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A common experimental strategy for demonstrating nonclassical correlations is to show violation of a Bell
inequality by measuring a continuously emitted stream of entangled photon pairs. The measurements involve
the detection of photons by two spatially separated parties. The detection times are recorded and compared
to quantify the violation. The violation critically depends on determining which detections are coincident.
Because the recorded detection times have “jitter,” coincidences cannot be inferred perfectly. In the presence of
settings-dependent timing errors, this can allow a local-realistic system to show apparent violation, the so-called
“coincidence loophole.” Here, we introduce a family of Bell inequalities based on signed, directed distances
between the parties’ sequences of recorded time tags. Given that the time tags are recorded for synchronized,
fixed observation periods and that the settings choices are random and independent of the source, violation of
these inequalities unambiguously shows nonclassical correlations violating local realism. Distance-based Bell
inequalities are generally useful for two-party configurations where the effective size of the measurement outcome
space is large or infinite. We show how to systematically modify the underlying Bell functions to improve the
signal-to-noise ratio and to quantify the significance of the violation.
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I. INTRODUCTION

Quantum mechanical systems can give rise to measurement
correlations that local realistic (LR) systems are unable to
produce. Physical theories that satisfy the principle of local
realism (LR) posit a set of hidden variables associated with the
physical systems. The hidden variables cannot be influenced by
spacelike-separated events. They are not observable, but they
determine the outcomes of all measurements. The existence
of hidden variables constrains the probability distributions
that can describe LR systems. In 1964, Bell constructed an
inequality that is satisfied by all correlations accessible by
LR and showed that correlations between spacelike-separated
measurements on two quantum systems can violate this
inequality [1]. The realization that quantum mechanics allows
more general probability distributions than LR has motivated
many experimental tests that have shown Bell-inequality viola-
tions (see Ref. [2] for a review). In addition to the fundamental
importance of tests of LR, systems violating LR can be used for
quantum information tasks such as quantum key distribution
[3–5] and secure randomness generation [6–8]. For these
cryptographic applications, one must demonstrate violation
of LR with high statistical significance in the presence of
adversarial effects, such as a hacker who has tampered with
the system in an attempt to learn a secret key.

So far, all tests of LR have invoked additional assumptions
about the types of LR theories governing their experiments.
Examples include the assumption that photon detection prob-
abilities are not correlated with the measurement choices or
photon polarizations (the “fair sampling” assumption), the
assumption that measurement choices at one location cannot
influence events at another location even when they are not
spacelike separated, and the assumption that the sequence
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of measurement choices and outcomes in an experiment are
independent and identically distributed (i.i.d.). For a review,
see [9]. Various experiments have been able to relax some of
these assumptions, but no single experiment has been able to
reject the most general LR theories. Due to recent advances
in entangled photon generation and photon detection, we
anticipate that an optical experiment that is free of additional
assumptions will be accomplished in the near future.

To test a Bell inequality in an experiment, one repeats
the preparation and joint measurement of spatially separated
systems some finite number N times. We call each such
repetition a “trial” of the experiment. During a trial, entangled
systems are sent to two or more measurement locations.
At each location, a random choice is made that determines
which property will be measured. Ideally, each trial is clearly
identifiable so that measurement choices and outcomes at
the various locations can be matched with one another.
However, in many experiments this trial identification cannot
be achieved with perfect certainty. A popular experiment
design involves the continuous pumping of a nonlinear crystal
that produces photon pairs through spontaneous parametric
down-conversion. In these experiments, the entangled pairs
are produced randomly in time. Furthermore, the detectors
used at the two measurement locations (“Alice” and “Bob”)
have nonzero timing jitter. These effects can create confusion
about which events at Alice correspond to which events at Bob.

To resolve this confusion, one typically defines a “coinci-
dence window” in time, so that if the period of time between
photon detections at Alice and Bob is less than the coincidence
window width, the two events are considered to be part of the
same trial. If Alice or Bob observe multiple detections within
one coincidence window, more sophisticated algorithms can
be used to attempt to match Alice’s and Bob’s detections. The
choice of the coincidence window width depends on balancing
the expected interarrival time between entangled pair creations
and the detector timing jitter, so that the probability for a trial
to contain multiple photon pairs is small, and the probability
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for a photon to be lost by falling outside of the coincidence
window is also small.

Unfortunately, local realistic theories or hackers can use
this uncertainty about trial identification to produce apparent
violation of Bell inequalities. The photons being measured
could have correlations between their measurement outcomes
and arrival times. Correlations could also exist between
multiple photon pairs detected during the same coincidence
window. Previous tests of LR that use continuously pumped
spontaneous parametric down-conversion have (often implic-
itly) assumed that such correlations do not exist. Therefore,
these experiments do not reject the most general LR theories;
they only reject LR theories that do not allow timing or cross-
pair correlations. Experiments requiring these assumptions
are said to suffer from the “coincidence loophole.” Larsson
and Gill described local realistic theories that exploit the
coincidence loophole and methods to defeat them in [10]. Their
closure of this loophole requires a bound on the probability that
a true coincidence is missed. This bound cannot be measured
without additional assumptions and must be trusted.

In this paper, we describe a different method for closing the
coincidence loophole that does not require additional assump-
tions about the systems being measured. Instead, we define
a “trial” as all events occurring within a predetermined time
interval. The data produced by the trial are the measurement
choices at Alice and Bob and the lists of times at which
Alice and Bob detected photons (the “time tags”). The trial
may be many times longer than the expected time between
photon-pair creations, and Alice and Bob may observe many
photon detection events during one trial. (In practice, the length
of a trial will be constrained if one desires to achieve spacelike
separation between measurement choices on one side and
detections on the other.)

To test LR with such trial data, we develop distance-based
Bell inequalities. The use of distances and triangle inequalities
was suggested by Schumacher [11] in the case of the con-
ventional correlation-based Bell inequalities. Signed, directed
distances between trial outcomes that measure the dissimilarity
between Alice’s and Bob’s lists of time tags are defined such
that they obey a directed triangle inequality. These distances
are closely related to edit distances used to compare words
in spell checking or to align DNA sequences in computational
biology. Using LR to compute the expectation value of sums of
these distances yields an inequality satisfied by all LR theories.
These distance-based Bell inequalities provide a rigorous
analysis of tests of LR based on continuously emitting sources;
they enable the rejection of a larger class of LR theories than
previously known methods. Also, the triangle inequality can
be a powerful tool for finding new Bell inequalities in other
contexts. It is explored in the works of Dzhafarov and Kujala
[12] and of Kurzynski and Kaslikowsi [13].

In Sec. II, we introduce basic notions and define relevant
mathematical notation. In Sec. III, we explain the experimental
setup of “time-tag Bell tests” in more detail and describe a
simple LR model that exploits the coincidence loophole for an
apparent violation of a Bell inequality. In Sec. IV, we define
“distance” functions between measurement outcomes that
obey the directed triangle inequality. We then use the triangle
inequality to derive Bell inequalities satisfied by any LR
theory regardless of the choice of distance function. In Sec. V,

we describe functions for computing the distance between
time-tag sequences and obtain the associated Bell inequalities.
In Sec. VI, we introduce nonsignaling equalities that constrain
all theories that prohibit Alice from sending information to
Bob by use of her measurement choice (and vice versa).
Although both quantum and LR theories obey the nonsignaling
equalities, these equalities can be used to transform Bell
inequalities and improve the signal-to-noise ratio (SNR) of
the inequalities’ violation in an experiment. In Sec. VII, we
provide a protocol that sets aside an initial segment of the
data as a training set to determine a good distance function.
In Sec. VIII, we discuss the relationship between the SNR
for the violation of a Bell inequality and p-value bounds for
rejecting LR. Bounds on p values can be computed with Gill’s
martingale-based protocol [14,15] or the prediction-based ratio
(PBR) protocol [16,17]. The main result of this section is a
method for truncating distance functions to enable application
of these protocols. The technique is general and can be
used on any Bell function derived from a triangle inequality.
Here, a useful step is to balance the violation between the
measurement settings by means of the nonsignaling equalities.
In Sec. IX, we apply time-tag Bell inequalities to simulated
data. We discuss the effects of detector inefficiency and
detector jitter on the violation of time-tag Bell inequalities
and on the p-value bounds computed with the PBR protocol.
We quantify the violation and p-value bounds as functions of
the jitter distribution’s width and quote lower bounds on the
maximum jitter width at which violation can be observed for
photon detection efficiencies ranging from 0.74 to 0.95. The
simulations include a LR model that exploits the coincidence
loophole while closely mimicking the measurement statistics
of a Poisson source of entangled photons measured with jittery
detectors. In the Appendixes, we describe numerical methods
to optimize parameters of the distance functions to give high
inequality violation, to compute distances for time-tag Bell
inequalities, and to compute the SNR of the violation of an
inequality. The Appendixes also contain further details of the
coincidence-loophole-exploiting LR model.

II. PRELIMINARIES

We consider experiments to test LR, where an experiment
consists of a sequence of trials. The trials’ measurement
outcomes need not be independent from one trial to the next,
but before the next trial, there is a probabilistic description
of the next trial’s outcome, where the probabilities may
depend on the past and current conditions. The class of LR
models of interest is defined by specifying constraints on these
probabilities. We consider the case where a trial consists of
observations by two parties, A and B, each of whom can choose
one of two measurement settings for their observation. We
leave extensions to more parties and settings for future work.
The full trial outcome includes the settings chosen as well as
the measurement outcomes. In many cases, the measurement
outcomes are two valued. For example, the outcome may
indicate whether a photodetector “clicked” or not. Here, we
consider arbitrary outcome spaces, but focus on the case where
a party’s measurement outcome is an ordered sequence of time
tags of events, for example, detection events. Thus, there is no
bound on the size of the outcome space.
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We denote the random variable for a trial’s outcome
including the settings by T . This random variable is a tuple
of four random variables T = (OA,SA,OB,SB ) where OX

is X’s measurement outcome and SX is X’s chosen setting.
The two possible settings are denoted by 1̄ and 2̄. We also
use the notation T X = (OX,SX). We follow the notational
convention that random variables (O,S,T , . . .) are denoted by
roman uppercase letters. This is also true of party labels, but the
distinction should be clear from context. The range of random
variable R is denoted by R. Observed values of random
variables are denoted by their corresponding lowercase letters;
for example, r denotes an observed value of R. Superscripts
and subscripts serve to identify members of a family of
conceptually related random variables or to select out parts of
tuple-valued random variables. Formally, the random variables
for a trial are functions on an underlying probability space that
includes any “hidden” variables that may play a role, but we
do not need to explicitly refer to this space here.

