
Energy Transfer Between Eigenmodes in 

Multimodal Atomic Force Microscopy 

Sangmin An
1,2

, Santiago D. Solares
1,2,3,4

, Sergio Santos
5
 and Daniel Ebeling

6 

 

1
Center for Nanoscale Science and Technology, National Institute of Standards and Technology 

(NIST), Gaithersburg, Maryland 20899, United States 

2
Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States 

3
Department of Mechanical Engineering, University of Maryland, College Park, Maryland 

20742, United States
  

4
Current address: Department of Mechanical and Aerospace Engineering, George Washington 

University, Washington, DC 20052, United States 

5
Departament de Disseny i Programació de Sistemes Electronics, UPC-Universitat Politècnica de 

Catalunya, Av. Bases, 61, E-08242 Manresa, Spain 

6
Institute of Applied Physics, Justus Liebig University of Giessen, 35392 Giessen, Germany 

 

 

 

*Email: ssolares@umd.edu 

Phone: (301) 405-5035 

Fax: (301) 314-9477 

  

mailto:ssolares@umd.edu


 

 

ABSTRACT.  We present experimental and computational investigations of tetramodal and 

pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural 

eigenmodes of the cantilever are simultaneously excited externally.  This leads to six to eight 

additional observables in the form of amplitude and phase signals, with respect to the 

monomodal amplitude modulation method.  We convert these additional observables into three 

or four dissipation and virial expressions, and show that these quantities can provide enhanced 

contrast that would otherwise remain hidden in the original observables.  We also show that the 

complexity of the multimodal impact leads to significant energy transfer between the active 

eigenmodes, such that the dissipated power for individual eigenmodes may be positive or 

negative, while the total dissipated power remains positive.  These results suggest that the 

contrast of individual eigenmodes in multifrequency AFM should be not be considered in 

isolation and that it may be possible to use different eigenfrequencies to probe sample properties 

that respond to different relaxation times. 
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INTRODUCTION 

The field of atomic force microscopy (AFM) has rapidly evolved in the past thirty years 

encompassing nowadays a wide range of modes of operation, characterization methods and 

highly specialized techniques, which have been developed to manipulate and understand matter 

at the nanoscale and even at the atomic level [1-10].  A particular demand on the evolution of the 

atomic force microscope involves tracking the topography of surfaces while simultaneously 

acquiring complimentary information on mechanical, chemical or even subsurface structural 

information, among others, which has become possible through multifrequency AFM (MF-

AFM) techniques [3, 4, 8, 11-17].  The first MF-AFM method was introduced by Rodriguez and 

Garcia in 2004 [3], who drove the cantilever simultaneously at two eigenmodes, one of which 

was used for topographical imaging, while the other one was used to map the compositional 

contrast across the sample.  Since then, this powerful approach of AFM that makes use of 

externally excited higher eigenmodes and augments the number of contrast channels that are 

sensitive to material properties has grown considerably.  Currently there exist validated bimodal 

[8, 18-20] and trimodal techniques [16, 21], with bimodal methods still comprising by far the 

majority of multimodal applications.  Here we refer to such methods collectively as multimodal 

AFM (MM-AFM), which represent a subset within MF-AFM.  Other versatile MF-AFM 

methods include band excitation AFM [22, 23] and its combination with amplitude-modulation 

AFM [14],  spectral inversion [4, 13, 24, 25], intermodulation AFM [26, 27], and dual amplitude 

resonance tracking [28, 29], among others. 

In this paper, we present experimental and computational investigations of tetramodal  

and pentamodal AFM (see Figure 1 for a schematic of the instrumentation), respectively, 

whereby the first four or five flexural modes of the cantilever are simultaneously excited 



 

 

externally in a way that six to eight additional observables are acquired in the form of amplitude 

and phase signals, while the topography is tracked by controlling the fundamental eigenmode 

through the amplitude modulation method [1].  These six to eight additional observables can also 

be directly converted into more physically relevant quantities, such as three or four dissipation 

and virial expressions, which have units of power and energy, respectively.  The virial and 

dissipated power expressions have been used extensively in AFM to map the relative dominance 

of conservative (average potential energy of the tip-sample spring during impact) and non-

conservative (dissipative) tip-sample interactions across the sample, respectively [20, 30-33].  

