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An analysis of effective thermal properties of thermally thick materials 
 
Frederick W. Mowrer, Ph.D., P.E., FSFPE 
Department of Fire Protection Engineering 
University of Maryland 
 
 

Abstract 
 
The standard methods used to derive effective thermal properties of thermally thick materials 
based on bench-scale radiant exposure tests are reviewed and analyzed.  These methods are 
compared with numerical calculations for the same boundary conditions.  These comparisons 
show that the standard analytical methods for predicting surface temperature histories are not 
accurate because they either ignore heat losses from the surface or do not adequately treat the 
highly nonlinear reradiative surface heat loss term.  A method is presented for determining more 
accurate values for the thermal inertia based on effective values for this term published widely in 
the literature.  It is found that actual thermal inertias tend to be lower by about a factor of 1.3 to 
2.7 when compared with reported effective values for a wide range of conditions.  This can have 
a significant effect on flame spread predictions for models that rely on accurate values for the 
thermal inertia. 
 
Keywords: Ignition, thermal inertia, thermally thick materials 
 
 
Nomenclature 
 
c specific heat (kJ/kg.K) 
h heat transfer coefficient (kW/m2.K) 
k  thermal conductivity (kW/m.K) 
q ′′&  heat flux (kW/m2) 
t time (s) 
 
α  absorptivity (-) 
ε  emissivity (-) 

T∆  temperature rise above ambient (K) 
ρ  density (kg/m3) 
σ  Stefan-Boltzmann constant (5.67 x 10-11 kW/m2.K4) 
 
subscripts 
 
act actual 
c characteristic, convective 
cr critical 
eff effective 
i incident 
ig ignition 



max maximum 
o ambient 
r radiative 
s surface 
t total 
 
 
Introduction 
 
In order to assess the ignition and flame spread characteristics of solid materials, it is necessary 
to know their thermal properties.  For thermally thick solids, it is well known [1, 2] that the 
thermal inertia of the material governs the rate of rise of the surface temperature and 
consequently the time to ignition.  The thermal inertia, ckρ , is the product of the thermal 
conductivity, k, the density, ρ , and the specific heat, c, of the material.  These properties can 
vary over the temperature range of interest for flammability evaluation, but for engineering 
purposes the thermal inertia is usually treated as a constant effective property. 
 
Determination of the effective thermal inertia of a material is typically based on evaluation of 
results from small-scale radiant exposure test methods, including the LIFT apparatus [3], the 
Cone Calorimeter [4] and the FM Fire Propagation Apparatus [5].  In these test methods, small 
test specimens are exposed to a range of constant incident radiant heat fluxes and the time to 
ignition is measured.  Based on these results, the application of heat transfer theory and a number 
of assumptions, effective thermal properties are determined.  The assumptions that are made can 
have a strong influence on the effective thermal properties that are derived. 
 
 Steinhaus [6] showed experimentally that the value of ckρ  for PMMA evaluated using the LIFT 
methodology [3] was over-predicted by a factor of more than four when compared to the product 
of all three properties evaluated individually from the reported temperature-dependent material 
properties.  Later, Cordova, et al., [7] compared these values with the analytical model of Long, 
et al., [8] and demonstrated several factors that have a significant effect on the ultimate 
evaluation of the thermal properties.  In these previous studies, the authors concentrated on the 
phenomenological aspects of the problem and do not present potential adjustments to the 
methodology used to evaluate the effective thermal properties. 
 
In this paper, the traditional methods for evaluating the effective thermal properties of thermally 
thick materials are reviewed and compared with numerical calculations.  Based on these 
comparisons, a method is presented for adjusting effective thermal inertias to more accurately 
represent the actual thermal inertias of materials.  The analysis presented here is based only on 
thermal arguments and does not address additional issues related to the determination of material 
flammability properties. These issues are associated with the generation of sufficient fuel for 
sustained ignition, in-depth generation of fuel, pilot location, and other factors [1].  Similar 
analyses to those presented here should be performed to address the impact of these physical and 
chemical processes on the determination of material flammability properties.  
 



