Softw Syst Model (2018) 17:1079-1103
https://doi.org/10.1007/s10270-016-0537-x

@ CrossMark

REGULAR PAPER

Reusing metamodels and notation with Diagram Definition

Conrad Bock! - Maged Elaasar?

Received: 12 October 2014 / Revised: 12 April 2016 / Accepted: 31 May 2016 / Published online: 28 June 2016

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Abstract It is increasingly common for language specifi-
cations to describe visual forms (concrete syntax) separately
from underlying concepts (abstract syntax). This is typically
to enable interchange of visual information between graphi-
cal modeling tools, such as positions of nodes and routings
of lines. Often overlooked is that separation of visual forms
and abstract concepts enables languages to define multiple
visual forms for the same underlying concepts and for the
same visual form to be used for similar underlying concepts
in different languages (many-to-many relationships between
concrete and abstract syntax). Visual forms can be adapted
to communities using different notations for the same con-
cepts and can be used to integrate communities using the
same notation for similar concepts. Models of concrete syn-
tax have been available for some time, but are rarely used

Communicated by Prof. Thomas Kiihne.

The authors thank Anantha Narayanan, David Wagner, and Denis Gagne
for their helpful comments. Identification of any commercial equipment
and materials is only to adequately specify procedures. It is not intended
to imply recommendation or endorsement by the U.S. National Insti-
tute of Standards and Technology, nor does it imply that the materials
or equipment are necessarily the best available for the purpose.This
research was carried out in part at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the U.S. National
Aeronautics and Space Administration.

B Conrad Bock
conrad.bock @nist.gov

Maged Elaasar
maged.e.elaasar@jpl.nasa.gov

U.S. National Institute of Standards and Technology,
100 Bureau Drive, Stop 8260, Gaithersburg, MD 20899-8260,
USA

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109-8001, USA

to capture these many-to-many relationships with abstract
syntax. This paper shows how to model these relationships
using concrete graphical syntax expressed in the Diagram
Definition standard, examining cases drawn from the Uni-
fied Modeling Language and the Business Process Model
and Notation. This gives definers of graphical languages a
way to specify visual forms for multiple communities.

Keywords
Syntax

Notation - Metamodel - Diagram Definition -

1 Introduction

Separate modeling of language visualization (concrete syn-
tax) from terminology and concepts (abstract syntax) began
at least with textual computer languages, which include
visual aspects such as punctuation and reserved words in
their specifications, but remove them during implementation
to simplify analysis and translation to machine languages [1].
The advent of model-based approaches brought abstract syn-
tax into language specifications, going beyond trees to graphs
of language elements (metamodels) [2]. Models of concrete
syntax followed those of abstract syntax, initially outside of
language specifications, then recently as part of them. In par-
ticular, the Object Management Group (OMG) provides a
standard model for concrete graphical syntax (Diagram Def-
inition, DD), as developed by the authors [3,4], and uses it in
some graphical language specifications (see Sect. 2 for more
background on concrete and abstract syntax).

Separate modeling of concrete and abstract syntax is typi-
cally used to interchange computer-interpretable information
about these forms between graphical modeling tools, such as
positions of nodes and routings of lines. This enables graph-
ical models to retain their appearance as they are transferred

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0537-x&domain=pdf

1080

C. Bock, M. Elaasar

between tools from different vendors. For example, OMG
applied DD to visual forms in the Unified Modeling Lan-
guage (UML), filling a long-standing gap in UML’s support
for interchange of diagrammatic information [5]. Before that,
the second version of Business Process Model and Notation
(BPMN) defined a precursor to DD specifically for repro-
ducing the modeler-controlled visual characteristics of its
diagrams across tools [6].

Often overlooked is that separate modeling of concrete and
abstract syntax enables many-to-many relationships between
them, helping address two important challenges in graphical
language design:

1. Accommodating different visual appearances for the
same language concepts. Significantly different notations
for the same concepts can prevail across user commu-
nities, such as changes in graphical shapes and layout,
reversal of nodes and lines, or use of tables and text
instead of graphics. For example, UML provides multiple
notations for interactions between objects, each designed
for particular modeling needs. Languages supporting a
variety of notations for the same concepts improve com-
munication between communities using the notations and
enable the same automated tools to operate on the con-
cepts without requiring adaptation to multiple notations.

2. Reusing the same visual appearance for similar concepts
in multiple languages. This is useful when multiple lan-
guages about the same topics are developed in parallel
for different communities, such as the many languages
for specifying processes, leading some communities
to borrow notations from others. For example, UML
and BPMN overlap significantly in process modeling
capabilities, and some applications benefit from using
BPMN to notate UML concepts [7]. To maintain efficient
communication and automation within the borrowing
community, it is helpful to support the foreign notation
as a visualization of the community’s prevalent language
concepts.

Prior work with separate models of concrete and abstract syn-
tax does not address many-to-many relationships between
them for graphical languages. Sometimes the same abstract
syntax is used with a single human-readable textual con-
crete syntax alongside a single graphical syntax [8,9], or to
provide multiple textual syntaxes [10], but not with multi-
ple graphical syntaxes as in this paper. The authors are not
aware of work examining a single concrete syntax notating
multiple abstract syntaxes. The flexible relationship of con-
crete and abstract syntax is mentioned briefly in the context
of introducing complex mappings between them [11], unify-
ing them to reduce redundancy [12, 13] extracting concrete
from abstract syntax [14], and upgrading textual parsers to

@ Springer

use abstract syntax [15—17], but these do not directly address
many-to-many relationships between abstract and concrete
syntax as in this paper (see Sect. 2 for more about related
work).

This paper demonstrates many-to-many relationships
between graphical notation and language concepts, giving
definers of graphical languages a way to specify visual forms
for multiple communities, as needed to address the chal-
lenges above. It shows how to model multiple graphical
concrete syntaxes on a single abstract syntax in cases drawn
from UML and a single graphical concrete syntax notating
multiple abstract syntaxes in cases drawn from BPMN, using
DD for graphical concrete syntax. Section 2 reviews the his-
tory and benefits of separating abstract and concrete syntax
and compares the contributions of this paper to related work
on the subject. Section 3 shows how graphical concrete syn-
tax is modeled in DD. Section 4 demonstrates modeling of
multiple graphical notations on a single metamodel, and Sect.
5 does the same for a single graphical notation on multiple
metamodels. Section 6 concludes the paper.

2 Background and related work on abstract and
concrete syntax

Language syntax is a set of rules for constructing the physical
forms of communication or specification, typically visual,
and in particular, textual (“grammar”) [18]. These rules
define the kinds of elements in a language and how they can
be combined. For example, English provides nouns, verbs,
and so on that can be combined in particular orders, such as
a verb appearing between two nouns. Languages for speci-
fying system behavior have more restrictive rules, with some
words predefined (reserved). For example, in JavaScript the
predefined word “function” can appear before a word not
predefined, to specify a procedure [19]. A common way to
specify textual syntax is Backus—Naur Form (BNF), which is
a textual language for giving rules about composing smaller
pieces of text into larger ones [20,21].

In computer languages, some aspects of language syntax
are not needed when translating for machine execution, such
as punctuation marks, and can be simplified by removing
them, producing various kinds of abstract syntaxes. These
translators use object representations for pieces of text, link-
ing objects for smaller pieces to the larger ones containing
them, forming data structures (abstract syntax trees, or “parse
trees”) [1,22]. For example, semicolons ending statements
in JavaScript can be removed before automated process-
ing, because abstract syntax elements representing blocks
of statements are linked to elements representing each state-
ment in them. This separates and orders constituent elements
without punctuation or textual proximity and makes abstract

Reusing metamodels and notation with Diagram Definition

1081

relationships and elements explicit, such as composition, to
simplify translation of the language for machine execution.

Rules for the visual form of a language are its concrete
syntax, whereas rules for its computational form are abstract
syntax. Rules for concrete and abstract syntax must be con-
sistent, even though abstract syntax omits some aspects of
the visual form, and add rules for abstract elements and their
relationships, as described above. For example, concrete syn-
tax for English does not allow one verb right after another,
and neither does its abstract syntax. In the concrete syntax for
JavaScript, the predefined word “function” must be followed
by a word not predefined and then a parenthetic expression
for parameters, while the abstract syntax requires the element
for function definition to include an element for parameter
definition, but omits the parentheses and predefined words
like “function.”

The advent of model-based approaches brought abstract
syntax into language specifications, going beyond trees to
graphs of language elements (metamodels)." One of the first
was the Computer-aided software engineering Data Inter-
change Format (CDIF), which used metamodels to specify
file formats (textual concrete syntax) for interchange of infor-
mation models, including entity-relationship models and
state machines [25].> OMG adapted CDIF’s approach to
specify files formatted in the eXtensible Markup Language
(XML) [27], for interchange of metamodels defined in a
subset of UML (Meta-Object Facility, MOF) [28], with map-
pings from metamodels to XML specified by XML Metadata
Interchange (XMI) [29]. OMG eventually required all its
metamodels, including UML, to be defined in the MOF
subset of UML, with interchange file formats specified in
XML

Models of concrete graphical syntax followed those of
abstract syntax, initially outside of language specifications,
then recently as part of them. The Eclipse Foundation pro-
vides open-source graphical syntax modeling for use with
its UML and other modeling tools, because OMG had
not addressed this when UML was originally standardized
[30,31]. OMG attempted to address graphical syntax model-
ing in a standard accompanying UML’s major revision, but
the resulting metamodel for graphical syntax could only be
extended for particular languages in free text, rather than by
class specialization with language-specific properties, and
was too closely tied to UML [32].> OMG’s major revision of

I Precursors to metamodels in academic work used links between

abstract syntax tree elements that are not hierarchically related [23,24].

2 An earlier modeling language in the product modeling community
specified graphical and textual concrete syntax for the same language
concepts [9], with metamodels added later at OMG [26].

3 Tt also did not separate user-controllable graphical information, such
as position and size, from standards-defined information, such as shapes,
resulting in redundant inclusion of standards information in interchange
files; see Sect. 3.

BPMN provides models of its graphical syntax, but they are
not generic enough to use with other languages [6]. OMG
recently addressed these problems with a new way to spec-
ify diagrams in its graphical language standards (DD, see
Sect. 1), which is used in a recent version of UML and other
modeling standards [5,33,34].