We show that these quantities can provide enhanced contrast that would otherwise remain hidden 

in the original observables, and that the complexity of the multimodal impact leads to significant 

energy transfer between the active eigenmodes.  We speculate that the larger number of actual 

observables could enable future applications involving more robust quantification of relevant 

sample properties such as the Young’s modulus, Hamaker constant or dissipative properties, 

through the development of more sophisticated inversion techniques than those currently in use.  

The fact that the sample is being simultaneously probed at a large range of frequencies (from ≈ 

70 kHz to ≈ 2.3 MHz in our experiments and from ≈ 70 kHz to ≈ 4 MHz in our simulations) also 

suggests that rapid frequency dependent characterization of surfaces whose material properties 

exhibit multiple relaxation times may become possible in the near future. 

 



 

 

 

Figure 1: Schematic diagram of tetramodal AFM. The signals of four separate function 

generators are used to actively excite the cantilever at four different eigenmodes simultaneously. 

The signal of the tip trajectory measured by the photo diode is analyzed with four lock-in 

amplifiers, which provide the amplitude and phase values of each excited eigenmode separately 

and in real time.  In our setup, an amplitude-modulation proportional-integral-derivative (PID) 

feedback loop controlled the first mode amplitude by adjusting the cantilever height above the 

surface, as is customary in tapping-mode AFM, while the other amplitudes were not controlled 

by the electronics. For pentamodal AFM the setup shown may be expanded with additional drive 

and lock-in electronics, accordingly. In principle, it is also possible to exchange parts of the 

driving electronics with phase-locked loops (PLLs) to drive certain eigenmodes in the frequency 

modulation scheme as in previous bimodal and trimodal applications [8, 20, 21]. 
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METHODS 

Experimental 

We performed tetramodal (4-eigenmode) imaging experiments using a Cypher atomic 

force microscope (Asylum Research, Santa Barbara, CA), driving all four eigenmodes through 

the instrument’s internal lock-ins.  Since the number of signals that can be recorded with our 

instrument is limited to six, we only recorded the phase and amplitude of the second through 

fourth eigenmodes, which were most relevant to our study.  Images were acquired with a 

resolution of 512 × 512 pixels at a scan rate of 1 Hz in the fast direction.  We used a commercial 

cantilever having its first four eigenfrequencies at approximately 76.4 kHz, 451.7 kHz, 1.21 

MHz and 2.25 MHz, and a fundamental force constant of ≈ 2 N/m. The sample consisted of 

poly-tetrafluoroethylene (PTFE) pipe thread seal tape (nominal thickness ≈ 0.1 mm) stretched 

onto a hard plastic substrate, which was fixed on a metal substrate.  This type of polymer sample 

was chosen in order to obtain high contrast in the phase signals.  We carried out an extensive set 

of experiments varying the amplitude of each higher eigenmode in sequential images.  In our 

baseline experiment we set the free fundamental amplitude to approximately 100 nm and the free 

amplitudes of eigenmodes 2 to 4 to approximately 2.9 nm, 1.8 nm and 1.3 nm, respectively, 

exciting each eigenmode at its measured eigenfrequency (the free amplitude is the oscillation 

amplitude for an eigenmode when the cantilever and sample are not engaged).  We imaged the 

sample with an amplitude setpoint ratio of approximately 60 %, which led to stable 

characterization.  The selected higher mode amplitudes correspond to a photodetector amplitude 

reading (in units of voltage) for each mode that is approximately 10 % of the value chosen for 

the fundamental free amplitude (this is due to the well-known differences in the optical 



 