 
Theoretical analysis 
 
Consider a thermally thick solid with a planar surface subjected to a constant and uniform 
incident heat flux, iq ′′&α , with convective and reradiative cooling at the surface.  Assume that the 
surface cooling can be represented in terms of a constant heat transfer coefficient, h.  This 
scenario is represented in Figure 1.  The analytical solution [8] for this scenario can be expressed 
nondimensionally as: 
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The characteristic temperature rise, cT∆ , represents the maximum temperature rise that would 
occur if the surface were perfectly insulated, while the characteristic time, tc, represents the ratio 
between the conduction of heat into the surface and the convection and reradiation of heat from 
the surface.  Materials with low thermal inertias are relatively poor conductors, with the 
implication that they will “trap” heat at the surface, causing the surface temperature to increase 
more quickly than for materials with higher thermal inertias. 
 
Equation 1 is based on a constant total surface heat transfer coefficient, which is inaccurate.  This 
coefficient represents both convective and reradiative cooling of the surface: 
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In the small-scale test devices generally used to evaluate effective material properties, the 
convective heat transfer coefficient, hc, approaches a relatively constant value fairly quickly, but 
the reradiative coefficient, hr, varies with the third power of the absolute surface temperature, so 
it continues to increase significantly as the surface temperature increases.  This nonlinearity 
makes difficult the evaluation of effective thermal properties by approximate means. 
 
The maximum theoretical value for the total heat transfer coefficient, ht,max, can be evaluated 
based on the characteristic absolute surface temperature, Tc, by evaluating the energy balance at 
the surface under conditions where in-depth conduction is neglected: 
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From Equation 3 the characteristic temperature is calculated as a function of the incident heat 
flux.  Once the characteristic temperature rise is determined by solving the surface energy 
balance, the maximum total heat transfer coefficient can be calculated directly.  The solution for 
Equation 3 is illustrated in Figure 2 for a range of incident heat fluxes, based on a surface with 
perfect emissivity ( 1=ε ), a constant convective heat transfer coefficient with a value of hc = 15 



W/m2.K, and an ambient temperature of 20°C (293K).  In reality, the convective heat transfer 
coefficient is expected to vary with the 1/4th power of the surface temperature rise [2], so this 
effect is relatively small and is neglected for the present analysis. 
 
The value for the maximum total heat transfer coefficient determined from Equation 3 can be 
used to evaluate a characteristic time, max,max, / tc hckt ρ= , but it should be recognized that use of 
this value in Equation 1 will not yield an accurate solution for the surface temperature rise.  This 
is because this value for the characteristic time will cause surface losses to be overestimated, by 
a very large margin during the early stage of surface heating and diminishing with time as the 
surface temperature approaches the characteristic value.  When evaluating ignition delay times, 
this error will translate to an over-prediction of the ignition delay time. The higher the incident 
heat flux, the smaller the expected error will be. Nontheless, this value for the characteristic time 
is fixed based on the incident heat flux and will yield the correct asymptotic value for the surface 
temperature rise, so it is used for normalizing and comparing data. 
 
Two similar alternative approaches have been widely used to determine effective thermal 
properties [1, 9, 10] from small-scale tests.  The most widely used approach has been to use the 
short time limit solution based on the Laplace transform of Equation 1 [8], which can be 
expressed in nondimensional terms as: 
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where cT∆  and ct  are as previously defined.  This solution represents the limit case of no 
convective or reradiative heat losses from the surface, i.e., the constant heat flux solution.  It is 
referred to as the “no-loss” solution in this paper.  This solution is accurate only for very short 
times, with )01.0(~/ Ott c or less, when compared with Equation 1.  Physically, this is because 
surface heat losses rapidly become significant as the surface temperature increases under the 
imposed heat flux.  Ignition delay times will therefore be under-predicted by Equation 4, with 
larger discrepancies found at the lowest heat fluxes. From a practical standpoint, ignition data is 
not collected for the very high heat fluxes that would be associated with this time scale and, 
consequently, consideration of surface losses is important for thermal property determination. 
 