Despite the history and benefits of separately modeling
abstract and concrete syntax described above, it has not been
used to address many-to-many relationships between graph-
ical concrete and abstract syntax, as needed to address the
challenges identified in Sect. 1:

1. Multiple concrete graphical syntaxes for a single abstract
syntax, enabling the same language to be adapted to mul-
tiple communities or purposes, while sharing the same
automated tools. Prior work only uses the same abstract
syntax with a single graphical syntax alongside multiple
textual concrete syntaxes (human readable and/or tool
interchangeable). For example, UML and its extensions
have graphical and textual forms, where the textual form
is for interchanging models between tools [5,33]. An
executable subset of UML has a human-readable textual
syntax that is mostly the same as a subset of Java syntax,
giving that portion of UML both graphical and textual
concrete syntax on the same abstract syntax [8,35,36].
BPMN has a graphical syntax for modelers and two tex-
tual ones for model interchange, one defined in XML
Schema Definition Language (XML Schema) and the
otherin XMI[6,29,37]. The Ontology Web Language has
multiple textual notations based on one abstract syntax
(“structural specification”), though this is only specified
in diagrammatic form, without interchange files [10].%

2. Single graphical concrete syntax for multiple abstract
syntaxes, enabling the same notation to be used in
the context of multiple languages. The authors are not
aware of prior work examining this aspect of many-to-
many relationships between concrete and abstract syntax,
though there are opportunities to do so. For exam-
ple, BPMN concrete syntax could be used with BPMN
abstract syntax or with UML abstract syntax extended
by the UML Profile for BPMN Processes [38]. BPMN
graphics combined with an extended UML abstract syn-
tax would enable system operational requirements and
other behaviors external to a system to be specified by
operators in a more accessible notation (BPMN), but still
be available to design engineers in a more technical lan-
guage (UML) [7].

This paper gives definers of graphical languages a way to
address the challenges above, via many-to-many relation-

4 Also see Footnote 2.

@ Springer

1082

C. Bock, M. Elaasar

ships between concrete and abstract syntax, in Sects. 4
and 5.

Other work related to separately modeling concrete and
abstract syntax is not concerned with the challenges above.
Early work on model-view—controllers enabled multiple
visualizations of the same underlying model, but program-
matically related them, rather than modeling concrete syntax
explicitly and giving rules for its relation to abstract syntax, as
needed for specifying standard graphical languages [39—41].
Another effort enables a single element of graphical con-
crete syntax for a group of related abstract syntax elements,
rather than for separate abstract syntaxes as in this paper, and
addresses dynamic, bidirectional synchronization of concrete
and abstract syntax [11]. DD also supports single elements of
graphical concrete syntax for groups of related abstract syn-
tax elements and can potentially be used in synchronization
architectures developed in that work. Other efforts propose
unified models of concrete and abstract syntax [12,13]. This
reduces redundancy and inconsistency between the two kinds
of syntax, but eliminates the benefits of separating them
(see discussion about syntactic redundancy in DD at the
end of Sect. 3.1). Another approach to reducing redundancy
between concrete and abstract syntax is to automatically
produce abstract syntax from concrete [14]. This technique
would have wider application using a standard model of con-
crete syntax, such as DD. Other work upgrades textual parser
generators to use abstract syntax [15—-17]. The efforts cited
here are helpful in various ways, but do not address the two
gaps described above and in Sect. 1.

3 Concrete graphical syntax using Diagram
Definition

Cases examined in this paper use the MOF subset of UML for
specifying abstract syntax (see Sect. 2) and DD for specifying
concrete graphical (“node and arc”) syntax. DD has two parts:

e Diagram Interchange (DI) is for syntax that modelers
control, such as position of nodes and routing of lines,
and notational options. This is captured for interchange
between graphical tools.

e Diagram Graphics (DG) is for syntax that modelers do
not control, such as the kinds of shapes and line styles
defined by language specifications. This is not inter-
changed because it is the same across all tools conforming
to a language.

DI and DG are shown by bold-outlined rectangles in Fig.
1 (adapted from a figure developed by the authors in [3]).
They both provide a metamodel defined in MOF, which is
instantiated when graphical languages are used, as described
in Sects. 3.1 and 3.2. Mappings between DI and DG, shown
as the bold arrow on the lower middle of Fig. 1, are covered
in Section 3.2.

3.1 Diagram Interchange

Language specifications specialize elements of the DI meta-
model for their particular kinds of nodes and arcs (Shapes

Language
Definition MOF
Specification N
DI
Language
Specification Zﬁ
AS <—| ~ASDI
A A
System .
Specification Model <— Diagram

User Model & Diagram Choices

(interchanged)

---> Instantiates D DD Spec
—> Specializes D Language DG: Diagram Graphics
Spec

——> References

Fig. 1 Diagram definition architecture, adapted from [3]

@ Springer

Mapping MOF
Language
A i
DG Mapping
Specification DG
/:’\
> Graphics
DG Mapping
Mapping Graphics Model
(executed) (rendered)

DI : Diagram Interchange AS: Abstract Syntax

CS : Concrete Syntax

Reusing metamodels and notation with Diagram Definition

1083

JowningElement

readOnly, union
i Y } DiagramElement / modelEIeme;nt
0.1 {readOnly, unlonll
/diagramElement T YML::Element
/ownedElement {readOnly, union} ’
{ordered, readOnly, union} \a
* sharedStyle | sgyte
/source * 0.1
{readOnly, union} 1 styledElement localStyl
Jtarget

{readOnly, union 0..1 0..1

1
/sourceEdge /targetEdge -
* [{readOnly, union} * [{readOnly, union} Diagram

Edge

Shape name : String =

waypoint : Point [*] {ordered, nonunique}

documentation : String =

bounds : Bounds [0..1] resolution : Real = 300

Fig. 2 Diagram Interchange metamodel

and Edges in DI), as shown by the shaded rectangle labeled
“AS DI” on the left in Fig. 1. These specializations iden-
tify elements of the language’s abstract syntax they notate,
as shown by the arrow from AS DI to the shaded rectangle
labeled “AS”. The specializations also introduce additional
modeler-controlled options for the concrete syntax, such as
alternative icons or presentation styles. Examples of these are
given for UML and BPMN in Sects. 4.1 and 5.1, respectively.

Constructing models using graphical languages causes
instances to be created from their abstract syntaxes and DI
specializations, linked together, as shown by the rectangles
labeled “Model” and “Diagram” in Fig. 1,” respectively, and
the arrow between them. The resulting instances of DI spe-
cializations can be sent to other graphical tools, along with the
corresponding instances of abstract syntax, to tell other tools
where nodes and arcs are to be placed and routed, how their
appearance should be adjusted for any modeler-controlled
options the concrete syntax has, and which instances of
abstract syntax they notate.

Figure 2 shows the DI metamodel. Its most abstract ele-
ment is DiagramElement, which generalizes all the others.
Diagram elements can identify the elements of abstract
syntax they notate (via modelElement), which can be any
element defined in UML, including its MOF subset. Some
diagram elements might not refer to abstract syntax, while
others might refer to more than one element of abstract syn-
tax. Examples of these cases are given in Sects. 4.2 and 5.2,
respectively.

Diagram elements are laid out visually based on whether
they are shapes or edges. Shapes are positioned within bound-
ing rectangles, while edges are displayed as a series of
line segments specified by a list of waypoints going from
sourceElements to targetElements. Diagram elements can
be nested recursively (via ownedElement), most commonly
within Diagrams, which are shapes that establish new coor-
dinate systems for their nested elements. The top-left corner

of a diagram is the origin. All locations and sizes are given
in display device units, typically pixels. Overlapping dia-
gram elements are displayed on top of elements in which
they are nested. Diagram elements can specify Styles (for
modeler-defined visual properties such as colors and fonts),
either inherited from an element they are nested in, shared
with other elements (via sharedStyle), or owned directly (via
localStyle). Other aspects of Fig. 2 are described in the DD
specification [3].

The DI specification does not restrict how languages spe-
cialize DI elements. They might minimize the number of
specializations, to reduce redundancy with abstract syntax,
or they might include specializations closely mirroring the
abstract syntax, to clarify how the language DI is to be used
with abstract syntax, or somewhere in between these two
approaches. For example, language specifications might have
only one shape specialization that has all modeler-controlled
options, even though only some of the options apply in par-
ticular uses, depending on which abstract syntax element
is being notated. At the other extreme, language specifica-
tions might have as many shape and edge specializations
as there are in its abstract syntax, with modeler-controlled
options introduced only in specializations that support them.
In between these approaches, language specifications might
have a moderate number of shape and edge specializations,
with some partitioning of modeler-controlled options over
them, but not a separate specialization for each abstract syn-
tax element or each modeler-controlled option (see UML’s
DI specializations in Sect. 4.1).

3.2 Diagram Graphics
Language specifications use DG to describe how instances

of their DI specializations are displayed. This has two
parts:

@ Springer

1084

C. Bock, M. Elaasar

Group > GraphicalElement * sharedStyle Style
transform : Transform [*] {ordered, nonunique} {ordered} * fillColor : Color [0..1]
group X o
member fillOpacity : Real [0..1]
- {ordered} * styledElement localStyle | strokeWidth : Real [0..1]
0.1 strokeOpacity : Real [0..1]
ZF 0..1 {ordered} x| gtrokeColor : Color [0..1]
[|] strokeDashLength : Real [*]
Marker | startMarker x| MarkedElement Circle Rectangle fontSize : Real [0..1]
; ; - Ay ; fontName : String [0..1]
size : Dimension | 0..1 center : Point bounds : Bounds fontColor : Color [0..1]
: Poi ; adius : Real cornerRadius : Real ' -
reference : Point | migmarker * rac mherhacly fontltalic : Boolean [0..1]
0..1 Text fontBold : Boolean [0..1]
data : String fontUnderline : Boolean [0..1]
endMarker * bounds : Bounds fontStrike Through : Boolean [0..1]
0..1 4 alignment : AlignmentKind
Canvas [1
backgroundColor : Color Polyline Polygon

point : Point [2..*] {ordered, nonunique}

point : Point [3..*] {ordered, nonunigue}

Fig. 3 Diagram Graphics metamodel (excerpt)

e The DG metamodel for graphics, such as rectangles and
lines, similar to Scalable Vector Graphics (SVG) [42], as
shown by the bold-outlined rectangle labeled “DG” on
the right in Fig. 1.

e Rules for instantiating DG elements based on instances
of DI specializations, as shown by the shaded rectangle
labeled “DG Mapping Specification” in the middle of Fig.
1 (for the rules), and the arrow labeled “DG Mapping”
to the rectangle “Graphics” on the right in Fig. 1 (for
instantiation of DG).

Figure 3 shows a portion of the DG metamodel. The
most abstract element is GraphicalElement, which covers
elements that can group other graphical elements recursively
(via member) and “primitives” that cannot, such as Rectan-
gles, Circles, and Text. At the top of recursive groupings are
Canvases, the graphical analogs of diagrams. Some primi-
tive elements are defined as sets of points connected by lines,
such as Polygons and Polylines. Primitives may be decorated
with groups of elements at their start, middle and end points
(Markers). Graphical elements can specify Styles (for prede-
fined visual properties such as fillColor and fontName), either
inherited from groups they belong to, shared with other ele-
ments (via sharedStyle), or owned directly (via localStyle).