 

sensitivity factors for different modes [34]).  We then acquired a series of images setting the 

amplitude of each higher eigenmode individually to 50 %, 200 %, 400 % and 800 % of the 

baseline amplitude, while keeping all other amplitudes constant, and scanning the same region of 

the sample (to avoid repetition we only show the most representative results).  Finally, we 

calculated the average dissipated power (Pm) and virial (Vm) for each pixel of the images, for 

each eigenmode m, using the following expressions [32]: 
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where Pm is defined here as power leaving mode m either to the tip-sample junction or as 

intermodal energy transfer (i.e., energy transferred from one mode to another). The other 

parameters are the drive frequency f, spring constant k, quality factor Q, amplitude A, and phase 

shift 𝜙 of the corresponding mode m. Such definition implies that even when no net energy is 

dissipated irreversibly in the tip-sample junction, Pm might not be zero and a change in phase ϕm 

might still arise.  Mechanistically this can be understood by considering the average net power 

dissipated into the tip sample junction per cycle Pdis as the following sum:  





0m

mdis PP           (3) 

Note that even when Pdis = 0 in (3), the sines of the phase angles of the various modes 

(sin ϕm) may still vary, which is the source of phase contrast when the tip-sample interaction is 

conservative.  Furthermore, while the constraint Edis ≥ 0 must apply for all modes considered 

together, for a given mode, Pm may be positive or negative depending on whether there is a net 

loss Pm < 0 or gain Pm > 0 in power for that given mode (in the results section it will be shown 



 

 

that the sign of Pm depends on the free amplitude and amplitude setpoint ratio of the first mode, 

as well as on the free amplitudes of the higher modes).  

The net tip-sample virial was calculated with a similar expression:  





0m

mVV           (4) 

Again, an interesting outcome of (4) is that even for zero net virial, i.e., V = 0, contrast 

might arise in a given modal virial Vm.  The sign of a given modal virial might also take positive 

or negative values. Such variations in the sign of the virial are illustrated in the results section 

and are shown to depend on the free amplitude and amplitude setpoint ratio of the first mode, as 

well as the higher mode amplitudes, similar to the dissipated power. 

 

Computational 

For the numerical simulations five eigenmodes of the AFM cantilever were modeled 

using individual equations of motion for each, coupled through the tip-sample interaction forces 

similar to previous studies [16].  Driven eigenmodes were excited through a sinusoidal tip force 

of constant amplitude, and frequency equal to the natural frequency.  The equations of motion 

were integrated numerically and the amplitude and phase of each eigenmode were calculated 

using the customary in-phase (Ii) and quadrature (Ki) terms: 



mN

mmm dtttzI


 )cos()(         (5) 



mN

mmm dtttzK


 )sin()(         (6) 

where zm (t) is the m-th eigenmode’s spatial response in the time domain, N is the number of 

periods over which the phase and amplitude were averaged, m is its excitation frequency, and m 



 

 

is the nominal period of one oscillation.  N was set to 25 for the fundamental eigenmode, and to 

the closest integer to 25 times m/1 for the higher eigenmodes.  The amplitude (Am) and phase 

(m) were calculated, respectively, as: 

22

mmm KI
N

A 



         (7) 

)/(tan 1

mmm IK          (8) 

The repulsive tip-sample forces were accounted for through a standard linear solid (SLS) 

model [16] which exhibits both stress relaxation and creep.  We used sample parameters typical 

of a polymer surface, with both linear springs having a stiffness of 7.5 N/m and the damper 

constant set to 1 × 10
-5

 Ns/m, similar to those of previous studies [16].  Long-range attractive 

interactions were included via the Hamaker equation [1] for a tip radius R of 10 nm and a 

Hamaker constant of 2 x 10
-19

 J.   

Our computational results consisted of spectroscopy curves, where the cantilever 

approached the surface while we recorded the amplitudes and phases of all active eigenmodes, 

from which the respective average dissipated power and virial were calculated, as described in 

the experimental section.  Here we also studied different free amplitudes for different 

eigenmodes (as with the experiments, only the most relevant results are shown). 