The second widely used approach [10] is similar to the first, but instead of ignoring convective 
and reradiative heat losses from the surface, this approach assumes that these surface losses 
remain constant at a value equal to the critical incident heat flux required to ignite the material, 

crq ′′& .  In nondimensional terms, this solution, referred to here as the “Tewarson” solution, can be 
expressed as: 
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At high incident heat fluxes, this solution converges to the solution represented by Equation 4 
because the ratio between the critical heat flux and the incident heat flux goes to zero.  At a heat 



flux ratio of one, Equation 5 would suggest no temperature rise at the surface, a clearly incorrect 
result because at this heat flux the surface temperature should become the ignition temperature 
by definition.  In essence, the term in parentheses in Equation 5 serves as a constant adjustment 
factor to reduce the net heat flux to the surface for the no loss solution represented by Equation 
4, with the consequence that different effective thermal properties are determined based on this 
factor.  The adjustment factor represented in Equation 5 implicitly assumes that surface losses at 
the critical heat flux condition are representative of surface losses over the entire heating process. 
This constant adjustment factor overestimates such losses at short times and consequently 
overestimates ignition delay times, with the effects being more evident at lower incident heat 
fluxes.  An alternative adjustment factor is described below, based on the numerical results 
described next. 
 
 
Numerical analysis 
 
The analytical solutions represented by Equations 1, 4 and 5 were compared with numerical 
results for a range of incident heat fluxes and material thermal properties.  The numerical results 
were calculated using an explicit finite difference scheme on a spreadsheet.  A convective-
radiative boundary condition was specified at the exposed face, while an insulated boundary 
condition was used at the back face.  The backface temperature rise was checked to assure that it 
was less than 5 percent of the front face temperature rise, consistent with the thermally thick 
assumption for the analytical solutions.  A surface absorptivity and emissivity of unity. a 
constant convective heat transfer coefficient of hc = 15 W/m2.K and an ambient temperature of 
20°C (293K) were used for both the analytical and the numerical calculations where these terms 
were needed.   
 
Comparisons were performed for incident heat fluxes of 25, 50, 75 and 100 kW/m2, and for 
thermal inertias of 0.001, 0.1 and 1.0 (kW/m2.K)2.s.  The specific thermal properties used for the 
calculations and comparisons are provided in Table 1.  The low-end of the thermal inertia range 
is representative of the order of magnitude for low density insulating materials, while the high 
end is representative of relatively high-density building materials such as concrete.  The middle 
value is representative of the order of magnitude for many typical building materials such as 
gypsum wallboard and wood products.  An ignition temperature of 350°C was assumed for all 
materials.  This ignition temperature is associated with a critical heat flux of 13.1 kW/m2 in 
accordance with Equation 3.  
 
 
Table 1. Thermal properties of materials used for numerical analysis. 
 
Qualitative 
thermal 
inertia 

Conductivity, 
k (kW/m.K) 

Density, ρ  
(kg/m3) 

Spec. heat, c 
(kJ/kg.K) 

ckρ  
(kW/m2.K)2.s 

Ignition 
temperature 

(°C) 
Low .00005 20 1.0 0.001 350 
Medium .00012 600 1.4 0.1 350 
High .000625 2000 0.8 1.0 350 
 



 
Values for the characteristic temperature rise and characteristic time for the conditions evaluated 
numerically are provided in Table 2. Results of the calculations are shown in Figures 3(a)-(d) for 
the four incident heat fluxes evaluated, with the horizontal dashed lines indicating the ignition 
temperature rise and the vertical arrows showing the different ignition times predicted by the 
different methods.  Comparisons of the predicted times to ignition based on the exact solution 
(Equation 1), the no loss solution (Equation 4), the Tewarson solution (Equation 5) and the 
numerical calculations for the low, medium and high thermal inertia materials are provided in 
Table 3.  The numerical results all converge to the same values for all three thermal inertias at 
the same incident heat fluxes when expressed in terms of the cT∆  and max,ct  defined above. 
 