Language specifications give rules for instantiating DG
elements, taking instances of their DI specializations as input.
For example, a language might have an abstract element
notated as arectangle. Rules find the intended bounds of these
rectangles from instances of DI specializations referring to
instances of that abstract syntax element, then instantiate
Rectangle in the DG metamodel, and set its position and

@ Springer

size according to intended bounds. Languages specify map-
pings from their DI specializations to DG to give a more
precise specification of their notation, as compared to only
describing notation informally.

Rules for instantiating DG elements in this paper are
defined using the Query View Transform Operational lan-
guage (QVTo) [43], though any transformation language
operating on instances of MOF-based metamodels or their
interchange formats could be used (explanation of QVTo is
limited to salient aspects as needed, for brevity). Listing 1
gives a general DI to DG transformation filled out in the rest
of the paper for the cases examined. First it declares the kind
of models input to and output from the transformation, specif-
ically models containing instances of DI or DG elements or
their specializations, including those given in the rest of the
paper. The body of the transformation selects out instances
of Diagram in the input model with the QVTo objectsOfT-
ype operation and then uses the QVTo map operation to apply
toGraphics mappings to them, defined just below the transfor-
mation. Mappings operate on any instance in the input model
of the transformation that are of the type given before the dou-
ble colon in the mapping definition. In Listing 1, the mapping
operates on any kind of diagram defined with DI. Mappings
create a new instance of the type appearing after the sin-
gle colon, a canvas in this case. The body of the mapping
in Listing 1 adds graphical elements to the canvas created
by toGraphicsTop mappings applied to each element in the
diagram. These mappings are defined by cases examined in
Sects. 4.2 and 5.2.

Reusing metamodels and notation with Diagram Definition

1085

modeltype DI uses " http://www.omg.org/spec/DD/20131001/DI.xmi";
modeltype DG uses " http://www.omg.org/spec/DD/20131001/DG.xmi";

transformation DIToDG (in adi
main ()
map toGraphics(); }

mapping Diagram::toGraphics ()

DI,
{ adi.objectsOfType->selectByKind (Diagram) ->

out DG) ;

Canvas {

member += self.ownedElement->map toGraphicsTop(); }

Listing 1 Instantiating DG from instances of DI

4 Multiple notations on a single metamodel

This section examines cases of multiple graphical notations
for the same metamodel (see first numbered bullet in Sect. 1),
drawn from UML. UML includes DI specializations, devel-
oped by the authors and standardized by OMG [4,5], but not
mappings to DG. Section 4.1 outlines UML’s DI specializa-
tions, including their design principles. Section 4.2 shows
how they support cases of alternative graphical notations for
the same metamodel elements in UML, and how these can
be mapped to DG.

4.1 UML Diagram Interchange

In defining UML’s DI specializations (UML DI), the authors
chose an approach producing a moderate number of special-
ized classes, described at the end of Sect. 3.1. In particular,
UML DI specializes DI to define:

o Instantiable elements corresponding to DI’s non-
instantiable elements, such as UML DI's UMLDiagram
specializing DI’s Diagram, as shown in Fig. 4. This
includes specializing associations, such as redefinition of
properties for nesting (owned/owningElement).

e UML’s diagram taxonomy, which specializes UMLDia-
gram into various diagram types, including abstractions
such as UMLBehaviorDiagram generalizing concrete
diagram types, such as UMLActivityDiagram, UML-

| DI::DiagramElement |

owningElement
{redefines owningElement}

UMLDiagramElement

*

StateMachineDiagram, and UMLlInteractionDiagram, as
shown in Fig. 5. Diagrams introduce properties at the
appropriate level, for example, to specify whether dia-
grams have frames on UMLDiagram, and the kind of
interaction diagram on UMLInteractionDiagram. Some
diagrams refer to specific elements of abstract syntax they
notate, such as state machine diagrams referring to state
machines (omitted from Fig. 5 for brevity).

e Abstractions for characteristics used in multiple parts
of the model, such as UMLDiagramWithAssociation to
specify navigation arrow styles in Fig. 5 and UMLCom-
partmentableShape generalizing elements that can have
compartments on the right in Fig. 6 (properties omitted
for brevity). These abstractions are also used in structural
diagrams and elements (omitted for brevity).

e Labels for displaying text, as shown on the left in Fig.
6. Specialized labels indicate the particular aspects of
abstract syntax the text is about when this is ambigu-
ous or cumbersome to determine otherwise. They also
enable receivers of UML DI files to update displayed text
when portions of the underlying abstract syntax instances
change. For example, UMLNameLabel is for labels show-
ing names of abstract syntax elements, enabling tools that
receive UML DI files to update displayed text rendered
when names of elements change. UML DI does not model
substring structure of text, leaving this to other parts of
UML, which typically specify textual notation using BNF
(see Sect. 2).

modelElement

0..1

ownedElement | *

islcon : Boolean = false
{ordered, redefines ﬁk

{redefines modelElement
UML::Element
*

/umlDiagramElement
{subsets diagramElement}

ownedElement}

UMLDiagram

isFrame : Boolean = true
isIso : Boolean = true
isInheritedLighter : Boolean = false

—[>| DI::Diagram |

Fig. 4 UML diagrams and elements (excerpt)

@ Springer

1086

C. Bock, M. Elaasar

UMLDiagram

/\
]
UMLBehaviorDiagram
| UMLDiagramWithAssociations | 4
L

UMLUseCaseDiagram

UMLStateMachineDiagram

isCollapseStatelcon : Boolean = true
isInheritedDashed : Boolean = false

Fig. 5 UML diagram taxonomy (excerpt)

«enumeration» isTransitionOriented : Boolean = false
UMLInteractionDiagramKind
sequence UMLACctivityDiagram UMLInteractionDiagram
gt\)lzwrc‘;:‘?vlcatlon isActivityFrame : Boolean = false| | kind : UMLInteractionDiagramKind = sequence
timi isLifelineDashed : Boolean = false
iming
table

UMLShape

A\
I
UMLLabel
text : String
[]
UMLKeywordLabel UMLNamelLabel
UMLTypedElementLabel UMLRedefinesLabel

I
| UMLCompartmentableShape

UMLStateShape
isTabbed : Boolean = false

UMLAssociationOrConnectorOrLinkShape
kind : UMLAssociationOrConnectorOrLinkShapeKind

Fig. 6 UML shapes (excerpt)

e Elements corresponding to specific abstract syntax in lim-
ited cases, such as UMLStateShape in Fig. 6, to specify
whether UML’s state notation uses its tabbing option and
AssociationOrConnectorOrLinkShape for UML’s triangle
and diagram notation options on associations, connectors,
and links.

e Abstract properties that apply only in some special-
izations, in limited cases, such as the isIcon property
of UMLDiagramElement, indicating whether to display
graphical modifications or adornments for some notations.
For example, UML’s realization dependency arrow can be
shown headed with a hollow triangle or with a regular
arrowhead and a label, depending on whether the value of
islcon is true or false, respectively.

UML DI avoids specializations other than the above. In
particular, it does not model display options typically handled
by tools, such as which features should be shown on which
elements, or colors and shading. For example, tools might
enable modelers to indicate that only properties are shown
on class rectangles, not behavioral features. As features are
added to classes, the tool will display properties, but not oper-
ations. UML DI interchange files will specify the properties
displayed, but not the display constraint that only properties
should be shown. This is because the receiver might not want

@ Springer

to be constrained in this way and because there are so many
of these options supported in tools that it would overwhelm
the standard to cover them all.? For the same reasons, UML
DI also avoids style modeling, such as colors and shading,
but does include a style for font names and sizes, because
these affect layout.

4.2 Multiple UML notations on a single metamodel

UML defines multiple graphical notations for portions of its
metamodel, enabling automated tools to operate on those
portions, even when they are presented with different visual
emphasis and organization. For example, properties can
be notated as text inside class rectangles, as labeled lines
between class rectangles, or as rectangles themselves within
an entire diagram for the class. Text within rectangles is
easier to scan, but makes it more difficult to see intercon-
nections between classes, whereas lines between rectangles
highlight their interconnections, but spread properties over a
wider visual space. Notating properties as rectangles enable
connections between properties to be shown, but are easily
confused with associations between classes. Modelers can

> Tools might infer display constraints from UML DI files, for example,
when only properties are shown on classes.

Reusing metamodels and notation with Diagram Definition

1087

Sequence diagram

Fig. 7 UML sequence and communication diagrams

choose among these property notations for their intended
audience and use the same automated tools on the shared
metamodel, such as model checkers and code generators.

In particular, UML has several notational variations for
specifying messages sent between objects, collectively called
interaction diagrams:

e Sequence diagrams highlight message order more com-
pactly than other interaction diagrams. They show mes-
sages as arrows laid out in the order in which messages
are to be sent, between dashed lines notating objects.

e Communication diagrams are the only kind of interac-
tion diagrams that show connections between objects that
messages flow along. They notate objects as rectangles
linked by lines for structural connections between them.
Messages are shown as small unattached arrows next to
connecting lines, labeled according to the order in which
they are sent.

e Interaction overview diagrams highlight message order
the most, but are the least compact kind of interaction dia-
gram. They have a flowchart style, with nodes containing
interaction diagram fragments showing messages.

e Timing diagrams highlight state changes over time more
than other interaction diagrams. One kind uses graphs
with object states on one axis and time and messages
sent on the other, while the other just lays out states on a
time axis.

For example, Fig. 7 shows an interaction with three life-
lines, which are participants or roles in the interaction. In
sequence diagrams, these are notated as lines with rectangu-
lar headers, as on the left, and in communication diagrams as
just rectangles, on the right. Lifelines are labeled with their
role name to the left of a colon and the kind of things playing
the role to the right. Sequence diagrams specify the order
in which messages occur by the order that message arrows
are laid out, top to bottom. Figure 7 shows a message from
the leftmost lifeline sent before the exchange between the
right two lifelines and a message from the rightmost life-
line to the leftmost sent last. Modelers mainly interested in
message order probably prefer sequence diagrams for their

Role 1: Type 1 Role 2 : Type 2 Role 3 : Type 3
i Message A \i i
E E Message B E
E E Message C E
E Message D E E

1. M ge A
Role 1: Type 1 Role 2 : Type 2
/I\3. Message C
4. Message D’I‘
\LZ. Message B
Role 3: Type 3

Communication diagram

clarity and compactness. Communication diagrams specify
message order by numbered labels on unattached message
arrows. They are the only interaction diagrams that notate
structural connections between lifelines. Message arrows
near connecting lines in communication diagrams show mes-
sages that flow over those structural connections. Modelers
concerned with the relationship between structural connec-
tions and messages use communication diagrams to see this
information graphically.

All UML interaction notations show the same portion of
the UML metamodel for the most part, enabling the same
interaction to be notated in ways most useful for modelers
working with it. Figure 8 shows instances of UML DI for
the first two messages in Fig. 7 on the left and right, linked
to the same instances of UML metamodel elements in the
middle. The figure uses UML’s notation for instance specifi-
cations, which are rectangles with underlined labels, where
labels give the name of the UML DI or UML metamodel
element instantiated to the right of a colon and the instance
name to the left (properties with no values and some instance
names are omitted for brevity). Lines between the rectangles
correspond to relationships between UML DI instances (see
Sect. 4.1) and between those and UML metamodel instances
(via modelElement). Elements for text in Fig. 7 are omitted
from Fig. 8 for brevity.

