary to mimic the gradient function. The
following derivations make use of an idea originally
developed for the equivalent elastic problem, that of a
transfer matrix approach [11]. The bulk modulus {12]
and the Stokes friction and intrinsic viscosity [13] have
also been found in the case where the gradient of
properties takes on a specific power law form. The
simplest case, electrical conductivity /ionic diffusivity,
is discussed first.

Figure 4 shows the geometry of the problem for all
the properties to be considered, where the inner sphere,
which represents the aggregate, is counted as number 1.
Then the radius of the aggregate is R,, the radius of the
first shell is R,, and so on, with the radius of the last
shell being Ry. The multilayered inclusion is embedded
in matrix material labeled N + 1.

We will use conductivity language to do the deriva-
tion, with the understanding that electric fields are
equivalent to concentration and thermal gradients, and
electrical conductivities to ionic diffusivities and ther-
mal conductivities. We want to apply an electric field in
the z direction and work out the effective conductivity
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N+1

FIGURE 4. Schematic sketch of the geometry of the problem.
Each shell is a spherical shell, of radius R, for the nth shell.

of the multilayered inclusion embedded in the matrix. It
does not matter in which direction the field is applied,
as the sphere and the spherical shells are isotropic. Let
the conductivity of the nth shell be o,,. With a uniform
electric field of strength E, in the z direction, the
potential far away from the inclusion must be:

V = —Egz = —Eyrcos(0) (8)

where the usual spherical coordinates (7, 8, $) are used.
Laplace’s equation for steady-state conduction must be
satisfied, V? V = 0, with the boundary conditions that
the potential and normal electrical current are continu-
ous across each of the N boundaries. This gives 2N
conditions that must be satisfied. The potential in the
nth phase can be shown to be of the form:

Vnz( A+ By )cos(B) 9

Two more boundary conditions are that in the aggre-
gate, B, = 0, since the potential cannot diverge atr = 0,
and in the (N + 1)th phase, which is the matrix, Ay, =
E,, in order to give the correct uniform field far from the
aggregate. This results in only 2N unknown coeffi-
cients, which can be determined uniquely from the 2N
boundary condition equations.

Atr = R,, the boundary between the nth and the (n+
1)th phase, the two boundary conditions can be ex-
pressed as:

B B, .1 '
At 3= ~Awat e (10)
2¢B 20,41B,
Guhy + ot = O Ay + (D)
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By rearranging this equation, one can come up with the
form:

An+l _ An
(Bn+l> B Pn(Bn) (12)
where P, is a 2 X 2 matrix, given by:

Oy + 2Grz+1 Z(Un -

P. = 1 ( O'n+1)R;3>
” 30'"+1 (Un - O-n+1)R3 .

20—;1 + Tpt1

(13)

By iterating eq 12, one can then derive the equation
connecting A, and B, to Ay, and By, y:

A A A
( N“) =PyPrn_1- .. P3P2P1<B:> = H(B:) X

BN+1
(14)

Equation 14 is really two equations in four unknowns,
Apni1s Bys1s Ay, and By, with the known coefficients Hy,
Hj,, Hy, and H,,. However, since Ay, = Ey, and By =
0, there are really only two unknowns, so that eq 14
may be easily solved, once the elements of the matrix H
have been computed, to give:

Eo , _Huk
Hy' "N TH,

A= (15)

Again iterating on eq 12, one can then solve for any of
the other coefficients desired.

To get the slope m, one must still derive the effective
conductivity, which involves averages over the entire
inclusion, of electric field and current. The following
equations are completely general for the overall field
and current averages:

(fy=0E;=cih + (1 = c){dn+1 (16)

(EY =Ey=c{E);+ (1 — ¢ {E)n+1 (17)

where I stands for the entire inclusion, aggregate plus
N — 1 layers, ¢, is the volume fraction of the entire
inclusion, and o is the effective conductivity of the
entire composite system, treating it as a uniform me-
dium. Combining these two equations so as to eliminate
the average over the N + 1 phase [14], and using the
fact that the volume fraction of aggregate, c, is in the
dilute limit given by ¢ = c,(R,/Ry)’, we obtain, with the
help of eqs 12 to 15:

o R% ( Ny <E>1)
=1+ 53¢ - = 18
ON+1 R? on+1Eo E, (18)
2Hy )
(= UN+1E0(1 + R3H,, (19)