 
Table 2.  Characteristic temperatures, total heat transfer coefficients and characteristic times for 
the range of scenarios analyzed. 
 

Thermal inertia (kW/m2.K)2.s   
0.001 0.1 1.0 

Incident heat 
flux (kW/m2) 

cT∆  (°C) ht,max 
(W/m2.K) 

Characteristic time (s) 

25 462.6 54 0.342 34.24 342.4 
50 629.0 79 0.158 15.83 158.3 
75 739.1 101 0.097 9.71 97.1 
100 823.4 121 0.068 6.78 67.8 

 
 
Table 3.  Predicted times to ignition for low thermal inertia material at different heat fluxes based 
on an assumed ignition temperature of 350°C. 
 

Dimensionless ignition times (t/tc)  
Analytical solutions Numerical results 

Incident 
heat flux 
(kW/m2) 

cig TT ∆∆ /
  

Exact No 
loss 

Tewar-
son 

Low 
thermal 
inertia 

Medium 
thermal 
inertia 

High 
thermal 
inertia 

25 0.713 3.02 0.40 1.76 1.20 1.20 1.20 
50 0.525 0.71 0.22 0.40 0.34 0.34 0.34 
75 0.447 0.40 0.16 0.23 0.21 0.21 0.21 
100 0.401 0.29 0.13 0.17 0.16 0.16 0.16 

 
 
Discussion 
 
The comparison of analytical solutions with numerical calculations demonstrates that none of the 
analytical solutions accurately captures the surface temperature history of a thermally thick solid 
exposed to a constant incident heat flux and subject to convective and reradiative losses from the 
surface.  The assumption of no losses from the surface becomes increasingly incorrect as the 



surface temperature increases.  The nonlinearity of the surface reradiation term also limits the 
use of simple analytical solutions for the accurate representation of thermal property data.  While 
such simple solutions are useful for comparison purposes and for simple ignition and flame 
spread models based on the same assumptions, they do not accurately portray thermal properties 
for models based on more accurate boundary conditions. 
 
The numerical results demonstrate that the actual surface temperature rise falls somewhere 
between the exact solution based on a maximum heat transfer coefficient (Equation 1) and the no 
loss, or constant heat flux, solution (Equation 4).  As shown in Figures 3(a)-(d), this is true for all 
the cases evaluated here and would be expected to be true in general.  Both of the analytical 
solutions and the numerical results are virtually the same at very short times, before the surface 
temperature has increased significantly.  This is to be expected because heat losses are relatively 
small.  As the surface temperature continues to increase, the different solutions diverge from 
each other because of their different treatments of the surface losses.   
 
It was found that selection of grid size was important in capturing the early surface temperature 
rise accurately in the numerical calculations.  Grids that were too large would result in slower 
initial increases in surface temperature because the surface node would represent a greater 
volume of material to absorb the incident heat.  This was only important for capturing the surface 
temperature rise at very short times.  Comparison of calculated surface temperature with 
analytical results at short times was used to determine if sufficient grid resolution was used.  
When the numerical results closely matched the analytical solutions at very early times, it was 
apparent that sufficient resolution had been achieved. 
 
A number of different time steps were initially used.  If a selected time step was too large, the 
explicit solution would become unstable as evidenced by wild fluctuations in temperatures.  
Eventually, time steps of 0.01 and 0.001 times the maximum characteristic temperature were 
attempted.  The lower value always produced stable results for the grid sizes used, so it was used 
for most of the calculations. 
 
In general, it was found that the Tewarson solution (Equation 5) yielded the most accurate 
estimates of ignition time for the three analytical solutions evaluated, with the exception of the 
25 kW/m2 incident heat flux case.  This is evident in Table 3 as well as in Figures 3(a)-(d).  To 
some extent, this is coincidental because Figures 3(a)-(d) clearly show that the Tewarson 
solution is not accurately tracking the surface temperature history, even though it is intersecting 
the real surface temperature at a time nearest the ignition time for the higher heat flux cases.  
Since the Tewarson solution depends on the critical heat flux for ignition, which in turn depends 
on the ignition temperature, general conclusions cannot be drawn from the limited comparisons 
performed here, other than that the Tewarson solution does not perform well as the incident heat 
flux approaches the critical heat flux. 
 