A deterministic LR model must, before a trial and inde-
pendent of the settings, commit to a specific measurement
outcome dX

c for each party X = A,B and each setting
c = 1̄,2̄. A general LR model is a probabilistic mixture of
deterministic models. (One can imagine that a hidden random
variable selects which deterministic model controls a trial’s
measurement outcomes.) Thus, a LR model is described by
a random variable DLR = (DA

1̄ ,DA
2̄ ,DB

1̄ ,DB
2̄ ), where T relates

to DLR according to T = (DA
SA,SA,DB

SB ,SB ). Although the
parties cannot simultaneously measure both settings 1̄ and
2̄ in a single trial, the LR model allows for that possibility
by preassigning measurement outcomes to both settings.
That such a preassignment exists is the essential claim of
realism. Quantum theory does not preassign outcomes and
disallows the possibility that the two settings can be measured
simultaneously. Quantum theory can thereby achieve a larger
set of trial probability distributions.

In an idealized test of LR, the settings choices are made
randomly and independently of DLR according to a probability
distribution that is under experimenter control. In this case, LR
models satisfy that S = (SA,SB ) is independent of D, and the
probability distribution of S is known before the trial. This
defines LR models satisfying the free-choice assumption. For
the remainder of the paper, LR models are assumed to satisfy
free choice, and by default the settings’ distribution is uniform.

From a mathematical and statistical point of view, a
successful test of LR shows that probabilistic LR models
are statistically inconsistent with the data. Interpretation of
the inconsistency requires additional analysis and can depend
on the experimental context. In fact, such interpretations
could attribute the inconsistency to the presence of so-called
“loopholes” rather than to the falsity of LR. An experimental
goal is to convincingly exclude the presence of such loopholes.

III. TIME-TAG BELL TESTS

A common method for performing Bell tests is to use a
source that continuously emits pairs of polarization-entangled
photons. The photons are delivered to two measurement setups.
A trial consists of choosing the settings and then recording
photodetection events for a fixed observation window. We
focus on the simplest case, where the measurement setups

involve polarizers whose angles determine the settings. Each
setup has one photodetector that records photons that passed
through the polarizer. Thus, the record of a trial includes two
time-tag sequences recording the times at which photons were
detected. The experiments reported in [18,19] used this setup.

One way to think about such an experiment is that
fundamentally, each photon pair’s emission and detection
constitutes a trial. In this case, the first step in an analysis
is to identify the detection pattern for each emitted pair. The
record does not identify when neither photon was detected,
but the Bell inequalities used can be chosen so that the
total Bell-inequality violation is insensitive to the number of
photon-pair trials where neither photon was detected. Thus,
the analysis requires identifying coincidences, that is, pairs
of detections that are due to one photon pair. Identifying
coincidences is complicated by the fact that the recorded time
tags have “jitter,” that is, the difference between the time tag
t and the “true” time of arrival of a photon t0 is a random
variable with non-negligible width j (to be defined in Sec. IX
for specific jitter distributions). Furthermore, since photon
pairs are continuously emitted, their creation times and their
times of arrival are also random. Pair emission can usually be
modeled as a Poisson process. Denote the mean interarrival
time between successive photon pairs as τ . It is necessary to
determine which pairs of close time tags t and r of A and B

are due to the same photon pair. This cannot be done without
error, as there is always the possibility that photons detected
by A and B around the same time are from two different
photon pairs that were created with small time separation. The
probability of this event grows with j/τ .

Given that coincidences cannot be identified exactly, it
is necessary to determine how this affects the interpretation
of a Bell-inequality violation. In cases where the nominal
mean violation per photon pair is small and j/τ is relatively
large, the evidence against LR may be weakened substantially.
An example of this situation is the experiment reported in
Ref. [18], which aimed to close the fair sampling loophole with
photons. The violation was limited by the overall detection
efficiency realized in the experiment. To interpret the violation,
one can analyze the effects of coincidence identification
error by making the assumptions that the source is idealized
Poisson, the jitter is settings independent, the photon pairs’
states are independent and identical, and the method for
recording detections is memoryless. Parts of such an analysis
are in [20]. But, these are highly idealizing assumptions
unlikely to be satisfied in a real experiment. Relying on
them precludes making strong claims on having demonstrated
non-LR effects. Of particular concern is that the presence of
jitter in combination with a conventional coincidence analysis
requires a fair coincidence sampling assumption [10]. For
conventional analyses, this assumption can be avoided by
using “pulsed” trials, which can significantly reduce the rate
of detections. Such an experiment was reported in Ref. [19].

Unfair coincidence sampling can arise from local, settings-
dependent properties of the detectors, including the associated
settings-related apparatus such as polarization filters. A simple
LR model that exploits unfair coincidence sampling to show
violation of a Bell inequality is illustrated in Fig. 1. Suppose
that for A, the difference t − t0 between the recorded time tag
and the photon arrival time is 0 on setting 1̄ and � on setting
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FIG. 1. Illustration of a LR model that uses settings-dependent
detection times to violate a Bell inequality. Detection time t − t0
proceeds along the horizontal axis. Each row above the time axis
corresponds to one measurement setting combination used by A and
B. Photons are detected by A and B at the times labeled “A” and “B.”
(At the 1̄1̄ setting, both A and B detect their respective photons near
0.) The shaded regions indicate coincidence windows of width 1.5�.
At the 2̄2̄ setting, the photons detection times are separated by 2�,
so A and B can never observe coincidences with 2̄2̄.

2̄. For B, suppose that the difference is 0 on setting 1̄ and
−� on setting 2̄. To identify coincidences, one can choose
a coincidence window width w and declare that time tags
of A and B whose separation is less than w are coincident.
It is necessary to have a method for resolving coincidence
conflicts such as when a time tag of A is within w of more
than one time tag of B. Here, we just assume that j/τ is small
enough for this not to be considered an issue. Suppose that
the coincidence window width is chosen to be w = 1.5�. If
the LR model for the photon pair is to “detect” no matter
what the setting is, then A and B record coincidences on
all settings except 2̄2̄, where the two detections are inferred
as being noncoincidence detections. This LR model strongly
violates commonly used Bell inequalities, such as the one
introduced in Sec. IV, Eq. (2), whose violation is increased
by anticorrelation between A’s and B’s detections on the 2̄2̄
setting. The choice of w may seem arbitrary, but a natural
way to choose w is to optimize the violation on a training set
or on preliminary data. In this case, w = 1.5� is an optimal
choice. Note that locality assumptions and the assumption
that settings’ choices are uniformly random and independent
of hidden variables affecting the measurement outcomes are
satisfied in this example.

A detailed theoretical treatment of unfair coincidence
sampling is given in Ref. [10], including a more sophisti-
cated example that can respond to the continuous angular
settings choices available when measuring photons. Given the
assumptions in Ref. [10], there are valid adjustments to a Bell
inequality based on knowledge of the probability of missing a
coincidence. Our approach based on time-tag Bell inequalities
does not require such additional knowledge.

It may seem like the presence of unfair coincidence
sampling due to a dependence of detector timing on settings
can be excluded by checking that there is no widening of
the time-separation distribution of the nearest time tags of A

and B for the 2̄2̄ settings compared to the others. Further,
one can attempt to choose w after studying this distribution

to ensure that the fraction of missed coincidences for the 2̄2̄
setting is sufficiently small. Any such attempt would require
an hypothesis test (or some other way to quantify evidence)
for the claim that no unfair coincidence sampling is present in
the experiment. Depending on how the data for these tests are
acquired, additional assumptions on consistency of detector
behavior may be needed. In pursuing this approach, one must
then decide at what significance level one wishes to exclude
excessive unfair coincidence sampling. This significance level
should be similar to the claimed significance of the violation.
This may not be feasible in an experiment without greatly
weakening the significance of the result.

Coincidence sampling effects can also be exploited directly
by a LR source. The simplest example just simulates the
detector timing issue. There are two operationally different
versions of this example. In the first, the local hidden variable
of a photon also identifies the time at which the detector
records it in a setting-dependent way. One could imagine
that once the photon arrives at the detector and senses the
setting, it “pauses” a variable amount of time. It now suffices
to emit photon pairs where photon A’s local variable assigns
“detect” at time t on setting 1̄ and “detect” at time t + �

on setting 2̄, whereas photon B’s variable assigns “detect” at
time t on setting 1̄ and “detect” at time t − � on setting 2̄.
Such photons seem impossible to realize, but the following
version of the example may be realizable. The source sends
a photon to B at time t − �, a pair to A and B at time t ,
and another to A at time t + �. The first photon is prepared
so as to be detected by B only on setting 2̄. The two middle
photons are detected only on setting 1̄. The last photon is
prepared so as to be detected by A only on setting 2̄. When
A and B compare their time tags and use w = 1.5� for
their coincidence analysis, they again see coincidences on
all settings except for 2̄2̄. A LR source that wishes to hide
having manipulated emission times can intersperse a small
number of photons with the emission pattern above with
regular LR pairs of photons that ensure equality for the Bell
inequality of interest. Other opportunities to hide the presence
of unfair coincidence sampling from the experimenters exist.
The LR source can systematically introduce LR photons
with varying timing features, and it can conditionally omit
“normal” photon pairs to make it more difficult to see excess
numbers of close detections outside the coincidence window.
While these possibilities may seem physically unrealistic, they
are of concern in cryptographic applications of experimental
configurations for violating Bell inequalities. To show that
these concerns are justified, in Sec. IX we show simulation
results for a LR source whose statistics would be difficult to
distinguish from a quantum source in an experimental setting.
The conventional coincidence analysis shows a false violation
of a Bell inequality for this source.