The UML metamodel instances in Fig. 8 are mostly refer-
enced by two UML DI instances, one each from the sequence
and communications diagrams, reflecting the many-to-one
relationship between concrete and abstract syntax in this
case. Each metamodel instance for a lifeline is referenced
by three UML DI elements, one from the communication
diagram and two from the sequence diagram, a shape for
the header rectangle and an edge for the vertical line (these
only have a source, no target). Metamodel instances for
ends of messages (message occurrence specifications) are
not notated and have no corresponding UML DI instances
in either diagram. The vertical order of message arrows in
sequence diagrams is reflected by general orderings from
earlier message occurrences to later (not shown for brevity).
In Fig. 8, a general ordering would be shown between the

@ Springer

1088 C. Bock, M. Elaasar

modelElement

: UMLShape Rolel1-Typel : Lifeline

modelElement

: UMLShape
source

modelElement

Neourc /[\covered
| : MessageOccurrenceSpecification |
\sendEvent
modelElemen odelElement Message A Edge
Ii\:l‘e;sDa SI\I:LIiEctI;I ee t>|| Message A : Message in CD : UMLEdge
: g
\I/ receiveEvent \I/ connector odelElement
| : MessageOccurrenceSpecification | | : Connector : UMLEgg]g
delEl t covered
: UMLShape modeftiemen target
———— Role2-Type?2 : Lifeline 9
source modelElement 'W:I
: ape
target , modelElement L=
| :UMLEdge source
source /I\ covered
sendEvent
modelElement | modelElement Message B Edge
Message B Edge > Message B : Message in CD : UMLEdge
in SD : UMLEdge
\I/ receiveEvent \I/connector modelElement
| : MessageOccurrenceSpecification | | : Connector : UMLEdgE'
modelElement \I/covered
: -
S UMLEhape Role3-Type3 : Lifelin CelElement target
target ource moder=iemen : UMLShape
modelElement
: UMLEdge

UML DI instances for
communication diagram

UML metamodel instances for both
diagrams

UML DI instances for
sequence diagram

Fig. 8 Instances of UML DI and UML metamodel for portion of Fig. 7

receiveEvent of Message A and the sendEvent of Message
B, indicating that Message B that is sent after Message A is

dividing them into two kinds, those that identify instances of
the UML metamodel (via modelElement, see Sect. 4.1) and

received. In communication diagrams, edges between life-
line shapes are linked to metamodel instances for connectors
(the only diagram that uses them, see bullets at the begin-
ning of this section). Messages link to connectors they flow
across (links between metamodel instances for connectors
and lifelines are omitted for brevity). Metamodel instances
for messages are notated as unattached message arrow edges
(these have no source or target).

those that do not. The if statement applies toGraphics map-
pings to UML metamodel instances when they are present,
otherwise to diagram UML DI instances themselves. When
toGraphics is applied to metamodel instances, the UML DI
instance is given as an argument; otherwise, it is applied
directly to the UML DI instance without arguments. In both
cases, the result of the mapping is a new DG graphical ele-
ment that is added to the canvas created in Listing 1.

mapping UMLDiagramElement::toGraphicsTop ()

GraphicalElement {

var me := self.modelElement;
if (me->isEmpty()) result := self.map toGraphics();
else result := me.map toGraphics(self); }

Listing 2 Instantiating DG from instances of UML DI

Listing 2 defines a mapping used by the general DI to DG

transformation in Listing 1 in Sect. 3.2 (toGraphicsTop). It

operates on elements of UML DI (UMLDiagramElements),

@ Springer

Listing 3 defines toGraphics mappings for use by List-
ing 2, producing instances of DG for rendering sequence
and communication diagrams like those in Fig. 7 from

Reusing metamodels and notation with Diagram Definition

mapping Lifeline::toGraphics

when {de.oclIsKindOf (UMLShape)and

not de.interactionDiagramKind
de.oclAsTypeOf (UMLShape) .setRectangle

mapping Lifeline::toGraphics

when {de.oclIsKindOf (UMLEdge) } {

de.oclAsTypeOf (UMLEdge) .setPolyline

sharedStyle umlDashedLine; }

mapping Message: :ToGraphics

de.oclAsTypeOf (UMLEdge) .setPolyline

endMarker umlArrowHead; }

mapping Connector::ToGraphics

de.oclAsTypeOf (UMLEdge) .setPolyline

1089
(de:UMLDiagramElement) Rectangle
= timing)} {
(result); }
(de:UMLDiagramElement) Polyline
(result) ;
(de:UMLDiagramElement) Polyline {
(result) ;
(de:UMLDiagramElement) Polyline {

(result) ; }

Listing 3 Instantiating DG for UML sequence and communication diagrams

instances of UML DI like those in Fig. 8, as well as
portions of overview diagrams. The mappings operate on
UML metamodel instances such as lifelines, with UML DI
instances as arguments, because all the diagram elements in
sequence and communication diagrams identify UML meta-
model instances (via modelElement). QVTo when clauses
specify conditions to meet for a mapping to apply. For exam-
ple, the first mapping in Listing 3 creates rectangles notating
lifelines, as in Fig. 7. It only applies for diagram elements that
are UMLShapes in diagrams other than timing. When these
conditions are met, the mapping creates a DG rectangle and
uses the setRectangle query to position it on the canvas in
the location given by the diagram element. The definition of
setRectangle is given in Listing 4. The second mapping in
Listing 3 has a similar effect for the line portions of lifeline
notation in sequence diagrams, using the setPolyline query
and umlDashedLine style defined in Listing 4. The rest of the
mappings apply to other kinds of UML metamodel instances
and work in a similar way. Mappings for text are omitted for
brevity.

query UMLDiagramElement::interactionDiagramKind

UMLInteractionDiagramKind

Figure 9 shows the first two messages in Fig. 7 in an
overview diagram on the left and all four messages in a timing
diagram on the right. Interaction overview diagrams show
each message in its own embedded diagram, with arrows
between the diagrams for the order in which they occur, as
in flowcharts. Modelers interested in decision logic or par-
allelism between messages might prefer overview diagrams
even though they are less compact than other interaction dia-
grams. Timing diagrams graph states of objects over time.
Time appears on a horizontal axis and states appear either
vertically, as in the top and middle right of Fig. 9, or laid
out horizontally on the time axis, as in the bottom right.
Messages causing state changes are notated by labeling the
points at which they occur. Other interaction diagrams sup-
port state symbols, but modelers concerned mainly with state
changes would prefer timing diagrams over the others. They
can show more information than the other interaction dia-
grams, but the relationships between the elements are more
difficult to see. The sequence diagram in Fig. 7 and the
timing diagram in Fig. 9 assume messages are transferred

0

self.owningElement->selectByKind (UMLInteractionDiagram) .at (1) .kind;

query Shape::setRectangle (r

query Edge::setPolyline (pl

property umlDashedLine
strokeDashLength

Sequence {2, 2};

property umlArrowHead
size object Dimension {width:=10;
reference
member += object PolyLine { point +=
point +=
point +=

Listing 4 Support for mappings in Listing 3

Rectangle)

Polyline)

object Point {width:=10;

= r.bounds :=

self.bounds;

pl.point

self.waypoint;

object DG::Style {

}i

object Marker ({

height:=10};
height:=5};

object Point{x:=0; y:=0};
reference;
object Point{x:=0; vy} }; };

@ Springer

1090

C. Bock, M. Elaasar

sd I
Role 1 : Type 1 Role 2 : Type 2
E Message A :
1 1
sd I
Role 2 : Type 2 Role 3 : Type 3
| Message B |
1 1

v

Interaction overview diagram

Fig. 9 UML interaction overview and timing diagrams

instantly, as indicated by the horizontal message arrows in
Fig. 7 and the synchronization of sending and receiving in
the timing diagram in Fig. 9. Time taken for message trans-
fer can be shown with angled message arrows in sequence
diagrams and unsynchronized sends and receives in timing
diagrams.

Figure 10 shows instances of UML DI on the left and
right for overview and timing diagrams in Fig. 9, respec-
tively, linked to the same UML metamodel instances as the
middle as Fig. 8 (except connectors are removed, because
they are not in Fig. 9, and states are added for the timing
diagram). Overview diagram instances on the left are in two
columns, the leftmost being the embedded diagram shapes
and the edge between them, and just to the right other shapes
and edges contained by the embedded diagram shapes (the
edge and shape on the top left are the initial node and edge
leading to the top embedded diagram shape). Embedded dia-
gram shapes do not refer to metamodel instances because the
shapes do not represent reusable interactions and they are
purely graphical elements. The same is true of the shape and
edge at the top left, which indicate the beginning of the inter-
action. The edge between embedded diagram shapes refers
to a general ordering (not shown for brevity) between the top
two message occurrence specifications in the middle, which
are the tail and head ends of Message A and Message B,
respectively. Shapes and edges owned by the embedded dia-
gram shapes link to metamodel instances in the same way as

@ Springer

Process Msg D r
Wait for Msg D
Msg D
Prepare Msg A Msg A
Process Msg C f
Wait for Msg C
Msg A Msg C

Prepare Msg B
Wait for Msg A

Msg B

Wait for
Msg B

Role 3 : Type 3 | Role 2 : Type 2 | Role 1: Type 1

Timing diagram

those in sequence diagrams, see the left of Fig. 8. Elements
for text in the overview diagram are omitted from Fig. 10 for
brevity.