The effective thermal properties of materials determined by the current methods of analyzing 
ignition data from small-scale radiant exposure tests can still be used in models or formulae 
based on similar assumptions regarding boundary conditions, but these effective properties are 
not suitable for use with models based on different boundary conditions.  In particular, many 
CFD models, such as FDS [11], that predict flame spread on surfaces explicitly account for 



convective and reradiative losses from the surface; for these models, the actual thermal 
properties are needed rather than the effective properties reported extensively in the literature. 
 
 
Determination of new adjustment factor 
 
There is a large body of effective thermal property data that has been generated based on 
application of Equation 4 or Equation 5 to experimental data.  A method to adjust this existing 
data to more accurately represent the actual thermal properties for use with models that need 
these actual properties would be desirable.  One method for doing this is described here.  This 
method can also be used for the analysis of ignition data acquired in the future. 
 
In essence, what is needed is an adjustment factor that will force the no-loss analytical solution 
(Equation 4) through the ignition point.  This concept is illustrated in Figure 4.  Note the 
similarity with the Tewarson solution (Equation 5), which includes a similar adjustment factor.  
As illustrated in Figure 4, the adjustment factor that is needed is simply the ratio of the numerical 
surface temperature rise to the no-loss surface temperature rise at the time of ignition, The 
equation representing this new curve can be expressed as: 
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The second part of Equation 6 indicates that this solution is also the solution for the no-loss 
solution for the case of a time constant based on the effective thermal inertia.  Since the time 
constants are directly proportional to the thermal inertias by definition, the ratios between the 
thermal inertias can be expressed as: 
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The temperature ratios in Equation 7 are tabulated in Table 4 as a function of the dimensionless 
time for the range of heat fluxes considered here.  The temperature ratios tabulate in Table 4 are 
also illustrated in Figure 5, which shows how similar the numerical solutions are for different 
incident heat fluxes when plotted nondimensionally.   
 
The ratio between the numerical surface temperature rise and the no-loss temperature rise, 
referred to as the “surface temperature ratio,” is shown in Table 5 and in Figure 6 along with the 
ratio between the actual and effective thermal inertias, which is called the “thermal inertia ratio.”  
The thermal inertia ratio is calculated on the basis of Equation 7.  Table 5 and Figure 6 are of 
more practical use than Table 4 for calculating actual thermal inertias from effective thermal 
inertias.  A more extensive tabulation based on a time increment of 0.001 tc has been developed, 
but is too large for inclusion here.  Table 5 could also be expanded to include more intermediate 
heat fluxes in order to reduce the amount of interpolation need to use it.  The use of Table 5 is 
demonstrated by example below. 



Table 4. Dimensionless surface temperatures as a function of dimensionless times based on 
Equation 4 and the numerical results for the range of incident heat fluxes considered. 
 

 Dimensionless surface temperature (∆Ts/∆Tc) 
t/tc No loss 25 50 75 100 

0.00 0.000 0.000 0.000 0.000 0.000 
0.05 0.252 0.232 0.237 0.239 0.241 
0.10 0.357 0.314 0.324 0.329 0.332 
0.15 0.437 0.368 0.385 0.391 0.396 
0.20 0.505 0.414 0.433 0.441 0.446 
0.25 0.563 0.451 0.471 0.480 0.486 
0.30 0.617 0.482 0.503 0.514 0.521 
0.35 0.667 0.509 0.532 0.544 0.551 
0.40 0.713 0.533 0.556 0.569 0.576 
0.45 0.756 0.553 0.578 0.590 0.599 
0.50 0.797 0.572 0.597 0.610 0.618 
0.55 0.836 0.588 0.614 0.627 0.636 
0.60 0.874 0.603 0.630 0.643 0.652 
0.65 0.910 0.617 0.644 0.658 0.666 
0.70 0.944 0.629 0.657 0.670 0.679 
0.75 0.977 0.641 0.669 0.682 0.691 
0.80 0.997 0.647 0.675 0.689 0.697 

 
 
It should be pointed out that Tables 4 and 5 as well as Figure 6 strictly apply only for the 
assumptions that have been made regarding surface emissivity, convective heat transfer 
coefficient and ambient temperature.  While these are expected to be reasonably appropriate for 
many applications, significantly different boundary conditions would require construction of one 
or more new set of tables and figures based on numerical calculations with the different 
boundary conditions. 
 