Advn Cem Bas Mat
1997;6:99-108

<E>,=Eo(1— o ) (20)
RNHll

so that the final result for the slope m, according to the
form of eq 6 is:

d 1+<3H21) + 0(c?) 1)
= -1 C C

ON+1 R?Hu
3Hy,

(m) = . 22
R3H,, @2)

Mathematical Analysis of Dilute Limit
for Bulk and Shear Moduli

One can perform the same analysis for the bulk modu-
lus. First it is important to recall that for an isotropic
linear elastic material, with bulk modulus K, the follow-
ing equation holds:

Tro=3KTre (23)

where Tr indicates a trace (sum over the diagonal
elements) of the stress or strain tensor. We use the same
geometrical setup as in Figure 4, again with spherical
polar coordinates. The displacement at r — o« is €, a
pure compression. Because of the radial symmetry, the
only nonzero displacement throughout the structure is
u = u(r), the radial component of the displacement
vector. There are no shear strains in this case either, and
the principal strains are €,, = 9u/or, g9 = u/7, and €y
= u/r. The radial displacement u can be expressed as:

B
u(ry=A,r + 72’5 (24)

where A, and B,, are arbitrary constants in the nth shell.
In order to satisfy the boundary condition at r — o,
Ay 41 = €. In order to have a finite displacement at the
center of the aggregate, B, = 0. Using eq 24 for the
displacements and the definitions of the various strains
given above, the radial stress in the nth layer is then:

o, = 3K,A, — —»—7?;"'. (25)

Between each layer, the displacement and the normal
or radial stress must be continuous. When N layers are
present, this gives 2N boundary conditions, plus the
two boundary conditions at the origin and at infinity.
These 2N + 2 boundary conditions are enough to
determine the 2N + 2 unknown coefficients. After a
little rearrangement, the boundary conditions between
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the nth and (n + 1)th layers can be written in matrix
form as:

Aﬂ+1 — An .
(Bn+1> B Pn<Bn> (26)
where P, is a 2 X 2 matrix, given by:
_ 1
3Ky+1+ 4G4

% ( 3K, + 4G, .,
3(Kye1 — KR,

P,

4(Gn+ - Gn)RTTS
W)@

Following the same steps as for the electrical case, we
find that:

€9 B - Hj:€p
s PN+1 ™ .
Hyy Hyy

A= (28)

All the layer displacements can now be determined
using the boundary conditions and the two known
coefficients. To get the actual change in bulk modulus
caused by the presence of the aggregates and the
gradient of properties around it, we need to again write
out the averages over the phases as was done for the
electrical/diffusive case. Again, in general, we have:

(Tra) =9Key = c(Tr o), + (1 — c;(Tr o), (29)
(Tr €) = 3eq = cTr ey, + (1 — c;Tr €),, . (30)

Using egs 24 to 28 above, it can be shown that:

4Gn,H
(Tr o), = 9eo(f<N+1 - ——3;};}25{‘) (31)
(Tr €), = 3e0(1 + H213> X , (32)
HllRN

Putting eqs 29 to 32 together gives the final result:

4
K 1 (KN+1 + 5 GN+1> H21
Hy,R3

c + O(c?).

KN+1

(33)