IV. DISTANCE-BASED BELL FUNCTIONS

Distance-based Bell functions and associated Bell inequal-
ities generalize the conventional two-party, two-setting Bell
inequalities such as the CHSH [21] and CH inequalities [22]
(the abbreviations stand for the authors’ initials). Consider two
parties A and B, where each can choose from two settings
labeled 1̄ and 2̄ and the physical meaning of the setting

032105-4



BELL INEQUALITIES FOR CONTINUOUSLY EMITTING . . . PHYSICAL REVIEW A 91, 032105 (2015)

labels depends on the party. Suppose that the measurement
outcomes at a given setting are −1 or 1. Let OX and SX be
the measurement outcome and setting of party X, respectively.
One of the CHSH inequalities for this configuration is

〈OAOB |SA = 2̄,SB = 2̄〉 − 〈OAOB |SA = 2̄,SB = 1̄〉
−〈OAOB |SA = 1̄,SB = 1̄〉
−〈OAOB |SA = 1̄,SB = 2̄〉 � −2, (1)

where 〈U 〉 denotes the expectation of U . This inequality
is satisfied by all LR models. Let l(x,y) = |x − y|. Since
OAOB = 1 − l(OA,OB), Eq. (1) can be rewritten as

〈l(OA,OB)|SA = 2̄,SB = 1̄〉 + 〈l(OB,OA)|SA = 1̄,SB = 1̄〉
+ 〈l(OA,OB)|SA = 1̄,SB = 2̄〉
− 〈l(OA,OB)|SA = 2̄,SB = 2̄〉 � 0. (2)

A deterministic LR model assigns a specific value dX
c for the

measurement outcome of each party X and setting c before the
experiment. In this case, the left-hand side of Eq. (2) is given by
l(dA

2̄ ,dB
1̄ ) + l(dB

1̄ ,dA
1̄ ) + l(dA

1̄ ,dB
2̄ ) − l(dA

2̄ ,dB
2̄ ). This is at least

0 because l satisfies the triangle inequality as illustrated in
Fig. 2 and observed by Schumacher in Ref. [11]. The inequality
of Eq. (2) follows because general LR models are probabilistic
mixtures of deterministic ones. We have switched the A and
B arguments of l in the contribution for the 1̄1̄ setting in
preparation for applying asymmetric functions l.

The Bell inequalities of Eqs. (1) and (2) are expressed
in terms of quantities that are conditional on settings. Since
measurement settings need to be chosen randomly, experi-
mentally estimating these quantities requires dividing by the
actual number of times the relevant settings are chosen. This
complicates the estimation of experimental uncertainty. To
avoid this complication, recall that the probability distribution
of the settings is known beforehand and is independent of
the LR model. Let pab be the probability that A and B choose
settings a and b, respectively. Then, the left-hand side of Eq. (2)
is equal to

〈(−1)[SA=2̄ and SB=2̄]l(OA,OB)/pSASB 〉, (3)

where the expression [φ] in the exponent of −1 evaluates to
1 when the logical formula φ is true and to 0 when it is false.

FIG. 2. Illustration of the twice-iterated triangle inequality. Each
node represents one of the four potential measurement outcomes in
dLR, and each directed edge represents one of the lengths l in Eq. (4).
The edges on the path correspond to “compatible” measurements
pairs that are experimentally measured. The locations of the nodes
are arbitrary in this illustration.

Equation (3) is the expectation of a function of the settings
and measurement outcomes. This function is the Bell function
for the inequality of Eq. (2). For our default assumption of a
uniform settings probability distribution, pSASB = 1

4 .
In general, we define a Bell function to be a function of trial

outcomes whose expectation with respect to every LR model is
non-negative, where the probability distribution of the settings
is fixed. We now obtain such Bell functions from functions l :
(x,y) ∈ O × O �→ l(x,y) ∈ R that satisfy the twice-iterated
triangle inequality l(x1,x4) � l(x1,x2) + l(x2,x3) + l(x3,x4),
where O is a common measurement outcome space for
all parties and settings. Unlike a true distance, we do not
require l to be non-negative or symmetric. Note that the
twice-iterated triangle inequality follows from the usual
triangle inequality d(u,w) � d(u,v) + d(v,w) by substituting
the right-hand side of d(x1,x3) � d(x1,x2) + d(x2,x3) for
d(x1,x3) in the inequality d(x1,x4) � d(x1,x3) + d(x3,x4).
While it is convenient to construct functions satisfying the
twice-iterated triangle inequality from functions satisfying
the usual triangle inequality, we do not require that l satisfy
the usual triangle inequality. Note that in the context of metrics
and quantum information, the twice-iterated triangle inequality
is occasionally referred to as a “quadrilateral inequality” [11]
or a “quadrangle inequality” (these terms have other meanings
depending on context).

Consider a deterministic LR model given as above by its
outcome assignments dLR = (dA

1̄ ,dA
2̄ ,dB

1̄ ,dB
2̄ ). The elements of

dLR obey the inequality

0 � l
(
dA

2̄ ,dB
1̄

) + l
(
dB

1̄ ,dA
1̄

) + l
(
dA

1̄ ,dB
2̄

) − l
(
dA

2̄ ,dB
2̄

)
, (4)

obtained by arranging the twice-iterated triangle inequality
as illustrated in Fig. 2. The reversal of the parties in the
term l(dB

1̄ ,dA
1̄ ) (the middle edge of the indirect path) requires

argument reversals in the expressions following.
We can define a Bell function based on l as follows:

Bl(t) =
⎧⎨
⎩

4l(oB,oA) if sA = 1̄ and sB = 1̄,
4l(oA,oB ) if sA �= sB ,
−4l(oA,oB) if sA = 2̄ and sB = 2̄,

(5)

where t = (oA,sA,oB,sB) is a trial outcome. The factor of
4 originates as the inverse of the probability 1

4 of each
of the settings. Consider a LR model with measurement
outcome random variables DX

c . In the trial outcome random
variable T , OA = DA

SA and OB = DB
SB . Because the settings

are independent of the DX
c , the expectation of Bl can be

computed as

〈Bl(T )〉LR = 〈l(DA
2̄ ,DB

1̄ )〉LR + 〈l(DB
1̄ ,DA

1̄ )〉LR

+〈l(DA
1̄ ,DB

2̄ )〉LR − 〈l(DA
2̄ ,DB

2̄ )〉LR � 0, (6)

where the factors of 4 were canceled by the probabilities
of the settings. The inequality can be checked directly for
deterministic LR models, by replacing the random variable DX

c

with the constant dX
c . For general LR models, both sides can

be integrated with respect to the appropriate distributions over
deterministic LR models. For a general settings distribution,
the values of l in Eq. (5) are multiplied by the inverse of the
applicable settings’ probability so that the expression for the
expectation in Eq. (6) is unchanged.
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Equation (6) is the Bell inequality associated with the Bell
function Bl . To test it in an experiment involving a sequence
Tk of trial outcomes, one computes the values Bl(tk) on the
actual trial outcomes tk . The sum v = ∑

k Bl(tk) is then an
estimate of

∑
k〈Bl(Tk)〉, that can be compared to 0. The test is

considered successful if v < 0, and the difference between v

and 0 is statistically significant. According to the conventional
approach, this involves determining an uncertainty for v. See
Appendix A for an effective method for obtaining such an
uncertainty that takes into account the known probability
distribution of the settings. While this prescription is seemingly
straightforward, care must be taken when interpreting the
results for trials that may not be independent and identical
[14,23,24]. Statements on the strength of evidence against
LR require additional analysis based on statistical hypothesis
testing (see Sec. VIII).

For our applications to time-tag sequences, we further
generalize the Bell functions by allowing l to depend on
the settings. Consider functions lab of two measurement
outcomes that satisfy the following version of the iterated
triangle inequality:

0 � l2̄1̄

(
dA

2̄ ,dB
1̄

) + l1̄1̄

(
dB

1̄ ,dA
1̄

) + l1̄2̄

(
dA

1̄ ,dB
2̄

) − l2̄2̄

(
dA

2̄ ,dB
2̄

)
.

(7)

We call such an l a CH function. For the first and shorter
expression in the next definition, we use the notation
l̃1̄1̄(o1,o2) = l1̄1̄(o2,o1) and l̃ab(o1,o2) = lab(o1,o2) for
ab �= 1̄1̄. A Bell function Bl can now be defined by
generalizing Eq. (5) according to

Bl(t) = 4(−1)[sA=2̄ and sB=2̄] l̃sAsB (oA,oB)

=
⎧⎨
⎩

4lsAsB (oB,oA) if sA = 1̄ and sB = 1̄,
4lsAsB (oA,oB ) if sA �= sB ,
−4lsAsB (oA,oB) if sA = 2̄ and sB = 2̄.

(8)

We call Bl a CH Bell function. It satisfies Eq. (6) after adding
the appropriate indices to the occurrences of l.

We remark that every Bell function for a two-party, two-
settings configuration can be put in the form of a CH Bell
function for some choice of CH function l. Thus, many
of the techniques discussed in the remainder of the paper
are generally applicable. Consider an arbitrary Bell function
B(oA,sA,oB,sB) standardized as above so that 〈B(T )〉LR � 0
for the settings probability distribution pab. We can define

lB,ab(o1,o2) =
⎧⎨
⎩

B(o2,a,o1,b)pab if ab = 1̄1̄,
B(o1,a,o2,b)pab if a �= b,
−B(o1,a,o2,b)pab if ab = 2̄2̄.

(9)

Since there are no constraints on the measurement outcomes
in deterministic LR models, the Bell inequality implies the
iterated triangle inequality of Eq. (7). To show this, fix the LR
model so that it is deterministic according to dLR, where dLR

is arbitrary. Then,

0 � 〈B(T )〉LR =
∑
ab

pab〈B(OA,a,OB,b)|ab〉LR

=
∑
ab

pabB
(
dA

a ,a,dB
b ,b

)

= lB,2̄1̄

(
dA

2̄ ,dB
1̄

) + lB,1̄1̄

(
dB

1̄ ,dA
1̄

) + lB,1̄2̄

(
dA

1̄ ,dB
2̄

)
− lB,2̄2̄

(
dA

2̄ ,dB
2̄

)
.

V. BELL FUNCTIONS FOR TIME-TAG SEQUENCES

For our construction of CH functions for general time-
tag sequences, we require functions lab whose domains are
two lists of real numbers representing the time-tag sequences
at settings ab, whose ranges are the real numbers, and that
satisfy the iterated triangle inequality. Our general strategy is
to construct lab so that it computes a quantity similar to an edit
distance, which quantifies the degree of dissimilarity between
the time-tag sequences obtained by A and B. (However, our
CH functions may be negative and are not symmetric in their
arguments, so they are not strictly distances.) As mentioned in
the Introduction, edit distances are commonly used to compare
strings and are defined by the minimum number (or cost) of
elementary edits required to convert one string to another.
Here, the edits consist of deleting time tags or moving them,
where the cost of the move is related to the distance of the
move. In particular, our implementation matches time tags of
A with time tags of B and assigns a cost to the difference
between the matched time tags and a cost to unmatched time
tags.