The thermal inertia ratios shown in Figure 6 illustrate that as the nondimensional ignition time 
approaches a value of zero, i.e., for very high heat fluxes, the thermal inertia ratio approaches 
unity, as expected.  Figure 6 also illustrates how the thermal inertia ratio decreases relatively 
rapidly as the ignition time moves away from the origin, with the slope decreasing with 
increasing time.  From a practical standpoint, much of the ignition data reported in the literature 
is acquired for ignition times between about 0.25 and 1.0 characteristic times.  Over this range, 
the thermal inertia ratio varies from approximately 0.75 down to approximately 0.37, suggesting 
that reported effective thermal inertias are approximately a factor of 1.3 to 2.7 times higher than 
the actual values would be. 
 
 
 



Table 5. Ratio between numerical and no-loss surface temperatures (Surface temperature ratio) 
and between actual and effective thermal inertia (Thermal inertia ratio) as a function of 
dimensionless time. 
 

Incident heat flux (kW/m2) Incident heat flux (kW/m2)  
25 50 75 100 25 50 75 100 

t/tc Surface temperature ratio Thermal inertia ratio 
0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.050 0.918 0.939 0.949 0.955 0.842 0.881 0.900 0.913 
0.100 0.881 0.908 0.921 0.930 0.776 0.824 0.849 0.865 
0.150 0.851 0.882 0.895 0.907 0.725 0.778 0.801 0.822 
0.200 0.826 0.858 0.873 0.883 0.683 0.736 0.763 0.780 
0.250 0.804 0.837 0.853 0.863 0.646 0.700 0.727 0.745 
0.300 0.781 0.815 0.833 0.844 0.610 0.665 0.695 0.712 
0.350 0.763 0.797 0.815 0.826 0.583 0.636 0.664 0.682 
0.400 0.747 0.780 0.798 0.808 0.558 0.609 0.636 0.653 
0.450 0.731 0.764 0.780 0.791 0.535 0.584 0.609 0.626 
0.500 0.717 0.749 0.765 0.776 0.514 0.561 0.585 0.602 
0.550 0.703 0.735 0.750 0.760 0.495 0.540 0.563 0.578 
0.600 0.690 0.721 0.736 0.746 0.477 0.520 0.542 0.556 
0.650 0.678 0.708 0.723 0.732 0.460 0.501 0.523 0.536 
0.700 0.667 0.696 0.710 0.719 0.445 0.484 0.504 0.517 
0.750 0.656 0.684 0.698 0.707 0.430 0.468 0.487 0.500 
0.800 0.645 0.673 0.687 0.695 0.417 0.453 0.471 0.483 
0.850 0.636 0.662 0.676 0.684 0.404 0.439 0.456 0.467 
0.900 0.626 0.652 0.665 0.673 0.392 0.425 0.442 0.453 
0.950 0.617 0.643 0.655 0.663 0.381 0.413 0.429 0.439 
1.000 0.609 0.633 0.645 0.653 0.370 0.401 0.416 0.426 

 
 