The effective shear modulus can be determined in
exactly the same way by applying a uniform shear
strain at infinity, except that there are now four un-
known coefficients that determine the displacements in
each layer, because we no longer have radial symmetry
due to the applied shear strain. The matrix that connects
the coefficients in one layer to those in the next is then
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a 4 X 4 matrix. The product of all these matrices
produces a matrix that connects the coefficients in the
outer layer to the coefficients in the inner layer. One
coefficient in the outer layer and two in the inner layer
are forced to zero, however, because of having a finite
displacement at r = 0 and a finite strain at r — %, and
one coefficient in the outer layer is determined by the
applied strain at r — . Therefore, the matrix equation
is transformed to only being four equations in four
unknowns, rather than being four equations in eight
unknowns. Further details of the shear modulus deter-
mination can be found in reference [11]. We emphasize
that the pattern of solution is the same as for the bulk
modulus, but just requiring more algebra. The explicit
solution of the shear modulus dilute limit, along with
computer programs for the implementation of the equa-
tions, will be given in reference [15]. Reference [15] will
also contain more details on all the dilute limit work
described in this article, as well as discussion of many
other exact results from composite theory. This manual
will be available online in the near future. It will
describe how to use several finite element and finite
difference computer codes for determining electrical
and elastic properties of random systems. The manual
will also describe the operation of computer codes that
implement the dilute limits described in this article.

Mathematical Analysis of Dilute Limit
for Thermal Expansion

The case of thermal expansion, in the linear regime, is
handled using a modified stress-strain equation:

g; = Cij(ej - 6’,‘) (34)

where C;; is the elastic modulus tensor, the volumetric
expansion terms are ¢, = ¢, = e3 =¢, and the shear
terms are ¢, = e5 = ¢, = 0. In the case of thermal
expansion, ¢ would be proportional to temperature,
while in the case of moisture-induced expansion or
shrinkage, ¢ would depend on relative humidity [16].
The usual Voigt notation is used, where 1 = xx, 2 = yy,
3=12z,4=xz,5=yz and 6 = xy.

The geometry is the same as for the previous cases,
except that now we introduce Ry, as being the radius
of the outermost layer of the matrix-plus-inclusion
system. For free expansion, we need to take the normal
stress to be equal to zero at this boundary. There is no
applied strain at infinity, so some other condition is
needed to be able to determine the problem. The case
where the inclusion stops at r = Ry, and Ry, = Ry, is
the dilute case, since the volume fraction of aggregate
will be c = R}/R3,,, << 1. Again, the only displacement
is the radial displacement, and the same form is as-
sumed for the displacement in each shell. All notation is
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the same as the bulk modulus case. The continuity of
the displacement is also identical to the case of the bulk
modulus, but now, with the extra thermal expansion
terms present in the stress strain relationship, the radial
stress in the nth layer becomes: ’

4Gan
7’3

o, =3K,(A, —e,) (35)

where ¢, is the linear expansion of the nth layer.

The equation connecting the coefficients in the (n +
1)th layer to those in the nth layer is then somewhat
different from the bulk modulus case as well:

(A”+1)=P,,(’g:>+z,, (36)

Bn+1

where Z,, is a vector of the form:

Kn €y B knen 1
z, = Kunfurs ~ Kt <_ 3) (37)
i RS
Kn+1 + 5 Gn+1

Now, this equation can be iterated to connect the n =
1 coefficients to the n = N + 1 coefficients. Care must be
taken when iterating, as the resulting expression is
more complicated than in the bulk modulus case,
because of the presence of the Z,, terms. The result is:

A A
(23] = Pupncs-popan ()
N-1
+ 2 (PNPy1---Poi)Zy+Zy  (38)
m=1

which then can be written as:

() -y)

By

Using the fact that B, = 0 and Ay, ; and By, are
related via the zero stress condition at Rp,, this
equation becomes two linear equations for two vari-
ables, Ay, and A,. These two variables are then:

3KN+1R?\J+16N+1 Hy Oy
4G Q=g

A _ N+1 11 (40)

M 3Ky 1Rys1 _ Ha

4Gniq Hy,

and
- AN+] - Ql

A= H,, . (41)
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FIGURE 5. Two aggregate particle size distribution functions,
in terms of volume, for a C-109 mortar and a typical concrete.