To compute the cost for matched time tags we use function-
tuples (fab)a,b∈{1̄,2̄}, where the fab : x ∈ R �→ fab(x) ∈ R
satisfy that for all x,y,z ∈ R, f2̄2̄(x + y + z) � f2̄1̄(x) +
f1̄1̄(y) + f1̄2̄(z). We denote the set of such function-tuples by
T4. The goal is to compare time tags r and t obtained at settings
ab by computing fab(t − r). To construct a function-tuple
in T4 from any given f2̄1̄, f1̄1̄, and f1̄2̄, we can choose
f2̄2̄ such that f2̄2̄(u) � infx,y∈R (f2̄1̄(x) + f1̄1̄(y) + f1̄2̄(u −
x − y)), provided the expression on the right-hand side is
bounded from below. This condition is satisfied if the given fab

are lower bounded. Three immediate examples of members
of T4 are the linear tuples with fab(x) = λx, the constant
tuples with fab(x) = cab where c2̄1̄ + c1̄1̄ + c1̄2̄ = c2̄2̄ (an exact
and constant function-tuple), and fab(x) = [x � 0]. Here, we
again used the convention that for a logical formula φ, [φ] = 1
if φ is true and 0 otherwise. To construct other members of T4,
it helps to apply closure properties of T4.

Theorem 1. The set of function-tuples T4 is closed under
the following operations.

(a) Componentwise addition and multiplication by a posi-
tive real number (T4 is a convex cone).

(b) The reflection defined by f ′
ab(x) = fab(−x).

(c) Componentwise maximum of two function-tuples.
(d) For real numbers tab satisfying t2̄2̄ = ∑

ab �=2̄2̄ tab, the
shift transforming the components according to f ′

ab(x) =
fab(x + tab).

(e) For non-negative function-tuples and c � 0, the trans-
formation defined by f ′

ab(x) = min (fab(x),c).
(f) Let f and f ′ be function-tuples with f ′̄

22̄ monotone
nondecreasing. Then, the function-tuple defined by f ′′

ab =
f ′

ab ◦ fab is a function-tuple. If f2̄2̄ is also monotone non-
decreasing, then so is f ′′

2̄2̄.
Proof. (a) can be checked by direct application of the

definitions. (c) follows from the observation that the maximum
is monotone in each argument and the maximum of two
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matched sums is at most the sum of the maximums of the
terms. (b) and (d) follow from invariance of the defining
inequalities under reflection and under the shift specified in
(d). To check (e) note that f ′̄

22̄(x + y + z) � f2̄2̄(x + y + z) �
f2̄1̄(x) + f1̄1̄(y) + f1̄2̄(z). If a term on the right-hand side
is greater than c, non-negativity implies that the right-hand
side is at least c, an upper bound on the left-hand side
by definition of f ′̄

22̄. If not, the right-hand side is equal to
f ′̄

21̄(x) + f ′̄
11̄(y) + f ′̄

12̄(z). The following inequalities show (f):

f ′′
2̄2̄(x + y + z) = f ′̄

22̄(f2̄2̄(x + y + z))

� f ′̄
22̄(f2̄1̄(x) + f1̄1̄(y) + f1̄2̄(z))

� f ′̄
21̄(f2̄1̄(x)) + f ′̄

11̄(f1̄1̄(y)) + f ′̄
12̄(f1̄2̄(z))

= f ′′
2̄1̄(x) + f ′′

1̄1̄(y) + f ′′
1̄2̄(z), (10)

and the composition of monotone nondecreasing functions is
monotone nondecreasing. �

Here are a few more examples of function-tuples in T4.
(1) fab(x) = |x| = max(x, − x). In this case, the condition

is just the twice-iterated triangle inequality for the reals.
(2) One-sided threshold functions. Let real numbers

(tab)a,b satisfy t2̄2̄ = ∑
ab �=2̄2̄ tab and define fab(x) = [x � tab].

Note that this is an application of the shift in Theorem 1(d) with
parameters (−tab)a,b to the function-tuple gab(x) = [x � 0].

(3) Half-linear functions. For tab as in (2), a positive slope
m and an exact constant function-tuple cab, define fab(x) =
max (m(x − tab),cab). That this tuple is in T4 follows from the
closure properties applied to the generating examples given
above.

(4) Linear-edge window functions. Choose thresholds
tl,ab � th,ab such that for d = l and for d = h, td,2̄2̄ =∑

ab �=2̄2̄ td,ab, and positive slopes ml and mh. Define

fab(x) = min (1, max (0,mh(x − th,ab),ml(tl,ab − x))). (11)

As illustrated in Fig. 3, these functions are 0 between tl,ab

and th,ab, and rise linearly away from these thresholds up to a
value of 1. That they form tuples in T4 follows from the closure
properties.

In our applications, we use the linear-edge window func-
tions. In spot checks using linear programming, they appear to
optimize the sought for violations among non-negative tuples
in T4 that are 1 outside a fixed interval.

We now construct a CH function lf for pairs of time-tag
sequences from an arbitrary function-tuple f = (fab)a,b∈{1,2}
in T4. Let r,t be two ordered time-tag sequences, r = (r1 �
. . . � rm) and t = (t1 � . . . � tn). Let M be the family

x

1

FIG. 3. Illustration of the linear-edge window functions. See the
text for the definitions.

of partial, noncrossing matchings between r and t. Such
matchings M can be identified with one-to-one, partial,
monotone functions M : k ∈ dom(M) ⊆ [m] �→ M(k) ∈ [n].
Monotonicity implies that if k,l ∈ dom(M) and k < l, then
M(k) < M(l). (We use the notation [j ] = {1, . . . ,j}.) Let
lf,ab(r,t) be the minimum over all M ∈ M of the “cost”

l(fab,M,r,t) = m − |dom(M)| +
∑

k∈dom(M)

fab(tM(k) − rk).

(12)
One way to think of this is as the minimum total cost of editing
r into t by deleting time tags in r at a cost of 1 (assessed by
m − |dom(M)|), deleting time tags of t at no cost, and by
shifting the remaining time tags of r by x at a cost of fab(x)
(assessed by the sum over k ∈ dom(M)), where each time tag
can be shifted at most once and the final time ordering is the
same as the initial one. We can also view this as a maximum
weighted bipartite noncrossing matching problem, where the
matching is between indices of r and indices of t with the
weight of (k,l) being (1 − fab(tl − rk)). The cost is then given
by m minus the weight of the maximum-weight matching. An
example of the cost computation is in Fig. 4.

Theorem 2. Suppose that the measurement outcome space
O consists of time-tag sequences. Let f be a function-tuple in
T4. Then, lf [as defined before Eq. (12)] is a CH function.

Proof. Consider deterministic LR outcomes dX
c as in-

troduced previously, but with outcomes consisting of time-
tag sequences. Let Mab be the cost-minimizing matchings
for which l(fab,Mab,d

A
a ,dB

b ) = lf,ab(dA
a ,dB

b ) if ab �= 1̄1̄, and
l(f1̄1̄,M1̄1̄,d

B
1̄ ,dA

1̄ ) = lf,1̄1̄(dB
1̄ ,dA

1̄ ). We can construct a match-
ing M ′ from dA

2̄ to dB
2̄ by composing M ′ = M1̄2̄ ◦ M1̄1̄ ◦ M2̄1̄,

with domain consisting of those indices for which the composi-
tion is defined. Then, M ′ is monotone and l(f2̄2̄,M

′,dA
2̄ ,dB

2̄ ) �
lf,2̄2̄(dA

2̄ ,dB
2̄ ). Therefore, it suffices to show that

l
(
f2̄2̄,M

′,dA
2̄ ,dB

2̄

)
� l

(
f2̄1̄,M2̄1̄,d

A
2̄ ,dB

1̄

) + l
(
f1̄1̄,M1̄1̄,d

B
1̄ ,dA

1̄

)
+ l

(
f1̄2̄,M1̄2̄,d

A
1̄ ,dB

2̄

)
. (13)

The composition of functions defining M ′ terminates at the first
step where the mapped-to index fails to be in the domain of
the next matching. This allows us to associate with each index
not in the domain of M ′ a unique index along the way that is
“deleted” in the next step. Indices in the domain pass through
each matching and accumulate separate distances that bound

FIG. 4. Example of a time-tag–distance calculation. The begin-
nings of two time-tag sequences are shown. The gray circles are
positioned at the recorded times of the time tags. The settings may
be assumed to be 1̄1̄. The cost function is f1̄1̄(x) = min(1,|x/τ |).
The edit action is indicated, with “x” marking a deleted time tag and
arrows showing the order-preserving moves. The costs are shown
above the edit action. The total cost of the edits shown here is 3.7.
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the corresponding distance in M ′. To formalize this idea, for
each index k of dA

2̄ , we define N (k) as a pair consisting of an in-
dex and a party and setting label as follows: If k �∈ dom(M2̄1̄),
then let N (k) = (k,A2̄). Else, if M2̄1̄(k) �∈ dom(M1̄1̄), then
let N (k) = (M2̄1̄(k),B1̄). Else, if M1̄1̄(M2̄1̄(k)) �∈ dom(M1̄2̄),
then let N (k) = (M1̄1̄(M2̄1̄(k)),A1̄). If none of these conditions
apply, k is in the domain of M ′ and we let N (k) = (M ′(k),B2̄).
The definition implies that N is one to one, k ∈ dom(M ′) iff
the second component of N (k) is B2̄, and if k �∈ dom(M ′),
then the first component of N (k) is not in the domain of one of
M2̄1̄, M1̄1̄, or M1̄2̄. This ensures that all members of dA

2̄ deleted
according to M ′ are matched to deleted members of one of
the time-tag sequences in the composition. In particular, the
deletion cost on the left-hand side of Eq. (13) is at most that
on the right-hand side.