Most of the timing diagram instances on the right of
Fig. 10 are linked to the same metamodel instances as the
overview diagram instances on the left. A special kind of
label is used for lifelines (UMLTypeElementLabels), which
has a colon separating the name or role of an element from
its type (these are omitted on the left for brevity). Most of
the other labels are paired with an edge (line segment with
no arrowheads) referring to the same metamodel instance as
the label. For example, the Prepare Msg A state instance has
a label and edge referring to it. The label shows the name of
the state (because it is a UMLNamedElementLabel), and the
edge shows the time interval during which the object is in
that state (the horizontal line at the same level as the label).
Links between metamodel instances for states and lifelines
are omitted for brevity. Non-name labels refer to message
occurrences that also have an edge referring to them. For
example, Role 1 Msg A Lbl is for the “Msg A” string in
the upper section of the timing diagram in Fig. 9 that refers
to a message occurrence that also has an edge referring to
it (the string is recorded in the label, but omitted from Fig.
10 for brevity). This edge is for the vertical line segment
above the “Msg A” string, notating the receipt of Message
A. The edge is the target of the horizontal edge leading to
it (for the Prepare Msg A state), because the line segments

Reusing metamodels and notation with Diagram Definition 1091
Message A target source
Embedded Diagram |<——| :UMLEdge |—> _:UMLShape
: UMLShape
source wningElement
’0 modelElement odelElement | : uMLTypedElementLabel |
: UMLShape Role1-Typel : Lifeline delEl L -
modelElemen
source Prepare _: UMLNameLabel
modelElement Msg A: delEl
Msg A-B . UMLE State modelElement . UMLE
General —Isource /\covered elEl | . ; !
Ordering modelElement Role 1 Msg A Lbl : UML |
Edge : : MessageOccurrenceSpecification delEl " "
modelElemen . arge
UMLEdge | :UMLE
/\sendEvent - odelElement
Message A Edge modelElement Wait for M _: UMLNameLabel
— inOD : UMLEd H Message A : Message Msg A: | modelElement MLE
\|/receive Event SLL?l o =
target target : MessageOccurrenceSpecification model lement ! Role 2 Msg A Lbl : UMLLabel |
Element target
Massaae 8 - UMLEdge e T —
Embedded * 2 modelElement \J/ covered : UMLEdge
Diagram : source Role2-Type? ; Lifelin modelFlement MLNameLabel
UMLShape modelElement m
- : UMLShape MsgB: modelElement w
'owmngElement State : UMLEdge
~UMLShape | modelFlement modelElement | :uUMLTypedElementLabel |
source
modelElemén
/]\ covered _modelElement [K |
: UMLE : MessageOccurrenceSpecification e . { Role2 Msg B Lbl: UMILabel
odelElemen
/]kource = : UMLEdge | t@r9€t
/]\sendEvent - odelElement
Message B Edge | modelElement Wait for
in OD : UMLEdge ~|__ Message B : Message MsgB: | modelElement
s O L
receiveEvent

: MessageOccurrenceSpecification

modelElement

| Role 3 Msg B Lbl : UMLLabel |

target
4|_ : UMLE

modelElement

\|/covered

Role3-T
'source

: UMLShape

modelElement

: Lifelin

odelElement
£ [sumLt

ElementL. I|

UML DI instances for
overview diagram

Fig. 10 Instances of UML DI and UML metamodel for Fig. 9

are joined. The same patterns of UML DI and metamodel
instance are used for the remaining two timing roles in the
middle and bottom right of Fig. 9, except that the third role
on the bottom does not notate message occurrence specifica-
tions (the message occurrence at the bottom right is referred
to only by a label, no edge). The notation of the third role
shows states laid out on the timeline, with their intervals indi-
cated by hexagons. The horizontal order of state and message
occurrence elements in timing diagrams is reflected by gen-
eral orderings from earlier message occurrences to later (not
shown in Fig. 10 for brevity). Edges for lines between roles
and the time axis in Fig. 9 are also omitted from Fig. 10 for
brevity, as is the edge for the arrow on the lower right of
Fig. 9.

Listing 5 defines toGraphics mappings for use by List-
ing 2, producing instances of DG for rendering overview
diagrams, like the one on the left in Fig. 9, from instances
of UML DI like those on the left in Fig. 10. The map-
pings cover the portions of overview diagrams not addressed

UML metamodel instances for
both diagrams

UML DI instances for
timing diagram

by Listing 3, primarily diagram elements that do not iden-
tify UML metamodel instances. For example, the first two
mappings in Listing 5 are for the filled circle and arrow
at the top left of Fig. 9, respectively, which indicate the
start of the interaction. The first uses setCircle to posi-
tion the circle on the canvas and blackFillStyle to fill it,
see Listing 6. The third and fourth mappings are for the
embedded diagram frames and their heading in the mid-
dle left of Fig. 9, which in this case are purely visual,
without an interaction defined in metamodel instances. The
fourth mapping creates a group for the heading, containing
a label and the line around it. It uses setText to assign and
position of the string displayed, see Listing 6. The defini-
tion of setHeadingPolyLine is omitted for brevity. The last
mapping, the only one based on metamodel instances, is
for the arrow between the two embedded diagrams, which
notates the temporal ordering between the messages in
those diagrams (this is the general ordering omitted from
Fig. 10).

@ Springer

1092 C. Bock, M. Elaasar

mapping UMLShape::toGraphics () : Circle
when {self.interactionDiagramKind = overview and
self.targetEdge->isEmpty ()} {
self.setCircle(result);

sharedStyle := blackFillStyle; }
mapping UMLEdge::toGraphics () : Polyline
when {self.interactionDiagramKind = overview} {

self.setPolyline (result); }; }

mapping UMLShape::toGraphics () : Rectangle
when {self.interactionDiagramKind = overview and
self.targetEdge->notEmpty ()} {
s.setRectangle (result); }

mapping UMLLabel::toGraphics () : Group
when {self.interactionDiagramKind = overview} {
var t := object Text;

self.setText (t);

member += t;

var pl := object Polyline;
self.setHeadingPolyLine (pl) ;
member += pl; }

mapping GeneralOrdering::toGraphics (de : BPMNDiagramElement)
Polyline when {de.interactionDiagramKind = overview} {

de.setPolyline (result);

result.endMarker := umlArrowHead; }

Listing 5 Instantiating DG for UML interaction overview diagrams

query Bounds::center () : Point =
object Point{self.x + self.width/2; self.y + self.height/2};

query Shape::setCircle (c : Circle) {

var b := self.bounds;
c.center := b.center();
c.radius := if b.width<b.height b.width/2

else b.height/2 ; }

query UMLLabel::setText (t : Text) {

t.bounds := self.bounds;
t.data := self.text;
t.alignment := center;}

property blackFillStyle = object DG::Style {
fillColor := object Color {red:=0;green:=0;blue:=0}; }

Listing 6 Support for mappings in Listing 5

Listing 7 defines toGraphics mappings producing inst-
ances of DG for rendering timing diagrams, like the one on the right in Fig. 9. Timing diagrams are very different from
the right in Fig. 9, from instances of UML DI like those on other interaction diagrams and do not share DG mappings
with them. For example, timing lifelines are just text, ori-

@ Springer

Reusing metamodels and notation with Diagram Definition

1093

ented vertically on the left side of the diagram, with no shapes
or edges as in the other interaction diagrams. This aspect is
addressed by the first mapping. It uses rotateVertical to dis-
play vertical text, which adds a transform to the graphic, see
Listing 8. Regions of the diagram labeled by vertical life-
line text are separated by line segments, with a timing axis
below the bottom lifeline, none of which refer to metamodel
instances. These are covered by the second mapping, which
creates lines for these edges, adding an arrowhead for the
timing axis when detected by isTimingAxis, see Listing 8.

States appear in two forms, first as horizontal text on the left
side next to lifeline text. This form is at the same height as
its second form, horizontal lines indicating the time during
which a lifeline’s object is in that state (see the third and
fourth mappings). Message occurrence specifications also
appear in two forms: first as the name of a message at the
point it is sent or received and second as a vertical line
at the same point. These are handled by the last two map-

pings.

mapping Lifeline::toGraphics

(de:UMLDiagramElement) : Text

when {de.interactionDiagramKind = timing
and de.oclIsKindOf (UMLLabel)} {
de.oclAsTypeOf (UMLLabel) .setText (result) ;

result.rotateVertical (); }

mapping UMLEdge::toGraphics

Polyline

when {self.interactionDiagramKind = timing} {

self.setPolyline (result);

if (isTimingAxis(self)) {e.endMarker := umlArrowHead; }; }

mapping State::toGraphics (de:UMLDiagramElement) : Text
when {de.interactionDiagramKind = timing

and de.oclIsKindOf

(UMLLabel) } {

de.oclAsTypeOf (UMLLabel) .setText (result); }

mapping State::toGraphics (de:UMLDiagramElement)

Polyline

when {de.interactionDiagramKind = timing

and de.oclIsKindOf (UMLEdge)} {
de.oclAsTypeOf (UMLEdge) .setPolyline (result) ; }

mapping MessageOccurrenceSpecification::toGraphics
(de:UMLDiagramElement) Text {
when {de.oclIsKindOf (UMLLabel)} {
de.oclAsTypeOf (UMLLabel) .setText (result); }
mapping MessageOccurrenceSpecification::toGraphics
(de:UMLDiagramElement) Line {
when {de.oclIsKindOf (UMLEdge)} {
de.oclAsTypeOf (UMLEdge) .setPolyline (result); }

Listing 7 Instantiating DG for UML timing diagrams

@ Springer

1094

C. Bock, M. Elaasar

query GraphicalElement::rotateVertical
self.bounds.height;
self.bounds.width;

var h
self.bounds.height:
self.bounds.width:

self.bounds.y

h;

0O A

self.bounds.y + h;

self.transform += object Rotate{

angle := -90; center :=

query UMLEdge::1isTimingAxis
var selfy

0
self.waypoint.at (1) .y;

object Point{x:=self.bounds.x;
y:=self.bounds.y}};}

Boolean {

return self.isHorizontal and
not self.owningElement.ownedElement->
selectbyKind (UMLEdge) —>

exists (e

query UMLEdge: :isHorizontal ()

self.waypoint->first().y

isHorizontal (e) and

e.waypoint.at(l) .y >= selfy); }
Boolean =

self.waypoint->last() .y;

Listing 8 Support for mappings in Listing 7

5 Single notation on multiple metamodels

This section examines a case of the same graphical nota-
tion for multiple metamodels (see second numbered bullet
in Sect. 1), drawn from BPMN and UML. BPMN includes
DI specializations, developed by a team including one of
the authors (Elaasar), but not mappings to DG. Section 5.1
outlines BPMN’s DI specializations, including their design
principles. Section 5.2 shows how the specializations support
BPMN notation for the BPMN and UML metamodels, and
how they can be mapped to DG.

5.1 BPMN Diagram Interchange

BPMN includes an early version of DI, slightly different from
the one OMG standardized. This section presents a BPMN
DI specialized from the standard DI, with some restrictions
loosened to support the case examined in Sect. 5.2.

BPMN has a small number of modeler-controlled notation
options, especially compared to UML. In defining BPMN’s

DI specializations, the author and his team chose to have all
modeler-controlled options defined on very few DI special-
izations, an approach described at the end of Sect. 3.1, and
in particular not to include a diagram taxonomy specializ-
ing DI’s Diagram for the various types of BPMN diagram.
BPMN DI specializes DI to define:

e Instantiable elements corresponding to DI’s non-
instantiable elements, such as BPMN DI’s BPMNDia-
gram specializing DI’s Diagram, as shown in Fig. 11,
and BPMNShape and BPMNEdge, as shown in Fig. 12.

e Labels and label styles for text, one specialization for
each, BPMNLabel and BPMNLabelStyle, respectively,
as shown in Fig. 13.