The overall thermal expansion is then just how much
the size of the system has changed, so that the effective
thermal expansion, ¢,,,, is the displacement at r = R,
divided by the original radius of the complete system,

Ry
By, B
Crot = (AN+1RN+1 + R‘[z\f‘i) /Ryy1 = ANyt R}%:H:
+ +1 -
(42)
Discussion

What is the use of these exact expressions? First con-
sider the ITZ volume fraction formula. If we take the
ITZs as single thickness layers, then this formula gives
the total volume occupied by ITZs, taking into consid-
eration the many, possibly multiple, overlaps of this
phase. This formula can also be used, as in Figures 2
and 3, to give the matrix volume that is contained
within a certain distance of an aggregate surface. For
surface controlled phenomena, possibly including alka-
li-aggregate reaction, for example, this might be an
important kinetic parameter. Freeze-thaw damage to
the aggregate, for a porous aggregate, might also de-
pend on the distance water has to move from the paste
to the nearest aggregate surface. Also, the protected
paste for a given air-void system, where the air-voids
are the spherical particles, can be investigated with this
formula [17].

The exact dilute limit calculations can be applied in
several ways. (1) They give a nontrivial, exact calcula-
tion of how ITZ properties can affect overall concrete
properties. Real concretes have high volume fractions of
aggregates, but the qualitative effect of the ITZ can be
seen in the dilute case. Since the exact dilute limit is
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FIGURE 6. Initial slopes for Young’s modulus E and bulk
modulus K for the mortar and concrete shown in Figure 5.

averaged over the volume distribution of the aggre-
gates, differences can be seen, for instance, between
mortars and concretes. (2) These fdrmulas serve as
useful checks on approximate analytical formulas that
are either derived theoretically, in some effective me-
dium approach, or experimentally, by fitting data or by
using some other approximate approach. In the dilute
limit, these kinds of expressions, if the assumption of a
spherical aggregate is used, must reduce to the exact
dilute limit formula [8]. (3) It is often easier to think of
the ITZ as a zone of some thickness that has a uniform
property throughout, rather than as having a gradient
of properties. Solving for the exact gradient, then map-
ping onto the exact solution for a single layer, can give
the correct uniform property to be used for a given
thickness [18]. (4) Exact dilute limit calculations are, in
general, very useful for checking the accuracy of vari-
ous numerical schemes that attempt to handle the full
volume fraction of aggregates [15]. (5) Effective me-
dium theories can be built out of the exact dilute limits
in various ways. These effective medium theories can
be quite accurate in analyzing the properties of concrete
models [8].

Figures 5 and 6 show an example of application (1)
above. In Figure 5, the particle size distribution, in
terms of the particle volumes, is shown for a C-109
mortar [19] and for a typical concrete [20]. Notice that
both go down to about 0.1-mm diameter particles, but
the concrete also has particles in the 10-mm range,
while the mortar stops at about 1 mm. If there were no
ITZ, then the slopes for the mortar and concrete would
be identical, as there is no size dependence for the initial
slope for a spherical particle embedded in a matrix
[21,22], and positive, as the aggregate particle being
introduced into the cement paste is stiffer than the
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FIGURE 7. Artificial porosity gradient surrounding a spheri-
cal particle of diameter 400 um. The gradient is reminiscent of
those found in real concretes.

cement paste. This can be clearly seen in Figure 6 at the
point where the Young’s modulus of the ITZ equals the
Young’s modulus of the bulk paste, effectively remov-
ing the ITZ. When the ITZ Young’s modulus is less than
that of the bulk paste, as would be expected because of
its higher porosity, then it is clear that the mortar is
more affected than the concrete, because of its smaller
average diameter. One way of thinking of this is that the
smaller the particle, the higher is the ratio of ITZ
volume to particle volume. This ratio, for single spher-
ical particles, is (1 + t»,/7)°. Alternatively, for the same
volume of aggregates, the mortar will have a higher
surface area and therefore a higher volume fraction of
ITZ than will the concrete. In Figure 6, the bulk and
shear modulus of the paste were 20.8 and 11.3, respec-
tively, and the bulk and shear modulus of the aggregate
were 44 and 37, respectively, in units of GPa. These
values were taken from a case in Zimmerman et al. [23].
The ITZ paste had the same Poisson’s ratio as the bulk
paste but a smaller Young’s modulus as shown in
Figure 6.