We now focus on the shift costs contributing to Eq. (13).
Let (dX

c )k be the kth time tag of dX
c . It remains to be shown

that ∑
k∈dom(M ′)

f2̄2̄

[(
dB

2̄

)
M ′(k) − (

dA
2̄

)
k

]

�
∑

k∈dom(M2̄1̄)

f2̄1̄

[(
dB

1̄

)
M2̄1̄(k) − (

dA
2̄

)
k

]

+
∑

k∈dom
(
M1̄1̄

) f1̄1̄

[(
dA

1̄

)
M1̄1̄(k) − (

dB
1̄

)
k

]

+
∑

k∈dom
(
M1̄2̄

) f1̄2̄

[(
dB

1̄

)
M2̄1̄(k) − (

dA
2̄

)
k

]
. (14)

Because all shift costs are positive, it suffices to show that∑
k∈dom(M ′)

f2̄2̄

[(
dB

2̄

)
M ′(k) − (

dA
2̄

)
k

]

�
∑

k∈dom(M ′)

{
f1̄2̄

[(
dB

2̄

)
M ′(k) − (

dA
1̄

)
M1̄1̄◦M2̄1̄(k)

]

+f1̄1̄

[(
dA

1̄

)
M1̄1̄◦M2̄1̄(k) − (

dB
1̄

)
M2̄1̄(k)

]
+ f2̄1̄

[(
dB

1̄

)
M2̄1̄(k) − (

dA
2̄

)
k
)
]}

, (15)

in which terms on the right-hand side that are not included
in the composed matchings have been neglected. For each
k ∈ dom(M ′),

f2̄2̄

[(
dB

2̄

)
M ′(k) − (dA

2̄

)
k

]
= f2̄2̄

[(
dB

2̄

)
M ′(k) − (

dA
1̄

)
M1̄1̄◦M2̄1̄(k) + (dA

1̄ )M1̄1̄◦M2̄1̄(k)

−(
dB

1̄

)
M2̄1̄(k) + (

dB
1̄

)
M2̄1̄(k) − (

dA
2̄

)
k

]
(16)

� f1̄2̄

[(
dB

2̄

)
M ′(k) − (

dA
1̄

)
M1̄1̄◦M2̄1̄(k)

]
+ f1̄1̄

[(
dA

1̄

)
M1̄1̄◦M2̄1̄(k) − (

dB
1̄

)
M2̄1̄(k)

]
+ f2̄1̄

[(
dB

1̄

)
M2̄1̄(k) − (

dA
2̄

)
k
)
]
, (17)

according to the defining inequality of function-tuples.
These summands are separate contributions [for distinct k ∈
dom(M ′)] to the right-hand side of Eq. (13), completing the
proof. �

An algorithm to compute the minimum costs lf,ab(r,t) is
described in Appendix B.

VI. NONSIGNALING ADJUSTMENTS TO CH FUNCTIONS

The nonsignaling conditions are a set of equalities that
constrain probability distributions describing A’s and B’s mea-
surement outcomes. They ensure that each party’s outcome
distribution is independent of the other party’s setting. Other-
wise, one party could signal their setting to the other party.
Formally, given nonsignaling and any real-valued function
h onO, 〈h(OA)|SA = a,SB = 1̄〉 = 〈h(OA)|SA = a,SB = 2̄〉
and similarly for reversing the roles of A and B. Although both
quantum and LR theories obey the nonsignaling equalities,
using these equalities to transform Bell inequalities can
increase the signal-to-noise ratio (SNR) of a Bell-inequality
violation observed in an experimental test of LR.

Consider the general iterated triangle inequality for a CH
function l. We can modify l by defining

l′ab(x,y) = lab(x,y) +
{−f1̄(y) − g1̄(x) if a=1̄ and b = 1̄,
fa(x) + gb(y) otherwise,

(18)

where fa and gb are arbitrary real-valued functions. Replacing
l by l′ leaves the right-hand side of Eq. (7) unchanged, so l′ is
also a CH function. Furthermore, we have 〈Bl(T )〉 = 〈Bl′(T )〉
for any model satisfying the nonsignaling conditions. We call
l′ a nonsignaling adjustment of l. Note that the functions

lA,ab(x,y) =
{−f1̄(y) if a = 1̄ and b = 1̄,
fa(x) otherwise

(19)

and

lB,ab(x,y) =
{−g1̄(x) if a = 1̄ and b = 1̄,
gb(y) otherwise

(20)

are CH functions, and l′ab = lab + lA,ab + lB,ab.
Nonsignaling adjustments can be used to improve the SNR

of the empirical estimate of a Bell function Bl obtained from
a sequence of trials. As a simple example with a two-point
outcome space, consider N trials to test a version of the
inequality of Eq. (6). The experiment is configured so that
each trial involves emission of exactly one photon pair with
some probability (and emission of nothing otherwise), and
the measurement outcomes 1 and 0 correspond to whether a
photon was detected or not. We start with lab(x,y) = max(x −
y,0), which is a CH function. Let pX

c be the probability that X

detects a photon at setting c in a trial. Let cab be the probability
of coincident detections when the parties use settings ab. The
expected value of the Bell function of Eq. (5) is then

〈4[SA = 2̄ and SB = 1̄]l2̄1̄(OA,OB)〉
+ 〈4[SA = 1̄ and SB = 1̄]l1̄1̄(OB,OA)〉
+ 〈4[SA = 1̄ and SB = 2̄]l1̄2̄(OA,OB)〉
− 〈4[SA = 2̄ and SB = 2̄]l2̄2̄(OA,OB)〉

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

〈4[SA = 2̄ and SB = 1̄][OA = 1&OB = 0]〉
+ 〈4[SA = 1̄ and SB = 1̄][OB = 1&OA = 0]〉
+ 〈4[SA = 1̄ and SB = 2̄][OA = 1&OB = 0]〉
− 〈4[SA = 2̄ and SB = 2̄][OA = 1&OB = 0]〉
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=

⎧⎪⎪⎨
⎪⎪⎩

pA
2̄ − c2̄1̄

+ pB
1̄ − c1̄1̄

+ pA
1̄ − c1̄2̄

− (
pA

2̄ − c2̄2̄

)
.

(21)

Note that the terms pA
2̄ cancel in this expression. (The last

expression matches half of the original CH inequality in the
paragraph of Eq. (B8) of Ref. [22] after relabeling and a
change of sign.) However, when estimating the expectation
by evaluating the Bell function on the trials, the two pA

2̄ s are
contributed by values at different settings, namely 2̄1̄ and 2̄2̄.
Consequently, two sources of counting statistics variability
associated with detections of A at setting 2̄ affect the the SNR
of the Bell function. We can eliminate this problem by defining
f2̄(x) = −x in Eq. (18). (Here, fa and gb are set to zero
if not explicitly assigned.) By the nonsignaling constraints
and construction, the modified Bell function has the same
expectation as the original Bell function. This Bell function
was used to show a Bell-inequality violation in the experiment
reported in Ref. [18]. A further improvement of the SNR is
obtained by “distributing” the terms whose expectations are pB

1̄
and pA

1̄ over the different settings. It is equivalent to averaging
them over the other party’s setting choices and involves setting
f1̄(x) = −x/2 and g1̄(x) = x/2 in Eq. (18), in addition to
setting f2̄(x) = −x. This modification was introduced for the
explicit purpose of improving the SNR of the violation in
Ref. [19].

VII. PROTOCOL FOR DATA ANALYSIS

When analyzing a set of time-tag–sequence pairs from
trial measurement outcomes, it is necessary to choose a Bell
function Bl that, before the experiment, can be expected to
show good results. It may not be feasible to make a good
choice of Bl on purely theoretical grounds. One can instead
acquire a statistically useful training set consisting of the
outcomes from the first Nt trials and set aside the remainder
in the analysis set. The notion of “statistically useful” is
not formalized here. The training set is used to choose the
parameters required for analyzing the rest of the data. The
training set is excluded from the final analysis. The main
task is to determine a function-tuple in T4 and nonsignaling
adjustments to use for defining Bl . In principle, one can
optimize the function-tuple on the training set. That is, one
can compute Bl for all such function-tuples and pick the one
that minimizes the empirically computed value of Bl . This
optimization is difficult, but one can use nonlinear optimization
on the eight independent parameters of the linear-edge window
functions. We note that on spot checks, this subset of T4

appears to contain the optimal solution among function-tuples
of T4 whose members are constrained to be 1 outside a fixed
interval [−u,u]. In the simulations following, the number of
independent parameters was reduced to 2 by taking advantage
of symmetries. The suggested nonlinear optimization can still
be too resource intensive. In our simulations, we used an
effective approximation; see Appendix C. We do not discuss
methods for optimizing the nonsignaling adjustments here.
In the simulations, we just use the ones described in the last
paragraph of Sec. VI. An even more ambitious optimization
could seek to optimize the SNR or the statistical significance

of the violation of the inequality rather than the expected value
of Bl .

VIII. BELL FUNCTION TRUNCATION FOR
P-VALUE BOUNDS

Consider N trials whose trial outcomes are tk and a Bell
function B. A direct way to analyze the trial outcomes is to
compute bk = B(tk), let f = ∑

k bk , and determine the sample
standard error for f as σe = √

N
∑

k(bk − f/N)2/(N − 1).
The violation can then be quantified by the “number of
standard deviations of violation”, −f/σe, which is the SNR of
the total violating signal. This number needs to be interpreted
with care, particularly if it is very large, a desirable outcome
of an experiment. If the trials are i.i.d., then f/N ± σe/N is
an approximate 68% confidence interval for the expectation
of B. (A better method that takes advantage of the fact that
the settings probability distribution is known is given in Ap-
pendix A.) However, even in the case of i.i.d. trials, −f/σe does
not quantify how strongly the experiment “rejects” LR models.
This is because the central limit theorem cannot be reliably
used to estimate extreme tail probabilities. Furthermore, the
assumption that the trials are identical rarely holds to high
precision, and independence cannot be assumed in applications
to cryptographic protocols. For more details on these issues,
see [16,17].

To determine the statistical significance of a Bell-inequality
violation, one can compute a bound on the largest probability
with which any LR model could produce a violation at least
as large as that observed. This upper bounds a p value
according to the theory of statistical hypothesis testing with
respect to the composite null hypothesis consisting of all
possible LR models. Typical Bell-inequality experiments thus
aim for extremely small p values. Given a p-value bound
p, it is convenient to quantify the violation in terms of the
(negative) log -p-value bound, formally defined as − log2(p).
In many cases, for example when reporting a discovery in
particle physics, p values are converted to equivalent standard
deviations with respect to the one-sided tail probabilities of
the standard normal distribution. For comparison, the log -p-
values corresponding to 1, 2, 3, 4, and 5 standard deviations
are 2.7, 5, 9.5, 14.9, and 21.7.