 

RESULTS 

Figure 2 shows the amplitude and phase images obtained for the higher eigenmodes 

(second to fourth modes) for the baseline experiment with A1-free = 100 nm, A2-free = 2.9 nm, A3-

free = 1.8 nm, and A4-free = 1.3 nm and Asetpoint = 60 %.  The images reveal structures composed of 

highly oriented regions (towards the bottom of the images), along with amorphous regions 

showing globular morphology.  The former are the result of stretching the PTFE film onto the 



 

 

substrate and tend to dominate as the applied strain increases.  During the acquisition of the 

images the first eigenmode remained in the repulsive imaging regime (with phase values below 

90 °), although the higher eigenmodes exhibited phase values corresponding to the attractive 

regime (above 90°) on some regions of the sample.  Figure 3 shows the corresponding dissipated 

power and virial images, in which the contrast appears qualitatively sharper than in Figure 2.  

Notice in particular that the dissipated power image for the fourth eigenmode shows some 

negative values, indicating that this eigenmode received more energy than it dissipated at those 

pixels (see discussion below). 

 

 

Figure 2. Experimental baseline amplitude (top row) and phase (bottom row) measurements 

performed on the PTFE sample for the higher eigenmodes using A1-free = 100 nm, A2-free = 2.9 

nm, A3-free = 1.8 nm, A4-free = 1.3 nm and Asetpoint = 60 %.  



 

 

 

Figure 3. Calculated average dissipated power (top row) and virial (bottom row) for the 

experimental images of Figure 2 using the expressions provided in the experimental methods 

section. 

 

Figure 4 shows higher eigenmode dissipation images similar to those of Figure 3, but for 

different amplitude of the third eigenmode (middle column), which had successive values (from 

top to bottom) of approximately 0.9 nm, 3.6 nm, 7.2 nm and 14.4 nm.  As the results show, the 

range of dissipated power remained nearly constant for the eigenmodes for which the amplitude 

did not vary.  Specifically, for the second eigenmode, the respective 1-standard-deviation 

intervals were 0.13 pW ± 0.04 pW, 0.15 pW ± 0.18 pW, 0.16 pW ± 0.04 pW and 0.17 pW ± 0.04 

pW, corresponding to the images in the left column of Figure 4.  Similarly, the respective 

intervals for the fourth eigenmode (right column of Figure 4) were 0.87 pW ± 0.65 pW, 0.66 pW 



 

 

± 0.57 pW, 0.34 pW ± 0.60 pW and 0.16 pW ± 0.63 pW.  The average dissipated power in the 

above intervals shows a very slight upward trend for the second mode and a slight downward 

trend for the fourth mode.  In contrast, the range of dissipated power was significantly larger for 

the third eigenmode (middle column in Figure 4) as its free amplitude increased and the average 

values exhibited greater variation.  The corresponding intervals were -0.19 pW ± 0.10 pW, -1.62 

pW ± 1.41 pW, -2.42 pW ± 4.98 pW, and -5.45 pW ± 16.58 pW.  Additionally, as the third free 

amplitude increased, the range of negative power values also increased (the corresponding lower 

limit of the dissipated power images for this eigenmode was -0.4 pW, -5.3 pW, -11.1 pW and -

13.0 pW), suggesting that greater intermodal energy transfer took place (see discussion).  

 



 

 

 

Figure 4.  Calculated dissipated power images for the higher eigenmodes for experimental 

images similar to those of Figure 2, but for increasing third eigenmode amplitude (the three 

columns of the image show the results for the second, third and fourth eigenmode, respectively).  

The free amplitudes of the first, second and fourth eigenmodes, as well as the amplitude setpoint 

ratio are the same as listed for Figure 2. 