All modeler-controlled notation options for shapes and
edges are defined on BPMNShape and BPMNEdge, with
no further specializations, applying only when particular
abstract syntax elements are being notated. For example, the
property isHorizontal on BPMNShape only applies when

| DI::DiagramElement

owningElement

modelElement

{redefines owningEIementi - '
BPMNDiagramElement |*__{redefines modelElement} UML:-Element
0..1 /bpmnDiagramElement *
ownedElement /\ * {subsets diagramElement}
{ordered, redefines
ownedElement} "
BPMNDiagram >\ DI::Diagram

Fig. 11 BPMN diagrams and elements

@ Springer

Reusing metamodels and notation with Diagram Definition

1095

| BPMNDiagramElement |

DI::Shape
/\

/\

BPMNShape

BPMNEdge

isHorizontal : Boolean [0..1]

messageVisibleKind : MessageVisibleKind [0..1

isExpanded : Boolean [0..1]

isMarkerVisible : Boolean [0..1]
isMessageVisible : Boolean [0..1]
participantBandKind : ParticipantBandKind [0..1]

{redefines sourceEdge}

sourceEdge | * * |targetEdge
{redefines targetEdge}

sourceElement targetElement

{redefines source} \/ 1 1\ {redefines target}
DiagramElement
Fig. 12 BPMN shapes and edges
BPMNDlaglramEIement | Style | | BPMNDiagram |
diagramElement owningDiagram
{subsets owningElement} {subsets styledElement}
. label labelStyle
{subsets ownedElement} labelStyle * \[/ {subsets localStyle}
BPMNLabel | * {redefines sharedStyle}| BPMNLabelStyle

label
{redefines styledElement}

Fig. 13 BPMN labels and styles

notating process participants as pool or lane rectangles, to
indicate whether their long axis should be horizontal or
vertical. The messageVisibleKind property on BPMNEdge
only applies when notating messages, to indicate whether a
message icon appears overlaid on arrows. The others have
similarly restricted application, as described in the BPMN
specification.

The BPMN DI presented here enables notation for abstract
syntax specified in UML, including its MOF subset (via
modelElement), and supports diagram elements that notate
multiple instances of metamodel elements (due to the multi-
plicity of modelElement). These enhancements are needed to
support the case examined in Sect. 5.2. The standard BPMN
DI is restricted to notating no more than one element of the
BPMN metamodel.

5.2 BPMN notation on multiple metamodels

Supporting BPMN notation on both the BPMN and UML
metamodels enables those interacting with systems, such
as system operators, to specify or at least understand these
procedures in a language suitable for them (BPMN), while
system designers use more technical languages (UML) [7].
Significant inefficiency arises when these languages are not
integrated. One approach to addressing this is to support
BPMN notation on the UML metamodel. BPMN is the most
widely used modeling standard for enterprise-level processes
and provides a readily understandable notation for subject
matter experts who are not computer specialists. UML is the

0..1 Lfont : Font

BPMN

A4

Activity 1

Activity 2 —DO

UML

Action 1

Or—
®

Action 2 %@

Fig. 14 BPMN process and UML activity

most widely used graphical modeling standard for informa-
tion systems.

BPMN and UML overlap in modeling step-by-step pro-
cedures, where information and objects are passed between
steps. In many cases, the differences are only in icons and line
styles, with one-to-one correspondence between the under-
lying concepts, as in Fig. 14. Procedures in BPMN and
UML are called processes and activities, respectively, while
steps taken in them are called activities and actions, notated
with round-cornered rectangles. Similarly, the order in which
steps occur in BPMN and UML is specified by links called
sequence flows and control flows, respectively. Beginnings
of procedures are indicated by start events and initial nodes,
while the ends are end events and final nodes.

Figure 15 shows instances of BPMN DI specializations
and of BPMN and UML metamodel elements for the case of
BPMN notation in Fig. 14. Figure 15 uses UML’s notation
for instance specifications, which are rectangles with under-
lined labels, where labels give the name of the BPMN DI or
BPMN or UML metamodel element instantiated to the right

@ Springer

1096

C. Bock, M. Elaasar

mOdeIEIement |—| modelE'emen
: StartEvent : BPMNShape /|‘| : InitialNode
sourceRef sourceElement source
modelElement delEl t
- | T—— modelElement —
| _:SequenceFlow | : BPMNEdge > ControlFlow |
targetRef argetElement
— — | modelElement I—&l mode|E|emenR| - target-
| Activity 1 : Activity [: BPMNShape 2 Action 1 : Action |
sourceRef sourceElement source
delElement delElemen
- I mo T mode Q -
| : SequenceFlow | : BPMNEdge > _: ControlFlow |
g target
| Activity 2 t::?tsef l rodelFlement BPMNSt::r e modeIEIement\l Act 2 lr\gt' |
ctivity 2 : ivity | _: BPMNShape > Action 2 : Action
sourceRef sourceElement source
delElement delElement
, 1 [BPMNEdge | mo LU
| : SequenceFlow | : BPMNEdge > _: ControlFlow |
targetRef targetElement target
—9—| modelElement li—q—| modelElement
: EndEvent : BPMNShape >|| : FlowFinalNode |

BPMN metamodel instances

BPMN DI instances

UML metamodel instances

Fig. 15 Instances of BPMN DI and BPMN/UML metamodels for Fig. 14

of a colon and the instance name to the left (properties with
no values and some instance names are omitted for brevity).
Lines between the rectangles correspond to relationships
between BPMN DI instances in the middle of Fig. 15 (see
Sect. 5.1), between those and BPMN and UML metamodel
instances on the sides of the figure (via modelElement), and
between the BPMN and UML metamodel instances sepa-
rately on each side (these are bidirectional associations, but
are labeled only on one end for brevity). Text in Fig. 14
is omitted from Fig. 15 for brevity. The BPMN DI instances
refer to exactly one metamodel instance each from the BPMN
and UML metamodels, and vice versa, reflecting the one-to-
one correspondence between underlying concepts in these
cases.

Listing 9 defines a mapping used by the general DI to
DG transformation in Listing 1 in Sect. 3.2 (toGraphicsTop).

It operates on elements of BPMN DI (BPMNDiagramEle-
ments), dividing them into two kinds, depending on whether
they identify instances of the BPMN or UML metamodels
(via modelElement, see Sect. 4.1). The if statement applies
toGraphics mappings to BPMN metamodel instances when
they are present; otherwise, it assumes the instances are from
the UML metamodel and applies toGraphicsBPMNOnUML
to them. In both cases, the result of the mapping is a new
DG graphical element that is added to the canvas created in
Listing 1. The toGraphicsBPMNOnUML mapping in List-
ing 9 handles graphical elements that identify exactly one
UML metamodel instance, where that element is identified
by exactly one graphical element. In this case, the toGraph-
ics mapping is called on the metamodel instances. See later
listings for definitions of toGraphics and other definitions of
toGraphicsBPMNOnUML.

mapping BPMNDiagramElement::toGraphicsTop ()
self.modelElement->selectByKind (BaseElement) ;
self.map toGraphicsBPMNOnUML () ;

else mebpmn->map toGraphics (self);

var mebpmn :=
if (mebpmn->isEmpty())

GraphicalElement {

mapping BPMNDiagramElement: :toGraphicsBPMNOnUML () GraphicalElement
when {self.modelElement->size () 1 and
self.modelElement->at (1) .diagramElement->size () = 1} {

self.modelElement->map toGraphics(self); }

Listing 9 Instantiating DG from instances of BPMN DI

@ Springer

Reusing metamodels and notation with Diagram Definition

1097

Listing 10 defines toGraphics mappings for use by List-
ing 9, producing instances of DG for rendering simple BPMN
process diagrams, like the one at top of Fig. 14, from
instances of BPMN DI like those in the middle of Fig. 15.
These mappings operate on instances of the BPMN meta-
model, as supplied by the first mapping in Listing 9. The

first one rounds the corners of activity rectangles, while the
last positions and assigns the head graphic for sequence flow
arrows, see Listing 11. The second and third mapping are
for event circles, with the general third mapping taking the
general case, and the second adding a bold outline for end
events.

mapping Activity::toGraphics
cornerRadius :=

mapping Event::toGraphics
disjuncts EndEvent::toGraphics,
de.oclAsTypeOf (BPMNShape) .setCircle

mapping EndEvent::toGraphics
inherits Event::toGraphics {
sharedStyle := bpmnBoldOutline; }

mapping SequenceFlow::toGraphics

{

(de:BPMNDiagramElement)
de.oclAsTypeOf (BPMNShape) .setRectangle
bpmnActivityCornerRadius; }

(de:BPMNDiagramElement)

(de:BPMNDiagramElement)

(de:BPMNDiagramElement)

Rectangle {
(result) ;

Circle

BoundaryEvent::toGraphics {

(result); }

Circle

Polyline

de.oclAsTypeOf (BPMNEdge) .setSequenceFlowPolyline (result) ; }

Listing 10 Instantiating DG for basic BPMN process elements via the BPMN metamodel

property bpmnActivityCornerRadius
property bpmnBoldOutline =

property bpmnArrowHead =

object DG::Style {strokeWidth

PrimitiveTypes::Real = 10;

5};

object Marker {

size := object Dimension {width:=10; height:=10};
reference := object Point {x:=10; y:=5};
member += object Polygon {
point += object Point{x:=0; y:=0};
point += reference;
point += object Point{x:=0; y:=10};

sharedStyle :=

query BPMNEdge: :setSequenceFlowPolyline

self.setPolyline
pl.endMarker :=

(pl)
bpmnArrowHead;

Listing 11 Support for mappings in Listing 10

blackFillStyle; };

b

(pl Polyline) {

@ Springer

1098

C. Bock, M. Elaasar

Listing 12 has the same effect as Listing 10, but goes
through UML metamodel instances, as supplied by the sec-
ond mapping in Listing 9, instead of BPMN. The bodies are
largely the same as the corresponding mappings in Listing
10, except the UML metamodel does not have an abstraction
for control nodes notated as circles, requiring separate map-
pings for initial and final nodes that both define BPMN event
notation.

instances of UML must introduce a merge node, as shown
in the lower left of Table 1. This causes the action to exe-
cute multiple times, once for each control flow coming
into the merge node, giving the same result as BPMN.

e A case of many-to-one is parallel gateways before an
activity, as in the BPMN example at the upper right of
Table 1. This causes the activity to execute once after
both sequence flows arrive at the gateway. A one-to-one

mapping Action::toGraphics

(de:BPMNDiagramElement)

Rectangle {

de.oclAsTypeOf (BPMNShape) .setRectangle (result) ;
cornerRadius := bpmnActionCornerRadius; }

mapping InitialNode::toGraphics

de.oclAsTypeOf (BPMNShape) .setCircle

sharedStyle := bpmnBoldOutline; }

mapping FinalNode::toGraphics

de.oclAsTypeOf (BPMNShape) .setCircle

sharedStyle := bpmnBoldOutline; }

mapping ControlFlow::toGraphics

(de:BPMNDiagramElement) Circle {
(result) ;
(de:BPMNDiagramElement) Circle {
(result) ;
(de:BPMNDiagramElement) Polyline {

de.oclAsTypeOf (BPMNEdge) .setSequenceFlowPolyline (result) ; }

Listing 12 Instantiating DG for basic BPMN process elements via the UML metamodel

BPMN and UML have different conventions in some
cases that require one-to-many or many-to-one relationships
between BPMN DI and UML metamodel elements, as com-
pared to the one-to-one relationship in Fig. 14 [7]:

e A case of one-to-many is multiple sequence flows com-
ing into the same activity BPMN, as in the example at the
upper left of Table 1. This causes the activity to execute
multiple times, once for each sequence flow. A one-to-
one relationship to UML would give multiple control
flows into the same UML action, which causes the action
to execute once, after all actions on the other ends of the
control flows are finished. To use the BPMN notation
on the upper left of Table 1 on the UML metamodel, the

relationship to UML would use a join node before an
action, but a simpler UML model has control flows going
directly into an action, as shown in the lower right of
Table 1. This causes the action to execute once after both
control flows have arrived, giving the same execution as
BPMN.