The first rigorous method for computing such a bound
was given by Gill [14,15] and is based on martingale theory.
This “martingale-based protocol” does not require that trials
be independent from one trial to the next, or that they have
identically distributed measurement outcomes, an important
feature for its application to quantum randomness expansion
[6]. The bound obtained by the martingale-based protocol is
suboptimal, but there is a protocol, the PBR protocol [16], that
is optimal in an asymptotic sense. Like the martingale-based
protocol, the PBR protocol also does not require independent
or identical outcomes. The PBR protocol has the advantage
that it does not require a predetermined Bell inequality,
nor does it require that the number of trials be decided
in advance: it gives valid p-value bounds for any stopping
rule (see the last paragraph of this section). The full PBR
protocol is computationally infeasible when the measurement
outcome spaces or the number of settings are large, but
there is a simplified and efficient version of the protocol
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that still outperforms the martingale-based protocol [17] while
retaining the advantages of the full protocol.

The PBR protocol is based on the following observation.
Suppose that before the kth trial, we can determine a “test
factor” Pk on the space of possible trial outcomes such that
Pk � 0 and for all LR models, 〈Pk(Tk)〉LR � 1, where the
bound holds regardless of what happened before the kth trial in
the experiment. Then, P = 〈∏N

k=1 Pk(Tk)〉LR � 1. Thus, given
LR, according to the Markov inequality, the probability that
P > 1/p is bounded above by p, and therefore 1/P is a
p-value bound. In general, candidate test factors R can be
obtained from Bell functions B bounded above by z according
to R = (z − B)/z. More generally, given a collection of
candidate test factors Ri � 0 satisfying 〈Ri(T )〉LR � 1, any
convex combination of the Ri can be used as Pk . (The
collection may depend on k.) The simplified PBR protocol
takes as input such a collection (Ri)mi=0 and chooses Pk

before the kth trial by optimizing the convex combination
on the outcomes of the previous trials. (R0 is always chosen
to be the “trivial” test factor 1.) Specifically, it maximizes
the empirical estimate of the log -p-value increase per trial
given by

∑k−1
i=1 − log2[Pk(ti)]/(k − 1). For more details, see

Ref. [17]. The possibility of adjusting the test factors for
the upcoming trial after each trial makes it possible to
avoid making predetermined choices for the Bell function
parameters.

In practice, there is little gained by reoptimizing the test
factors before every trial, and instead the factor is reused
until sufficiently many new trials have been obtained. In
principle, the number of trials before Pk can be productively
updated may be determined from statistical considerations.
(Our implementations so far are largely based on heuristic
considerations.) The simplest method is to determine the
optimal test factor from the training set and use it uniformly on
the analysis trials. For example, the starting Bell functions can
include multiple choices of parameters. The optimal convex
combination of the corresponding test factors can then be
determined empirically on the training set and can be directly
applied to the trials in the analysis set.

To apply the PBR protocol to time-tag data, we make two
modifications to the CH Bell functions. The first modification
ensures that we have a set of Bell functions that are bounded
from above as required by the simplified PBR protocol. Finite
bounds are normally not available for the time-tag–sequence
Bell functions discussed so far, or the bounds are too high
to be useful, so we describe a truncation strategy below. Our
second modification increases the expected log -p-value bound
produced by the PBR protocol by shifting the CH functions so
that the contributions to the violation of the CH Bell inequality
are equalized across measurement settings.

Consider a CH function l. To obtain a bounded CH Bell
function, it suffices to modify l by composition with a function-
tuple fab in T4 for which f2̄2̄ is monotone nondecreasing
and the fab are bounded. We call such an fab a monotone
and bounded function-tuple. To see that this preserves the
desired inequalities, consider Eq. (7) and define l′ab(dX

a ,dY
b ) =

fab(lab(dX
a ,dY

b )). Because of monotonicity of f2̄2̄, Theorem
1(f) ensures that l′ satisfies the inequality in Eq. (7), thus l′ is
also a CH function.

A convenient family of monotone and bounded function-
tuples in T4 is provided by

gab(x; b,u,c) = min ( max(x + bab,0),c) − uab, (22)

where bab and uab are exact constant tuples in T4 and c � 0.
That g is a function-tuple follows from the closure properties
of T4 (Theorem 1). If l is modified to l′ by means of a function-
tuple of the form gab, the Bell function Bl′ is guaranteed to
be bounded above by the maximum of c − u1̄1̄,c − u1̄2̄,c −
u2̄1̄,u2̄2̄. The following is a method for systematically choosing
the truncation parameters.

Consider a collection of training trials. Let lab = (lab,k)Nab

k=1
consist of the observed values of lsAsB (oA,oB ) for the trials
where sA = a and sB = b. Let l̄ab = ∑

k lab,k/Nab. The
bounds bab can be chosen as a compromise between having
small bounds on the Bell function and preserving the variation
in the values of lab,k . The violating signal is reduced if we
truncate the values of l2̄2̄ so that the maximum value is too
close to the mean l̄2̄2̄. This truncation point is determined by
solving x2̄2̄ + b2̄2̄ = c, that is, x2̄2̄ = c − b2̄2̄. (The upper or
lower truncation point is the value of x for which gab reaches
its upper or lower bound.) Similarly, we should not truncate
the other lab so that their minimum values are too close to their
means l̄ab. These truncation points are at xab = −bab. Let wab

be a “safe” separation between the truncation points and l̄ab,
to be determined from the distributions of the lab,k (see the end
of the next paragraph). For ab �= 2̄2̄, we can set bab by solving
−bab = l̄ab − wab. This determines b2̄2̄ = ∑

ab �=2̄2̄ bab. We can
then choose c so that c − b2̄2̄ = l̄2̄2̄ + w2̄2̄.

The next step is to choose uab so as to ensure that the
contributions to the violation conditional on the settings
are equalized. This is done to improve the expectation of
the log -p-value bound by exploiting the concavity of the
logarithm. Let l′ab,k = gab(lab,k; b,0,c) with b and c as obtained
so far. Define l̄′ab accordingly. We choose uab so as to
balance the average violation for the different settings. This
is accomplished by defining

uab = l̄′ab − (−1)[a=2̄&b=2̄](l̄ ′̄11̄ + l̄ ′̄12̄ + l̄ ′̄21̄ − l̄ ′̄22̄)/4. (23)

If we then use gab as defined in Eq. (22) and modify l as
described there with fab(x) = gab(x; bab,uab,c), this ensures
that each trial contributes the same estimated violation −v =
(l̄ ′̄11̄ + l̄ ′̄12̄ + l̄ ′̄21̄ − l̄ ′̄22̄)/4 on average. If this violation is not
negative, then this truncation is not helpful for use in the PBR
protocol. Assuming there is an empirical violation according to
the original l̄ab, the separations wab need to be increased until a
violation remains visible in the l̄′ab. In this case, if the violation
persists in future trials, the PBR protocol can take advantage of
the truncation. In our implementation, rather than attempting
to find the optimal choice for wab, we consider a small set
of good candidates, obtain the associated Bell functions, and
convert them to the nontrivial test factors Ri,i � 1 that are then
convexly combined with the trivial test factor by the simplified
PBR protocol as described above. We found that the convex
combination chosen by the protocol normally involved more
than one choice of wab, suggesting that a single choice is not
optimal.

We remark that the shift uab can be expressed as trivial
nonsignaling adjustments by constant functions. In addition to

032105-10



BELL INEQUALITIES FOR CONTINUOUSLY EMITTING . . . PHYSICAL REVIEW A 91, 032105 (2015)

increasing the SNR overall, a goal of nonsignaling adjustments
might be to equalize the SNR conditional on the settings, but
we did not attempt to achieve this.

The truncation and shifting strategy above results in factors
Pk (and candidate test factors Ri) whose predicted expectations
are upper bounded by 4

3 , according to the training set. To
see this, we show that the upper bound z of the modified
Bell function that determines a candidate test factor is at
least 3v, while by construction, the predicted expectation
is −v. Here, v depends on the training data and choice of
wab for this test factor. Since the test factor is given by
R = (z − B)/z, we find that the predicted expectation of
R is at most (z + v)/z � 4

3 . The upper bound is given by

z = maxab,x(−1)[a=2̄ and b=2̄]gab(x; bab,uab,c). The expression
for gab shows that maxx gab(x; bab,uab,c) = c − uab and
maxx −g2̄2̄(x; b2̄2̄,u2̄2̄,c) = u2̄2̄. Consider u2̄2̄, which is the
sum of the other uab (by definition of exact constant tuples
and by construction). For ab �= 2̄2̄, the lower bound on
gab(x; bab,uab,c) is −uab. But, the sample mean at setting
ab of the truncated Bell function is −v, which requires that
its lower bound satisfies −uab � −v. It follows that u2̄2̄ � 3v,
which completes the argument.

A consequence of this observation is that the expected
increase in the log -p-value per trial is bounded by log2( 4

3 ),
and it is not possible to take advantage of seemingly strong
violating signals per trial. To some extent, this is unavoidable:
We are making no assumptions on the probability distribution
of the time-tag sequences, and an extremely adversarial LR
model could take advantage of this in future trials given our
choice of parameters for the PBR protocol. For the purpose
of making the most of the PBR protocol, it is therefore
advantageous to design the individual trials to have statistically
small violating signals. In particular, it is favorable to have the
one-trial SNR be well below 1. A simple way to accomplish
this and get a better overall log -p-value bound is to shorten
the durations of the trials and increase the number of trials
proportionally.

We finish this section by explaining our comment that
the PBR protocol can be used with any stopping rule, such
as one according to which one collects trials until a desired
p-value bound is observed. To see this, virtually replace the
experiment with the stopping rule by one that performs a fixed,
large number of trials, larger than the maximum number of
trials that could be performed by the original experiment.
When the original experiment’s stopping rule says “stop,”
the new experiment sets all future test factors to 1. This is
justified because the experimenter’s choice of the test factors
for trial k is only constrained by Pk � 0 and 〈Pk(Tk)〉LR � 1,
which are satisfied by Pk = 1. The two experiments have the
same statistics for the p-value bounds obtained and the virtual
experiment’s p-value bounds are valid according to the theory
of the PBR protocol. We remark that the PBR protocol can be
viewed as an application of the theory of test supermartingales
as reviewed in Ref. [25].