 

Figure 5 shows the corresponding virial images for Figure 4.  As the results show, the 

range of the virial remained nearly constant for the eigenmodes for which the amplitude did not 



 

 

vary (similar to the power images), but became larger for the third eigenmode as its amplitude 

increased.  The 1-standard-deviation intervals for the second eigenmode (left column in Figure 5) 

were (from top to bottom) -0.05 aJ ± 0.02 aJ, -0.06 aJ ± 0.02 aJ, -0.06 aJ ± 0.023 aJ and -0.06 aJ 

± 0.03 aJ.  The corresponding intervals for the third eigenmode (middle column in Figure 5) 

were -0.04 aJ ± 0.02 aJ, -0.57 aJ ± 0.23 aJ, -1.50 ± 0.50 aJ and -2.70 ± 1.17 aJ.  Finally, the 

intervals for the fourth eigenmode were -0.14 aJ ± 0.06 aJ, -0.10 aJ ± 0.05 aJ, -0.07 aJ ± 0.04 aJ 

and -0.05 aJ ± 0.04 aJ.  Overall, the third mode virial became more negative for higher 

amplitudes, in agreement with previous studies indicating that greater amplitudes lead to greater 

penetration into the sample, which in turn result in greater repulsive forces [16].  Despite the 

nearly constant range of values for the virial of eigenmodes 2 and 4, the results show that their 

respective images are influenced by changes in the amplitude of the third eigenmode: as the third 

amplitude increases, a gradual overall trend towards lower values is observed for the second 

virial, while the fourth virial trends towards higher values. 

 



 

 

 

Figure 5. Calculated virial images for the higher eigenmodes for experimental images similar to 

those of Figure 2, but for increasing third eigenmode amplitude (as in Figure 4, the three 

columns of the image show the results for the second, third and fourth eigenmodes, respectively).  

The amplitudes of the first, second and fourth eigenmodes, as well as the amplitude setpoint ratio 

are the same as listed for Figure 2.   

 

Figures 6 and 7 show computational results of pentamodal spectroscopy curves for 

different ratios of the higher mode amplitude to the fundamental mode amplitude.  In Figure 6 
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this ratio is 1:100 (the higher mode free amplitudes are each 1 % of the fundamental free 

amplitude) and in Figure 7 it is 3:80 (the higher mode free amplitudes are each 3.75 % of the 

fundamental free amplitude).  Interestingly, significant differences emerge with such a small 

change in the higher mode amplitude ratio.  When the amplitude ratio is 1:100, the behavior of 

the dissipated power as a function of the cantilever height is similar for different eigenmodes.  

The power increases as the cantilever first reaches the sample, and then decreases as the 

cantilever gets very close.  Additionally, the dissipated power is in general positive for all 

eigenmodes, indicating that they all lose energy as the tip interacts with the surface (see Figure 

6a).  However, for the larger amplitude ratio of 3:80 the trends in dissipated power vs. cantilever 

height seem erratic and include negative values, indicating that energy is transferred into some of 

the eigenmodes for certain cantilever heights (see Figure 7a).  In contrast, the total dissipated 

power for all eigenmodes combined exhibits the expected trend for both simulations (see Figures 

6c and 7c).  In Figure 6b and 7b the dissipated power curves for individual eigenmodes (see 

Figure 6a and 7a) were added up consecutively (that is, the curve for each eigenmode includes 

the contribution of all lower eigenmodes).  In this type of representation the contribution of each 

individual eigenmode to the total dissipated power becomes more obvious by considering the 

colored area enclosed between each set of two curves. For the smaller amplitude ratio of 1:100 

the dissipated power is very low for the 2
nd

 eigenmode (the area between red and blue curve is 

almost not discernible) and increases with each subsequent eigenmode. For the larger amplitude 

ratio of 3:80 the individual contributions have changed dramatically, increasing and decreasing, 

due the large energy transfer between eigenmodes.  Finally, the trend in the virial for both sets of 

simulations (Figures 6d and 7d) transitions from a curve that exhibits a minimum for the lowest 

eigenmodes into a monotonic curve of positive slope for higher eigenmodes.  Our simulations 



 

 

also show that the curve for higher eigenmodes undergoes a similar transition (from concave 

upward with a minimum to monotonic with positive slope) as that eigenmode’s amplitude 

increases (not shown).  In general, the selection of a small free amplitude value for a given 

eigenmode favors a curve that is concave upwards and contains a minimum, while the use of a 

large free amplitude value favors a monotonic curve that has positive slope and does not contain 

a minimum.  