In an example of application (3), Figure 7 shows a
porosity gradient that might be found in a concrete or
mortar. The “width” of the ITZ is about 10 pm. We then
use the dilute limits to quantitatively map the true
dilute limit, for this gradient and a given functional
dependence of the properties on the porosity, onto the
single uniform property shell case. This mapping is
schematically shown in Figure 8. We choose the follow-
ing sets of properties: o, is the electrical conductivity of
the bulk cement paste, o,,, = 0 is the electrical conduc-
tivity of the aggregate, and the electrical conductivity of
the cement paste in the ITZ scales as the square of the

porosity, matching onto o, as the distance from the
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FIGURE 8. Schematic picture showing how the dilute limit of
an aggregate surrounded by a gradient in properties can be
mapped into the case of an aggregate surrounded by a shell
having a given thickness and uniform property.

aggregate surface increases. In the elastic moduli case,
we take K,G = 10,6 for the aggregate, and K,G = 3,1 for
the bulk cement paste, both in arbitrary units. In
calculating the bulk modulus slope, the units cancel out
anyway. The ITZ cement paste has the same Poisson’s
ratio as the bulk cement paste, but its Young’s modulus
scales as the solid fraction cubed [24]. It is important to
remember that we are mapping an exact result, for the
porosity gradient, onto another exact result, that for a
single ITZ shell (N = 3).

Figure 9 shows the electrical conductivity results. It is
clear that choosing a larger thickness for the ITZ results
in a smaller value of the ITZ conductivity relative to the
bulk paste conductivity. In this sense, one cannot really
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FIGURE 9. Dependence of the ITZ conductivity, compared to
the bulk paste conductivity, for various thicknesses of the ITZ.




Advn Cem Bas Mat
1997,6:99-108

1.0 — T T T T T T

o
©
T

=4
o
T

o
IS
T

Sand diameter is 400 um
02 B

(ITZ Moduli)/(Matrix Moduli)

0.0 . 1 i . 1 L 1 N
40.0 50.0

00 . 200 . 300
Interfacial zone thickness (um)

FIGURE 10. Dependence of the ITZ moduli, compared to the
bulk paste moduli, for difference thicknesses of the ITZ. The
ITZ moduli are chosen so as to have the same Poisson’s ratio
as the bulk paste. The two curves are generated by matching
the bulk modulus slope and the shear modulus slope inde-
pendently to the true slope generated by the gradient of
properties.

talk about “the ITZ conductivity” without specifying
the value that is chosen for the thickness. Other articles
have suggested that the median diameter of the cement
grains should be chosen as the “best” value for the ITZ
thickness [8]. The point of Figure 9 is that, if the ITZ is
modeled as a uniform property region of some conduc-
tivity, this conductivity depends on what thickness is
chosen to represent the actual porosity gradient.

Figure 10 shows the elastic results for a similar kind
of problem. In the elastic case, the mapping can be done
two different ways. The exact bulk modulus slope, for
the porosity gradient, can be mapped onto the bulk
modulus slope of the single ITZ shell case. This can also
be done, with equal validity, using the shear modulus.
Figure 10 assures us that, in least in this case, and when
the ITZ moduli have the same Poisson’s ratio as the
bulk paste, essentially the same result is obtained using
either the bulk or the shear modulus. As the thickness
of the ITZ is increased, the ITZ moduli become larger
and therefore closer to the bulk paste moduli. This is
because, in the elastic case, the effect of increasing
porosity is to make the moduli smaller, so that the ITZ
moduli are less than the bulk values, and increase with
distance away from the aggregate surface. This is the
exact opposite of the case for the conductivity.

Summary

For spherical aggregates, of any size distribution, an
analytical formula has been presented, taken from the
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statistical geometry of composites literature, which very
accurately gives the total volume that lies within a
distance r of an aggregate surface. This can be used to
predict the ITZ volume in concrete. For a spherical
aggregate, surrounded by a radially symmetric gradi-
ent in properties, it has been shown how to solve
exactly for the effective concrete property in the dilute
limit, where there is only <5% by volume of aggregate.
The properties solved for are electrical conductivity and
ionic diffusivity, linear elastic moduli, and linear ther-
mal and moisture-driven expansion and shrinkage.
Both of these results should be of use to experimental-
ists and modelers in the field of cement based materials.
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