IX. DEMONSTRATIONS ON SIMULATED DATA

To illustrate time-tag–sequence analysis, we simulated
experiments intended to test inequalities such as Eq. (5) and its
nonsignaling variations. The situation is as described in Sec. III

with a Poisson source of polarization-entangled photon pairs
and high overall efficiency. We assume that both arms of the
experiment have identical efficiency η. In principle, such tests
can succeed if η > 2

3 [26]. We explored the effects of uniform
jitter (defined in the next paragraph) on the performance of
such experiments at an efficiency of η = 0.8. We also found
lower bounds on the maximum uniform and exponential jitter
(defined in the next paragraph) for which our techniques can
show LR violation for η � 0.74. For each efficiency being
considered, we first optimized the violation of the CHSH
inequality in Eq. (1) by varying the settings’ choices and the
parameter θ in the family of unbalanced Bell states defined
by cos(θ )|00〉 + sin(θ )|11〉. Given the efficiency, an optimal
state, and settings, we computed the probabilities of the
measurement outcomes conditional on the settings.

We considered two families of time-tag jitter distributions
for the difference between the recorded time tag and the true
arrival time of a photon. The first is the uniform distribution
on an interval of width ju. That is, given the true arrival
time t , the recorded time tag t ′ is uniformly distributed in
the interval [t,t + ju]. The second family is an exponential
distribution with density γ e−γ (t ′−t) for t ′ � t . The two families
of distributions were chosen for ease of calculation and to
illustrate the effect of no tail versus long-tail behavior, with
long tails leading to greater loss of violating signal.

The procedures for simulating and analyzing an experiment
were automated. We generated simulated photon pairs at a
normalized rate of 1 per (arbitrary) unit of time. Thus, the
numerical value of τ (the mean photon-pair interarrival time)
is 1 in these units. From here on, time quantities such as
ju are given as numerical values with respect to these units.
The procedure is based on a choice of observation window
T for the time-tag sequences, number of training trials Nt ,
and number of analysis trials Na . In principle, these can be
chosen before the simulation is started to ensure sufficient
data for determining the needed analysis parameters from the
training set. We recall that for the PBR analysis to take full
advantage of the SNR, it is a good idea to choose T so that
the SNR for one trial is below 1. On the other hand, if T

is too small, loss of coincidences near the boundary due to
jitter leads to an additional reduction of the violating signal.
To reflect the conditions of experiments with always-on pump
lasers, we start generating photon pairs 2 units of time before
the beginning of the observation window. The data presented
below use T = 1000, Nt = 10 000, Na = 200 000. With these
parameters and given the jitter distribution, the procedure for
generating and analyzing data is as follows:

(1) Generate the trials for the training and analysis sets. For
each trial, first produce the sequence of times at which photon
pairs arrive at the detectors according to a Poisson process
of rate 1 as described above. The jitter distribution is used to
delay the recorded time of detection independently for the two
parties. The time tags inside the observation window are saved
to the parties’ time-tag sequences.

(2) Determine the analysis parameters from the training
set. Three studies are performed, each of which requires
optimized parameters. The first is a conventional coinci-
dence analysis, for which the coincidence window width
is determined by optimizing the resulting violation on the
training set. The second computes the time-tag–sequence
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distances based on the linear-edge window function-tuples.
The function-tuple parameters are optimized on the training
set. The tuples are restricted to be reflection symmetric
around 0, and the thresholds for the settings other than 2̄2̄
are taken to be identical. Thus, only two parameters need
to be optimized. (The optimization algorithm is described in
Appendix C.) The third is the PBR analysis on the truncated
Bell function. The truncation method and optimization of
the anticipated log -p-value increase per trial described in
Sec. VIII are used.

(3) Perform the three analyses on the analysis set using the
parameters determined from the training set.

The conventional coincidence analysis used in this pro-
cedure is equivalent to using identical window functions with
infinite edge slopes to compute the distances between each pair
of time-tag sequences according to the prescription for using
function-tuples. Because the function-tuple effectively used is
not in T4, there is no guarantee that the targeted Bell inequality
is strictly satisfied by LR models. The coincidence loophole
examples demonstrate that such an inequality requires addi-
tional assumptions on the nature of the detection events. We
remark that the analysis described in [27] is related to using
window functions with infinite edge slopes, but the width of
the window function for setting ab = 2̄2̄ is three times the
width of that used for the other settings. This set of window
functions is a function-tuple in T4 and produces an analysis
free of the coincidence loophole.

A. Uniform jitter distributions at efficiency = 0.8

We simulated experiments where the jitter has a uniform
distribution on the interval [0,ju], where ju ∈ [0.001,0.225].
This covers most of the range for which the conventional
coincidence analysis shows a violating signal. Figure 5 shows
the nominal SNRs for the conventional and the time-tag
analyses. The nominal SNR is the ratio of the violating
signal to the sample standard deviation. Positive values are
violating, negative ones are nonviolating. We refer to this
SNR as “nominal” because it cannot be interpreted in terms
of Gaussian tail distributions. See [17] for a discussion of
this issue. Our method for determining the SNRs is given in
Appendix A. The figure also shows the log -p-value bounds
from the PBR analysis on a matched scale. The log -p-value
bound and the time-tag analysis’ SNR both drop to zero around
ju = 0.06.

We next considered the following question: For what ju

does there exist an LR source that has the same statistics as
our simulated source? We do not have a definite answer to
this question. However, we constructed a LR source whose
one- and two-point statistics closely match those of the ideal
Poisson source of quantum photon pairs for ju � 0.11. More
generally, we tweaked the LR source so that for all positive
values of ju it looks like the Poisson source that we simulated
for the data in Fig. 5, except that it may have more coincidences
at the 2̄2̄ setting depending on the jitter. Further details are in
Appendix D. Figure 6 shows the results from applying the
conventional and time-tag analysis methods to data generated
by a simulation of the LR source. As expected, the time-tag
analysis shows no violation. But, the conventional analysis
falsely shows violation. For ju � 0.11 the violation is similar
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FIG. 5. Comparison of methods for simulated time-tag data from
a quantum source and detectors with efficiency η = 0.8 and uniform
jitter. The nominal SNRs for the standard and the time-tag analyses
are shown on the right axis. Negative SNRs mean that the signal is
positive and therefore not violating. The log -p-value bound for the
PBR analysis is shown on the left axis. The horizontal axis shows
the relative jitter width ju/τ . To match the two vertical axes with one
another, we converted log -p-values to equivalent Gaussian SNRs
by computing the value for which the one-sided tail probability for
the standard normal distribution matches the p-value bound. The
computed log -p-value bounds are 0 for ju above approximately 0.06
and not shown on the plot.

if somewhat lower than that for the corresponding quantum
photon pairs in Fig. 5.

B. Jitter thresholds for efficiency � 0.74

The simulations discussed above show that when there is
too much jitter, a nominally violating source of entangled
photon pairs produces time-tag data that become indistin-
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FIG. 6. Comparison of methods on LR-generated time-tag data.
The conventional coincidence analysis shows a false violation over
almost the entire range. The time-tag analysis shows no violation.
The log -p-value bounds from the PBR analysis are 0 everywhere
and are not shown. The SNR of the Poisson quantum source whose
one- and two-point statistics are approximated by the LR source for
jitter larger than ju/τ � 0.11 is also shown.
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TABLE I. Lower bounds on maximum jitter at which the
time-tag analysis can still detect violation of LR. The rows give
the maximum median jitter at which our simulations showed a
violation as determined by the log -p-value being strictly positive.
The simulation parameters other than jitter are the same as for the
other simulations. The jitter bounds are shown for the uniform and
for the exponential distributions. For ease of comparison, they are
parametrized in terms of the median delays of the recorded time
tags. For low violation, unfeasibly large training and analysis sets are
required to make the violation apparent in a simulation. Thus, the
entries in the table are lower bounds on the maximum jitter at which
the time-tag analysis can still detect violation. The missing entry was
not computed due to excessive computational resource requirements
for our implementation.

Uniform jitter Exponential jitter
Efficiency median (ju/2) median

0.74 0.013 0.0033
0.76 0.018 0.0049
0.78 0.024 0.0070
0.80 0.031 0.0095
0.85 0.052 0.017
0.90 0.07 0.029
0.95 0.051

guishable from that produced by an LR model. While we
cannot determine the minimum jitter at which this happens, it is
possible to lower bound the maximum jitter at which the time-
tag analysis methods can see LR violation. We simulated the
photon-pair source and measurement configuration introduced
above at various efficiencies and varied the jitter distribution.
We considered the uniform jitter model and the exponential
jitter model and determined the maximum jitter widths at
which the time-tag analysis found violation. The results are
shown in Table I in terms of the median of the jitter delay of
the recorded time tags.

X. CONCLUDING REMARKS

We have given a strategy based on the twice-iterated triangle
inequality for constructing arbitrary two-party, two-settings
Bell inequalities and applied it to the problem of analyzing
data from Bell trials with time-tag–sequence measurement
outcomes. We believe that the strategy can be used to
analyze any Bell experiment where settings are changed slowly
compared to the rate of detections. The benefit of considering
all the data while the settings are held fixed as contributing to
one trial is that loopholes associated with independence and
stability assumptions can be closed. For applications involving
continuously emitting sources, our strategy also closes any tim-
ing loopholes such as the coincidence loophole. We explored
the behavior of the time-tag Bell functions in simulated data
where jitter makes it difficult to assign coincidences reliably.
The simulations demonstrate the practicality of the method
and also demonstrate that the coincidence loophole can be
exploited surreptitiously, with little sign of the exploit in the
statistics of the detections.
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APPENDIX A: DETERMINING THE VIOLATION’S
NOMINAL SNR

The trials of an experiment result in a sequence of Bell
function values (bi)Ni=1, one for each trial. Let si be the settings
of trial i and Nab the number of trials at settings ab. A standard
approach to estimating the violation is to compute the sample
mean B̂ab = ∑

i:si=ab bi/Nab and define the estimated total
violation as N

∑
ab B̂ab/4. The variance of this value can

then be estimated to first order with respect to the variance of
Nab from the sample variances of the subsequences (bi)i:si=ab.
Instead of this procedure, we used a method that makes no
first-order approximations and can be meaningfully applied
even if the trials’ Bell function values Bi are not independent.
We consider this method better motivated, and it gives results
that are statistically close to those obtained by the standard
approach. Here, we describe the method for the case of i.i.d.
trials.