 

Figure 6.  Simulations of dissipated power and virial for pentamodal spectroscopy curves using 

higher to lower mode free amplitude ratios of 1:100 (1 %): (a) dissipated power for individual 

eigenmodes; (b) incremental dissipated power (the curve for each eigenmode includes the 

contribution of all lower eigenmodes); (c) total dissipated power including all eigenmodes; (d) 

virial for individual eigenmodes.  Note that the data for the fundamental eigenmode is plotted 

using the left axis, while the data for modes 2 to 5 is plotted using the right axis in panels (a) and 
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(d).  For this calculation we used A1-free = 100 nm, A2-free = A3-free = A4-free = A5-free = 1 nm and 

modeled a cantilever similar to the one used in the experiments. 

 

 

Figure 7. Simulations of dissipated power and virial for pentamodal spectroscopy curves using 

higher to lower mode amplitude ratios of 3:80 (3.75 %): (a) dissipated power for individual 

eigenmodes; (b) incremental dissipated power (the curve for each eigenmode includes the 

contribution of all lower eigenmodes); (c) total dissipated power including all eigenmodes; (d) 

virial for individual eigenmodes.  Note that the data for the fundamental eigenmode is plotted 

using the left axis, while the data for modes 2 to 5 is plotted using the right axis in panels (a) and 

(d).  For this calculation we used A1-free = 80 nm, A2-free = A3-free = A4-free = A5-free = 3 nm and 

modeled a cantilever similar to the one used in the experiments. 
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DISCUSSION 

The first important detail to note from Figures 2 and 3, and in particular in the context of 

multimodal AFM, is the degree to which the contrast channels are relevant and meaningful.  

Figure 2 shows direct experimental observables (amplitudes and phases), whereas Figure 3 

shows the physical phenomena that induce the contrast in the observables (dissipated power or 

energy transfer and virial).  Arguably the latter are physically more intuitive and can be 

employed, even by visual inspection, to interpret image contrast to a great extent (recall that 

despite their meaningfulness, these quantities are averages so they still do not fully capture the 

richness of multifrequency impacts [16]).  For example, in Figure 2 the contrast could be argued 

to decrease in both amplitude A and phase ϕ with increasing eignemode order or frequency.  

However, the calculated dissipated power and virial exhibit greater contrast. For the amplitude 

and phase images, the ratio of the standard deviation to the range of values observed in the 

images was on average approximately 8 % and 10 %, respectively, whereas it was approximately 

15 % and 17 % for the dissipated power and virial, respectively.  The practical outcome from an 

experimental point of view is as follows: what could be perceived as small contrast by inspection 

of observables in higher eigenmode channels could in fact be translated into large contrast in 

terms of the physical quantities that involve energy.  This discrepancy could be qualitatively 

understood by analyzing the way in which observables (phase and amplitude) scale relative to 

physical derivatives, which scale with spring constant and Q factor.  

Secondly, within monomodal amplitude modulation AFM, the phase contrast obtained 

from the single (fundamental) externally excited mode, is typically related to irreversible losses 

of energy in the tip-sample junction [30] and can be related to several phenomenological 

nanoscale mechanisms [35].  Energy dissipation in multifrequency AFM, however, is a topic that 



 

 

is still under investigation by several groups [36-39] and the origin of contrast in both the 

amplitude and phase channels may be more closely related to the dynamics of single mode AFM 

in low-Q environments [40] in the context of energy transfer between harmonics and modes [41]. 

A crucial difference, however, is to be noted.  Under single-mode external excitation, energy or 

power dissipation (Pm) cannot be negative at the first mode and has to be negative at all other 

frequencies. This is because energy flows from the first (excited mode) to all other higher 

frequencies.  On the other hand, equation (3) implies that by introducing energy at several 

frequencies or eigenmodes, power transfer may be negative or positive for a given mode without 

compromising the net power dissipation Pdis ≥ 0. We believe that this critical difference between 

monomodal and multimodal AFM is the cause of the negative values of Pm observed in our 

computational and experimental results.  