As an example application of this concept, consider a material with an ignition temperature of 
350°C that ignites in 30 seconds when exposed to an incident heat flux of 50 kW/m2.  In 
accordance with the dimensional form of Equation 4, the effective thermal inertia of this material 
would be calculated as: 
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Since the temperature ratios in Equation 7 depend on the characteristic time at ignition and the 
characteristic time is a function of the actual thermal inertia being sought, an iterative process is 
needed to solve for the actual thermal inertia.  The actual thermal inertia will be some fraction of 
the effective thermal inertia.  As a first approximation, assume the actual thermal inertia is 50 
percent of the effective value.  Then the characteristic time associated with this thermal inertia is 



calculated, using the total heat transfer coefficient associated with this heat flux from Table 2, to 
be: 
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With this value for tc, the nondimensional ignition time becomes 427.025.70/30/ ==cig tt .  For 
this value of the dimensionless time, the surface temperature ratio is 0.772 and the thermal 
inertia ratio is 0.595 from Table 5.  Since this thermal inertial value is significantly different 
from the assumed value of 0.50, further iteration is necessary. 
 
As a second iteration, assume the thermal inertia ratio is 0.65.  Then the characteristic time 
becomes 91.3 s and the nondimensional ignition time becomes 0.328.  For this value of the 
nondimensional time, the surface temperature ratio is 0.805 and the thermal inertia ratio is 0.648 
from Table 5, the same as the assumed value.   Therefore, the actual thermal inertia would be 
0.570 (kW/m2.K)2.s  rather than the effective value of 0.877 (kW/m2.K)2.s .  For this same 
example, the Tewarson adjustment factor would have a value of 0.738, based on critical and 
incident heat fluxes of 13.1 and 50 kW/m2, respectively.  This is 14 percent higher than the 
adjustment factor determined here. 
 
As a check on these example calculations, the effective thermal inertia and the actual thermal 
inertia were used in the numerical calculations with an incident heat flux of 50 kW/m2.  When 
the effective thermal inertia was used, an ignition time of 46.4 s was calculated; this value is 1.55 
times greater than the actual ignition time of 30 seconds, which is very close to the inverse of the 
thermal inertia ratio (1/0.65), as would be expected.  When the actual thermal inertia was used, 
an ignition time of 30.5 s was calculated; the small difference of 0.5 s is most likely due to 
rounding errors.  Based on the thermal inertia associated with the Tewarson adjustment factor, 
the calculated ignition time would be 34.3 s, a value 14 percent higher than the actual ignition 
time, which would be expected based on the ratio between the two adjustment factors (i.e., 
0.738/0.65 = 1.14).  This ratio between the adjustment factors can also be used to evaluate actual 
thermal inertias from effective thermal inertias determined with Equation 5, i.e., the Tewarson 
solution. 
 
 
Further discussion 
 
The analysis presented in this paper indicates that actual thermal inertias can be significantly 
lower than effective thermal inertias determined on the basis of Equation 4 and as indicated in 
Figure 6.  This will depend to a large extent on the heat fluxes at which the effective thermal 
inertias have been determined, with the effect being smaller at higher heat fluxes.  While the 
effective values reported in the literature are still of great use for ignition and flame spread 
models based on similar assumptions, i.e., no surface heat losses, and for ranking materials in 
terms of relative values, these effective values will underestimate the potential for ignition and 
flame spread when used with models that calculate heat losses directly based on convective-
reradiative boundary conditions.  
 



The method presented here for determining actual thermal inertias based on effective thermal 
inertias available in the literature can also be used to evaluate new ignition test data.  One aspect 
of interpreting both existing and new data sets that needs to be explored is how this method will 
be applied to data acquired over a wide range of heat fluxes.  The standard procedure for 
determining effective thermal inertia values is to plot 2/1−

igt  versus iq ′′&α  , with the effective 
thermal inertia related to the slope of the best fit line through the data.  This suggests that either 
no adjustment factor or a constant adjustment factor applies equally well to all the data points.  
This is inconsistent with the analysis presented here, which suggests that the adjustment factor 
will vary with the incident heat flux, with a larger adjustment factor associated with ignition data 
acquired at lower heat fluxes.  Future work will include the analysis of some existing data sets to 
evaluate this issue. 
 