Figures 16 and 17 show instances of BPMN DI special-
izations and of BPMN and UML metamodel elements for the
cases on the top left and right of Table 1, respectively. In Fig.
16, the one-to-many case, the BPMN DI edges refer to exactly
one metamodel instance each from the UML metamodel,
while the shape refers to three. These are an action and addi-
tional merge node and control flow instances needed in UML,

Table 1 Converging flows in
BPMN and UML

Multiple executions

Single execution

BPMN

UML

Activity 1
‘

Activity 1

@ Springer

Reusing metamodels and notation with Diagram Definition

1099

1_nodelElement e modelElemen
: SequenceFlow [| = BPMNEdge : ControlFlow [————
target
targetElement modelElement J
H :
; BPMNShape - MergeNode
targetRef source [target
. — | modelElement modelElement - -
Activity 1 : Activity | H Action 1 : Action |
targetRef target
modelElement
targetElement 1 _: ControlFlow |
odelElement —— modelElemen
: SequenceFlow I/m '_: BPMNEdge odelEleme t>|| : ControlFlow |

BPMN metamodel instances

BPMN DI instances

UMLmetamodel instances

Fig. 16 Instances of BPMN DI and BPMN/UML metamodels for top left of Table 1

modelElement

| modelElement E———
| : SequenceFlow | |_:BPMNEdge > : ControlFlow
| targetRef modelElement targetElement modelElement target
: ParallelGateway H GatewayShape : BPMNShape Action 1 : Action
targetRef |[sourceRef targetElement sourceElement
— — E——— modelElement
| Activity 1 : Activity I modelElement = BPMNShape
targetRef targetElement
I modelElement | modelElement
| : SequenceFlow [: BPMNEdge [

1_modelElement |
: SequenceFlow [1

target
delEl t
: BPMNEdge ! modeeme™! controlFlow

BPMN metamodel instances

BPMN DI instances

UML metamodel instances

Fig. 17 Instances of BPMN DI and BPMN/UML metamodels for top right of Table 1

because the semantics of UML actions require additional ele-
ments to have the same execution as BPMN activities in this
case. In Fig. 17, the many-to-one case, BPMN DI instances
refer to separate instances from UML metamodel, except for
the gateway and activity shapes and the sequence flow edge
between them, which refer to the same UML action instance,

The top left of Table 1 is handled by the mappings in Listing
10, as are the similar graphics at the top right. The mapping
in Listing 13 defines the rotated gateway rectangle on the
top right of Table 1 (the definition of setGatewayGraphic is
omitted for brevity).

mapping Gateway::toGraphics
de.setGatewayGraphic

(de:BPMNDiagramElement)

(result) ; }

Rectangle {

Listing 13 Instantiating DG for BPMN gateways via the BPMN metamodel

because the action gives the same execution as those BPMN
elements.

Listing 13 defines a toGraphics mapping for use by List-
ing 9, producing instances of DG for rendering converging
BPMN sequence flows, like those on the top of Table 1, from
instances of BPMN DI like those in the middle of Figs. 16
and 17. These mappings operate on instances of the BPMN
metamodel, as supplied by the first mapping in Listing 9.

Listing 14 has the same effect as Listing 13 and Listing
10, but goes through UML metamodel instances, as supplied
by the first mapping in Listing 9, instead of BPMN. The first
two mappings in Listing 14 are for the cases of one-to-many
and many-to-one relationships between BPMN diagram ele-
ments and UML metamodel instances, respectively. The first
mapping focuses on the action and uses the mapping defined
for those in Listing 12 to create the rounded rectangle at the

@ Springer

1100

C. Bock, M. Elaasar

top left of Table 1. The second and third mappings detect the
case of implicit join in UML using isImplicitJoin defined in
Listing 15 and create the rotated gateway rectangle and arrow
for the top right of Table 1.

events, as shown in Fig. 18. Circles in BPMN on the bound-
aries of activity rectangles notate events occurring while a
BPMN activity is going on, in this case a timer event on
the top and general change event on the bottom. Similarly,

mapping BPMNDiagramElement: :toGraphicsBPMNOnUML () Rectangle
when {self.modelElement->size() > 1 and
self.modelElement->selectByKind (Action)->size() = 1()} {

self.modelElement->selectByKind (Action)->at (1) .map toGraphics (self);

}

mapping BPMNDiagramElement: :toGraphicsBPMNONnUML ()
when {self.oclIsKindOf (BPMNShape) and

isImplicitJoin (self)} {
return.setGatewayGraphic (self,

mapping BPMNDiagramElement: :toGraphicsBPMNOnUML ()
when {self.oclIsKindOf (BPMNEdge) and

isImplicitJoin (self)} {

Rectangle

Parallel); }

Line

self.oclAsTypeOf (BPMNEdge) .setSequenceFlowPolyline (result) ; }

Listing 14 Instantiating DG for BPMN gateways via the UML metamodel

query isImplicitJoin (de BPMNDiagramElement) Boolean {
var result Boolean = false;
var me := de.modelElement;
if (me->size() = 1 and me.diagramElement->size () = 3)

{ var melde = me.diagramElement;
if (melde->selectByKind (BPMNEdge)->size()=1 and
melde->selectByKind (BPMNShape) ->size ()=2)
{ var meldee = melde->selectByKind (BPMNEdge) .at (1) ;
var meldesl = melde->selectByKind (BPMNShape) .at(1l);
var meldes?2 = melde->selectByKind (BPMNShape) .at (2);
if (melde->includes (meldee.source) and
melde->includes (meldee.target))

result = true; }; };
return result;}

Listing 15 Support for mappings in Listing 14

BPMN has some simplifying constructs for procedures
that are more cumbersome to express in UML. An exam-
ple of this is termination of activities due to occurrences of

BPMN UML

Fig. 18 BPMN boundary events and UML interruptible region

@ Springer

in UML the hour glass shape and lower rounded rectangle
notate the same kind of events (UML has predefined actions
for detecting events). If the timer or change event occurs dur-
ing the activity or action, the activity or action is terminated
and the procedure continues along the sequence or control
flow going out of the event that occurred. This behavior is
built into the BPMN concept of boundary events, providing
a more compact notation than UML, which introduces inter-
ruptible regions containing the actions and events involved,
notated with a dashed border. In the UML portion of Fig. 18,
when the central action is initiated by its incoming control
flow, the event elements around it in the region are activated as
well. Whichever of these finishes first, either because one of
the events occurs or the central action finishes, terminates the
others occurring in the region, and the procedure continues
along the control flow going out of the event that occured or

Reusing metamodels and notation with Diagram Definition

1101

modelElement

 ———— modelEleme
: SequenceFlow | : BPMNEdge /|‘| : ControlFlow
\I/ targetElement
BPMNShg modelFlement > _: InterruptibleActivityRegi
_ BPMNShape _t InterruptibleActivityRegion_
| targetRef I modelElement 1
Activity 1 : Activity [tar
get
sourceRef modeIEIemenI\,—.ALTl
sourceElement source node
interruptingEdge
—————— modelElement modelElement | |
_ SequenceFlow _— BPMNEdge > _ ControlFlow
boundaryEventRefs node
I modelElement —— modelElement | -
| : BoundaryEvent | : BPMNShape > : AcceptEventAction |
sourceRef sourceElement | source ’
interruptingEdge
modelElement I IE|
: SequenceFlow : BPMNEdge mode emenyl : ControlFlow |
boundaryEventRefs node
modelElement M oneer] IEI
| : BoundaryEvent I : BPMNShape mode eme”&', A Even ion
sourceRef sourceElement | source) _
modelElement modelElement | interruptingEdge
: SequenceFlow : BPMNEdge > : ControlFlow

BPMN metamodel instances

Fig. 19 Instances of BPMN DI and BPMN/UML metamodels for Fig. 18

the central action. These flows are notated with zigzag lines
to indicate they terminate the other elements in the region
when flow crosses the boundary.

Figure 19 shows instances of BPMN DI specializations
and of BPMN and UML metamodel elements for the case in
Fig. 18. The BPMN DI instances refer to exactly one meta-
model instance each from the BPMN and UML metamodels,
except for the activity, which refers additionally to the inter-
ruptible region. This follows the pattern of Fig. 16 to provide
the more compact BPMN notation for UML’s metamodel
instances.

BPMN DI instances

UML metamodel instances

Listing 16 defines toGraphics mappings for use by Listing
9, producing instances of DG for rendering boundary events,
like those on left of Fig. 18 from instances of BPMN DI
like those in the middle of Fig. 19. The mapping operates
on instances of the BPMN metamodel, as supplied by the
first mapping in Listing 9. It uses setTimerEventGraphic and
setConditionalEventGraphic to produce BPMN symbols for
timers and conditionals inside the event circles (definitions of
these are omitted for brevity). Listing 17 has the same effect
as Listing 16, but goes through UML metamodel instances, as
supplied by the first mapping in Listing 9, instead of BPMN.

mapping BoundaryEvent::toGraphics
inherits Event::toGraphics {
var ed :=

(de:BPMNDiagramElement)

Group

self.eventDefinitionRefs->union(self.eventDefinitions);

if (ed->selectByKind (TimerEventDefinition) ->notEmpty())

de.setTimerEventGraphic (result);
(ed->selectByKind (ConditionalEventDefinition)->notEmpty())

elif

de.setConditionalEventGraphic (result); }

Listing 16 Instantiating DG for BPMN boundary events via the BPMN metamodel

mapping AcceptEventAction::toGraphics

Group {
var ev := self.trigger.event;
de.setCircle (result);

(de:BPMNDiagramElement)

if (ed->selectByKind(TimeEvent) ->notEmpty())

de.setTimerEventGraphic(result) ;
(ed->selectByKind (ChangeEvent) ->notEmpty ())

elif

de.setConditionalEventGraphic (result); }

Listing 17 Instantiating DG for BPMN boundary events via the UML metamodel

@ Springer

1102

C. Bock, M. Elaasar

6 Conclusion

This paper demonstrates concrete graphical syntax (notation)
in many-to-many relationships with abstract syntax (meta-
models), giving definers of graphical languages a way to
address the challenges of notational variety for the same
or similar underlying language concepts, as described in
Sect. 1. Despite the history and benefits of separately model-
ing abstract and concrete syntax, many-to-many relationships
between them have not been described previously, as shown
in the review of related work in Sect. 2, the more common
application being interchange of visual information between
graphical modeling tools, such as positions of nodes and
routings of lines. To ensure the demonstrations are useful to
definers of graphical languages, the paper employs an open
standard for specifying graphical syntax (DD) and examines
cases drawn from widely used graphical modeling languages
(UML and BPMN), in Sects. 3, 4 and 5. These cases demon-
strate multiple notations for the same metamodel and the
same notation for multiple metamodels. From these, we con-
clude that it is feasible for definers of graphical languages
to specify notational views of the same metamodel adapted
for particular applications and the same notational view for
related metamodels, improving communication efficiency
among users of the languages and their tools.