Thirdly, Figures 4 and 5 show how the ranges in power Pm and Vm (particularly from 

mode 3 in the images) increase with increasing modal free amplitude. To a first approximation 

this could be related to the kinetic energy ratios as it has been recently argued [37, 42].  

However, a qualitative interpretation could be also given by combining (1) and (2) as follows:  




2
tan

2

1
,

mm
mmmmfreermm

QP
QVAAAk        (9) 

Here the term on the left is the kinetic energy of mode m and Ar is simply the amplitude ratio 

Am/Afree,m.  We see that the physical derivatives Vm and Pm scale with Afree,m in equation (9), in 

qualitative agreement with Figures 4 and 5.  Note also that for the other modes, where the free 

amplitude has been left constant, the ranges of the physical derivatives do not vary appreciably.  

A similar analysis can be carried out to explain the overall increase in the magnitude of Vm and 

Pm with increasing mode order (not shown), although variations to these general trends are also 

observed in the data. 



 

 

Our simulations suggest that the relative ratios between free amplitudes also need to be 

considered.  In particular, 1:100 and 3:80 has been employed in Figures 6 and 7 respectively, 

although the results suggest that the fluctuations in dissipated power between positive and 

negative values are a general phenomenon that becomes more prevalent as the tip-sample impact 

becomes more irregular, which is the case in a multimodal oscillation when the higher mode 

amplitudes are increased.  A comparison of contributions from individual eigenmodes to the total 

dissipated power, similar to the comparison shown in Figures 6b and 7b, should be interesting 

for follow-up experimental work on sample systems with different material properties.  As the 

proportion of the single-mode contributions depends on the energy transfer between the 

corresponding eigenmodes, the observed energy derivatives should be highly sensitive to 

differences in viscoelasticity between different regions of the sample.  In particular, changes in 

relaxation time(s) should lead to a shift of dissipated power into eigenmodes with higher or 

lower frequencies. Admittedly, one would expect this redistribution of energy to also be affected 

by other factors, such as the complex dynamics of the cantilever or the indentation depth. 

Nevertheless, the proposed method could provide a means to qualitatively analyze frequency 

dependent responses across the sample.  

 In closing this section, we remind the reader that the complex nature of the tip-sample 

impact in multifrequency AFM, whereby each impact is the result of a trajectory involving 

multiple sinusoidal oscillations of different frequencies and where individual impacts for 

different cycles of the fundamental eigenmode can differ from one another, can prevent the tip 

motion from reaching steady state, even when this may not be obvious to the user [43].  This 

unsteady behavior, which becomes more prevalent as more eigenmodes are turned on, can affect 

the stability of the amplitude-modulation control loop, leading to cross-talk between the 



 

 

topography and the material contrast images [43].  In such cases, the observed contrast may not 

be completely due to variations in the properties of the sample, but may be partially due to 

unsteady tip oscillations.  It is therefore important during an experiment to monitor the signals 

and select scan speeds and parameters that minimize the fluctuations in the fundamental mode 

amplitude when the cantilever and sample are engaged.  Finally, we also remind the reader that, 

in general, the use of higher eigenmodes leads to greater penetration of the tip into the sample, 

which can in some cases compromise the integrity of the tip due to increased contamination 

and/or greater mechanical damage with respect to the single-eigenmode case [16]. 

 

CONCLUSIONS 

We have conducted experimental and computational investigations of tetramodal and 

pentamodal atomic force microscopy (AFM), illustrating the acquisition of six to eight additional 

observables (amplitude and phase signals), with respect to single-eigenmode tapping-mode 

AFM.  We have showed that the dissipation and virial expressions for the respective eigenmodes 

provide enhanced and more physically meaningful information than the amplitudes and phases, 

and highlight hidden phenomena such as intermodal energy transfer.  We believe that 

multimodal imaging could provide the means to carry out more statistically robust spectroscopy, 

whereby information from different eigenmodes is complementary, as well as frequency 

dependent characterization of surfaces whose material properties exhibit multiple relaxation 

times that vary across the surface. 
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