It should be recognized that there are limitations associated with the approach presented here, 
whether applied to new or existing data.  To a large extent, these are the same limitations that 
have always been associated with the methods used to determine effective thermal properties 
from small-scale radiant exposure experiments. The actual thermal inertias discussed in this 
paper are still temperature-independent average values.  The temperature dependence of these 
properties and the effects of moisture content and other latent heat effects have not been 
addressed.  This analysis has also assumed that the concept of an inert solid with a distinct and 
constant ignition temperature is valid.  As more sophisticated models of fire spread are 
developed and implemented, there is a need to develop more precise properties that explicitly 
account for temperature-dependence, latent heat effects, variable ignition temperatures and 
ignition delay times in order to more accurately calculate ignition, flame spread and other 
reaction-to-fire phenomena for solid materials.  
 
 
Summary and conclusions 
 
Methods for deriving effective thermal inertia values for thermally thick materials based on 
small-scale radiant exposure tests have been reviewed and analyzed.  None of these methods 
accurately captures the surface temperature history of thermally thick solids subjected to constant 
incident heat fluxes, primarily because they either ignore surface heat losses entirely or treat 
them in a way that does not accurately account for the highly nonlinear dependence of surface 
reradiation on the surface temperature.  This is demonstrated by the comparisons with numerical 
results that have been presented in this paper. 
 
The numerical results were calculated using an explicit finite difference scheme for a range of 
incident heat fluxes from 25 to 100 kW/m2 and a range of thermal inertias from 0.001 to 1 
(kW/m2.K)2.s.  These ranges are fairly representative of the exposure conditions and building 
materials commonly used.  The numerical calculations were nondimensionalized in terms of 
characteristic times and temperatures, with the outcome that the temperature curves converged to 
a relatively small range of results for the range of heat fluxes and thermal inertias considered. 
 
Differences between effective and actual thermal inertia values were analyzed, with the effective 
thermal inertia found to be approximately a factor of 1.33 to 2.75 greater than the actual value 
over a representative range of characteristic times, although this factor will depend on a number 



of factors that have not been fully explored here.  A methodology was developed to determine 
actual thermal inertia values from effective values.  This methodology has value for translation 
of the large body of effective thermal property data currently available in the literature as well as 
for the analysis of future ignition data.  While the published effective property data will continue 
to be useful for calculations based on similar assumptions, the more accurate actual thermal 
inertia values are needed for more detailed calculations, such as those included in the current 
version of the FDS model [11]. 
 
Finally, it should be recognized that the analysis presented here is based on the same thermal 
arguments used for the determination of effective properties and does not address additional 
issues related to the determination of more precise material flammability properties. These issues 
have been identified and are associated with the generation of sufficient fuel for sustained 
ignition, in-depth generation of fuel, pilot location, and other factors [1, 12].  
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Figure 1. Schematic diagram of thermally thick heating scenario. 

Ts(t)

)(tδ

iq ′′&α  

)( os TTh −

oT  oT



 

 
Figure 2. Characteristic temperature rise and total heat transfer coefficient as a function of 
incident heat flux.  
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Figure 3(a). Comparison of analytical and numerical solutions for surface temperature and time 
to ignition at an incident heat flux of 25 kW/m2. 
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Figure 3(b). Comparison of analytical and numerical solutions for surface temperature and time 
to ignition at an incident heat flux of 50 kW/m2. 
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Figure 3(c). Comparison of analytical and numerical solutions for surface temperature and time 
to ignition at an incident heat flux of 75 kW/m2. 
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Figure 3(d). Comparison of analytical and numerical solutions for surface temperature and time 
to ignition at an incident heat flux of 100 kW/m2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analytical and numerical solutions
Incident heat flux = 100 kW/m2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
t/tc

∆T
s/ ∆

T c

Exact
No loss
Tewarson
Numerical



Figure 4. Illustration of method for adjusting the no-loss analytical solution through the ignition 
point. 
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Figure 5. Comparison of analytical solution based on no heat losses (Equation 4) with numerical 
results for range of incident heat fluxes. 
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Figure 6. Ratio between the surface temperatures determined numerically and for the no-loss 
analytical solution and between the actual and effective thermal inertias based on Equation 6 and 
the surface temperature ratios.  
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