Examining these cases also identified topics for future
work, in particular, tradeoffs arising from how differently to
construct concrete and abstract syntax for the same language,
avoiding overspecification of concrete syntax, and issues in
modeling lines that have no objects at their ends. Another
future topic is reuse, for example, reusing DG mappings to
the same concrete syntax across multiple abstract syntaxes,
and design patterns for DD.

References

1. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles,
Techniques, and Tools. Addison Wesley, Boston (2006)

2. Bock, C.: UML without pictures. In: IEEE Software Special Issue
on Model-Driven Development 20(5):33-35 (2003)

3. Object Management Group: Diagram Definition. http://omg.org/
spec/DD (2014). Accessed 9 April 2016

4. Elaasar, M., Labiche, Y.: Diagram definition: a case study with the
UML class diagram. In: Model Driven Engineering Languages and
Systems. Lecture Notes in Computer Science 6981, pp. 364-378
(2011)

5. Object Management Group: OMG Unified Modeling Language,
version 2.5. http://www.omg.org/spec/UML/2.5 (2015). Accessed
9 April 2016

6. Object Management Group: Business Process Model and Nota-
tion, version 2.0”. http://www.omg.org/spec/BPMN/2.0 (2013).
Accessed 9 April 2016

7. Bock, C., Barbau, R., Narayanana, A.: BPMN profile for opera-
tional requirements. J. Object Orient. Technol. 13(2), 1-35 (2014)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

. Object Management Group: Action Language for Foundational

UML. http://www.omg.org/spec/ALF (2013). Accessed 9 April
2016

. Schenck, D., Wilson, P.: Information Modeling the EXPRESS Way.

Oxford University Press, Oxford (1994)

W3C OWL Working Group: OWL 2 Web Ontology Language Doc-
ument Overview. http://www.w3.org/TR/owl2-overview (2012).
Accessed 9 April 2016

Rath, L., Okros, A., Varro, D.: Synchronization of abstract and con-
crete syntax in domain-specific modeling languages. Softw. Syst.
Model. 9(4), 453-471 (2010)

Krahn, H., Rumpe, B., Volkel, S.: Integrated definition of abstract
and concrete syntax for textual languages. In: Model Driven
Engineering Languages and Systems. Lecture Notes in Computer
Science 4735, pp. 286-300 (2007)

Baar, T.: Correctly defined concrete syntax. Softw. Syst. Model.
7(4), 383-398 (2008)

Wile, D.: Abstract syntax from concrete syntax. In: Proceedings
of the 19th International Conference on Software Engineering, pp.
472-480 (1997)

Muller, P., Fondement, F., Fleurey, F., Hassenforder, M., Schneken-
burger, R., Gerard, S., Jezequel, J.: Model-driven analysis and
synthesis of textual concrete syntax. Softw. Syst. Model. 7(4), 423—
441 (2008)

Poruban, J., Forgac, M., Sabo, M.: Annotation based parser gener-
ator. Compt. Sci. Inf. Syst. 7(2), 291-307 (2010)

Alone, Y., Deshmukh, V.: Annotation based innovative Parser Gen-
erator. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2(1), 498-501
(2014)

Genesereth, M., Nilsson, N.: Logical Foundations of Artificial
Intelligence. Morgan Kaufman, Los Altos (1987)

Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly Media,
Sebastopol (2011)

Backus, J., Bauer, F., Green, J., Katz, C., McCarthy, J., Naur, P.,
Perlis, A., Rutishauser, H., Samuelson, K., Vauquois, B., Wegstein,
J., van Wijngaarden, A., Woodger, M.: Revised report on the algo-
rithm language ALGOL 60. Commun. ACM 6(1), 1-17 (1963)
International Standards Organization: Information Technology—
Syntactic Metalanguage—Extended BNF. http://standards.iso.
org/ittf/Publicly AvailableStandards/s026153_ISO_IEC_14977_
1996(E).zip (1966). Accessed 9 April 2016

Tennent, R.: The denotational semantics of programming lan-
guages. Commun. ACM 19(8), 437453 (1976)

Backlund, B., Hagsand, O., Pehrson, B.: Generation of visual
language-oriented design environments. J. Vis. Lang. Comput.
1(4), 333-354 (1990)

Arefi, F., Hughes, C.E., Workman, D.A.: Automatically generat-
ing visual syntax-directed editors. Commun. ACM 33(3), 349-360
(1990)

Flatscher, R.: Metamodeling in EIA/CDIF—meta-metamodel and
metamodels. ACM Trans. Model. Comput Simul. 12(4), 322-342
(2002)

Object Management Group: Reference Metamodel for the
EXPRESS Information Modeling Language. http://www.omg.org/
spec/EXPRESS (2015). Accessed 9 April 2016

W3C: Extensible Markup Language. http://www.w3.org/TR/
xmll1 (2006). Accessed 9 April 2016

Object Management Group: Meta Object Facility. http://omg.org/
spec/MOF (2015). Accessed 9 April 2016

Object Management Group: XML Metadata Interchange. http:/
omg.org/spec/XMI (2015). Accessed 9 April 2016

The Eclipse Foundation: Graphical Modeling Framework. http://
www.eclipse.org/modeling/gmp (2013). Accessed 9 April 2016
The Eclipse Foundation: Model Development Tools. http:/
www.eclipse.org/modeling/mdt/?project=uml2 (2015). Accessed
9 April 2016

http://omg.org/spec/DD
http://omg.org/spec/DD
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/ALF
http://www.w3.org/TR/owl2-overview
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.omg.org/spec/EXPRESS
http://www.omg.org/spec/EXPRESS
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xml11
http://omg.org/spec/MOF
http://omg.org/spec/MOF
http://omg.org/spec/XMI
http://omg.org/spec/XMI
http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2

Reusing metamodels and notation with Diagram Definition

1103

32. Object Management Group: Diagram Interchange. http://doc.omg.
org/formal/06-04-04 (2006). Accessed 9 April 2016

33. Object Management Group: Systems Modeling Language, Version
1.4. http://www.omg.org/spec/SysML(2015). Accessed 9 April
2016

34. Object Management Group: Interaction Flow Modeling Language.
http://www.omg.org/spec/IFML (2015). Accessed 9 April 2016

35. Object Management Group: Semantics of a Foundational Sub-
set for Executable UML Models. http://www.omg.org/spec/FUML
(2013). Accessed 9 April 2016

36. Schildt, H.: Java: The Complete Reference. McGraw-Hill, New
York (2014)

37. W3C: XML Schema. http://www.w3.org/XML/Schema (2012).
Accessed 9 April 2016

38. Object Management Group: UML Profile for BPMN 2 Processes.
http://www.omg.org/spec/BPMNProfile (2014). Accessed 9 April
2016

39. Krasner, G., Pope, S.: A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. J. Object Orient.
Prog. 1(3), 2649 (1988)

40. Grundy, J., Hosking, J.: The MViews framework for constructing
multi-view editing environments. N. Z. J. Comput. 4(2), 31-40
(1993)

41. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley
Professional, Boston (1994)

42. W3C: Scalable Vector Graphics. http://www.w3.org/TR/SVG11
(2011). Accessed 9 April 2016

43. Object Management Group: Query/View/Transformation Specifi-
cation. http://www.omg.org/spec/QVT (2015). Accessed 9 April
2016

Conrad Bock is a Computer Sci-
entist at the U.S. National Institute
of Standards and Technology’s
Engineering Laboratory, special-
izing in formal system, product,
and process modeling. He was
the founding editor for Activity
and Action modeling in the Uni-
fied Modeling Language (UML)
and Systems Modeling Language
at the Object Management Group
(OMGQG), as well as a primary con-
tributor to interaction modeling in
the Business Process Model and

- Notation (BPMN) and to Diagram
Definition (DD). Conrad was lead developer of the UML Profile of
BPMN Processes and of logical formalization for UML in the Founda-
tional Subset for Executable UML Models. He is lead author of over
25 journal articles and book chapters. He is currently co-chair of the
DD Revision Task Force at OMG and project leader for integration of
systems and engineering analysis models at NIST.

Maged Elaasar is a senior soft-
ware architect at the Jet Propul-
sion Laboratory (Caltech/NASA),
where he leads R&D projects
in model-based systems engineer-
ing. Prior to that, he was a senior
software architect at IBM, where
he led R&D projects in model-
driven engineering. He holds a
Ph.D. in Electrical and Computer
Engineering and M.Sc. in Com-
puter Science from Carleton Uni-
versity (2012, 2003), and a B.Sc.
in Computer Science from Amer-
ican University in Cairo (1996).
He has received 12 U.S. patents and authored over 20 peer-reviewed
journal and conference articles. He was a primary contributor to Dia-
gram Definition (DD) at the Object Management Group and is currently
a co-chair of the DD Revision Task Force. Maged is also the founder
of Modelware Solutions, a software consultancy and training company
with international clients and affiliations to international laboratories,
such as SQUALL (Canada), CEA LIST (France), SnT (Luxembourg),
and Simula (Norway).

@ Springer

http://doc.omg.org/formal/06-04-04
http://doc.omg.org/formal/06-04-04
http://www.omg.org/spec/SysML
http://www.omg.org/spec/IFML
http://www.omg.org/spec/FUML
http://www.w3.org/XML/Schema
http://www.omg.org/spec/BPMNProfile
http://www.w3.org/TR/SVG11
http://www.omg.org/spec/QVT

	Reusing metamodels and notation with Diagram Definition
	Abstract
	1 Introduction
	2 Background and related work on abstract and concrete syntax
	3 Concrete graphical syntax using Diagram Definition
	3.1 Diagram Interchange
	3.2 Diagram Graphics

	4 Multiple notations on a single metamodel
	4.1 UML Diagram Interchange
	4.2 Multiple UML notations on a single metamodel

	5 Single notation on multiple metamodels
	5.1 BPMN Diagram Interchange
	5.2 BPMN notation on multiple metamodels

	6 Conclusion
	References