The goal is to estimate the expectation of the sum of the
trials’ Bell function values and obtain a nearly tight bound
on the variance of the estimate. The method is adaptive
and applied to the analysis data given some initial training
data. (Calibration data or theoretical predictions can be used
instead.) The desired expectation is B̄tot = ∑

i〈Bi〉. (Since we
are considering i.i.d. trials, the distribution of Bi is the same for
all i.) Before considering the ith trial, we use the previous trials
and the training set to obtain four unbiased estimates B̂i,ab of
〈Bi |Si = ab〉, where Si is the settings’ random variable for the
ith trial. This estimate can be obtained by any means desired.
We used the formula for B̂ab given above and applied it to
the training set and the first i − 1 trials. For the ith trial, we
then define the random variables Fi = B̂i,Si

and �i = Bi − Fi .
Because the settings’ probability distribution is known, so is
the expectation of Fi : 〈Fi〉 = ∑

ab B̂i,ab/4. We then record
δi = bi − fi for the ith trial and continue. Note that

∑
i

〈Bi〉 =
∑

i

〈Bi − Fi〉 +
∑

i

〈Fi〉

=
∑

i

〈�i〉 +
∑
i,ab

B̂i,ab/4. (A1)

We can therefore empirically estimate B̄tot as B̂tot = ∑
i δi +∑

i,ab B̂i,ab/4, which ensures that 〈B̂tot〉 = B̄tot. We are con-
sidering the case of i.i.d. trials only, so v̂ = ∑

i δ
2
i is an

estimate of the variance of B̂tot that is biased high. This
is because the variance of a random variable W is the
minimum of 〈(W − a)2〉 over a. Since �i is designed to
asymptotically converge to a zero-mean random variable, the
variance estimate is asymptotically unbiased. The SNRs for the
conventional coincidence analysis and the time-tag–sequence
analysis shown in Figs. 5 and 6 are defined as B̂tot/

√
v̂

multiplied by the sign of the violation.
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APPENDIX B: DETERMINING FUNCTION-TUPLE-BASED
DISTANCES

For general time-tag–sequence pairs, computing a CH
function lf [see Eq. (12)] can be accomplished by dynamic
programming. The simplest implementation of this technique
has a quadratic time cost. For sequences such as those produced
by our simulations, which are associated with detections and
coincidences generated uniformly randomly in time, this cost
can be reduced to average linear time.

Let d = (r1 � . . . � rm) and e = (t1 � . . . � tn) be time-
tag sequences. We wish to determine the distance lf,ab(d,e).
For this purpose, let dk = (r1, . . . ,rk) and el = (t1, . . . ,tl)
be their initial segments. Let c(k,l) = lf,ab(dk,el). We can
determine c(k,l) inductively. We have c(k,0) = k and c(0,l) =
0. Suppose we have determined c(k′,l′) for k′ < k and l′ �
l. Let Mk,l be the (not-yet-known) matching minimizing
l(fab,M,dk,el). There are two possibilities to consider. Either
k �∈ dom(Mk,l), in which case c(k,l) = c(k − 1,l) + 1; or
Mk,l(k) = l′ � l, in which case c(k,l) = c(k − 1,l′ − 1) +
fab(tl′ − rk). This reduction works because Mk,l is monotone.
Thus, c(k,l) can be determined as the minimum of these
possibilities. In an algorithm, one can store the c(k,l) in
an (m + 1) × (n + 1) matrix and fill its entries in the order
suggested by this inductive construction. It is possible to
reduce memory requirements by filling the matrix row by
row and discarding the rows no longer needed. However, if
it is desirable to extract the cost-minimizing matching after
c(m,n) has been determined, it helps to keep the full matrix,
and work backward from the (m,n) entry to determine which
of the cases above was used when the entry encountered was
computed. The next entry as we work backwards is determined
by the case used, and the relationships in the matchings arise
from the encountered entries where the second case was used.

The construction as given above can be too resource
intensive for long time-tag sequences. For pairs of sequences
with sufficiently low rates of time tags, a simple way to
speed up the algorithm is to break up the sequences at
sufficiently large gaps and apply the algorithm to each
resulting pair of subsequences. The subsequence costs are
added. To formalize this idea, let u > 0 be such that for all
x �∈ [−u,u] and for all ab, fab(x) � 1. In this case, no pair
of indices k,l with |tl − rk| � u needs to be considered for
matching. Break up the two sequences into pairs of sub-
sequences d(ki,1,ki,2) = (rki,1 � . . . � rki,2 ) and e(li,1,li,2) =
(tli,1 � . . . � tli,2 ) such that max (d(ki,1,ki,2),e(li,1,li,2)) + u �
min (d(ki+1,1,ki+1,2),e(li+1,1,li+1,2)) for every i for which both
sides of the inequality are defined. (The maximum of a
collection of sequences given as arguments to max is defined
as the maximum of the set of all time tags occurring in the
arguments, and similarly for min.) The algorithm is then
applied to each corresponding pair of subsequences and the
costs computed are added to determine the cost of the original
sequence.

APPENDIX C: OPTIMIZING FUNCTION-TUPLE
PARAMETERS

When performing the time-tag–sequence analysis on sim-
ulated data, we optimized the parameters of the linear-

edge window function-tuple using a set of training data.
To simplify the optimization, we restricted the linear-edge
window functions in Eq. (11) to be reflection symmetric
around 0, so that ml = mh := m and tl,ab = th,ab := tab. We
also fixed t1̄1̄ = t1̄2̄ = t2̄1̄ := t . By definition of the linear-edge
window function-tuple, t2̄2̄ = 3t , so only the slope m and
truncation point t remain to be optimized. Instead of direct
optimization, we used a simpler approximate optimization
strategy based on compressing the relevant information in the
time-tag sequences. This is accomplished as follows: For each
pair of training-set time-tag sequences r and t at setting ab

contributing to Bl , we first determine the optimum matching M

for the “compression” function-tuple fab(x) = min(λ|x|,1).
In the simulations, λ = 1. In general, λ needs to be chosen
so that the time-tag differences � for which the analysis
function-tuple may be less than 1 satisfy fab(�) < 1. Our
choice of λ is given by the photon-pair creation rate. But,
it should suffice to choose λ so that few entangled photon
pairs have recorded time tags that are separated by more
than 1/λ. For each index k of r in the domain of M , we
determine the differences xk = (tM(k) − rk), where the notation
for time tags of r and t is as before. We then collect all such
time-tag differences for all pairs r and t at setting ab in a
single sequence yab. For the optimization, we assume that the
matchings M obtained in the construction of yab are close in
cost to the optimal matchings on the training set that would
be obtained according to function-tuples with the parameters
we are optimizing. Since we are working on the training, not
the analysis set, our computations can be approximate. Given
this assumption, we can use yab to compute an approximation
of the ab contribution to the Bell function Blg for a given
function-tuple g. Let Xab be the maximum number of deletions
that can contribute to the ab cost. This is given by the sum
over all time-tag–sequence pairs at settings ab in the training
set of the number of time tags in the first (when ab �= 1̄1̄)
or second (when ab = 1̄1̄) time-tag sequence in each pair of
sequences. Then, the estimated difference between the ab cost
and Xab − |yab| is given by the sum of the values of gab applied
to the time-tag differences in yab. (Here, |yab| is the number
of time-tag differences in yab.) These sums can be computed
much faster than one can compute the exact minimum ab cost
for gab. The approximate costs are used to optimize g, and
the resulting g is subsequently used for the time-tag analysis
of the analysis set. We note that the objective function in the
optimization has irregularities that can result in high sensitivity
of the parameters of g to statistical noise.

APPENDIX D: A LR SOURCE THAT EXPLOITS THE
COINCIDENCE LOOPHOLE

In this section, we describe the LR source whose false
violation of a Bell inequality under a standard coincidence
window analysis is shown in Fig. 6. This LR source can closely
mimic the one- and two-point statistics of a Poisson source of
entangled photon pairs detected by detectors with uniform
jitter distribution of width ju � 0.11.

A LR source generates four time-tag sequences tXc , where
X ∈ {A,B} and c ∈ {1̄,2̄}, for each trial. These sequences are
the sequences that may be recorded by A and B depending on
their settings. After the experiment, only the two sequences

032105-14



BELL INEQUALITIES FOR CONTINUOUSLY EMITTING . . . PHYSICAL REVIEW A 91, 032105 (2015)

corresponding to the actually chosen settings are visible to
the parties. The goal is to match the visible statistics of the
LR source to those of a Poisson source of quantum photon
pairs with jitter. We consider the uniform jitter distribution
of width ju and a Poisson source whose detection statistics
are determined by the single-pair settings-conditional outcome
probabilities p(oAoB |ab) and the uniform distribution for set-
tings. We ensure that the LR source exhibits the same marginal
detection rates p(oX|ab). But, since we are interested in how
readily the conventional coincidence analysis can be deceived,
we allow the LR source to adjust the apparent coincidence
rates. Note that the inferred coincidence rates depend on the
method used to determine coincidences. The construction of
the LR source uses probabilities p′(oAoB |ab) as a template in
an attempt to deceive the experimenter into believing p′. The
template satisfies p′(oX|ab) = p(oX|ab). The apparent coin-
cidence rates are the same except at the 2̄2̄ setting, where we
set p′(11|2̄2̄) = p(11|2̄2̄) + δc, p′(00|2̄2̄) = p(00|2̄2̄) + δc,
p′(01|2̄2̄) = p(01|2̄2̄) − δc, p′(10|2̄2̄) = p(10|2̄2̄) − δc, and
p′ = p otherwise. The coincidence rate adjustment δc is
chosen to maximize the rate at which the LR source can
successfully introduce an apparent violating signal. For ju �
0.11, we found that it is possible to match the coincidence
rates (δc = 0).

For successful deception, the LR source’s time-tag–
sequence statistics should match that of a Poisson source
with template frequencies given by p′. (These frequencies
account for the photon states, source statistics, and the
jitter distribution.) We aimed for matching detection rates
and correlation functions. While our source does not match
the correlation functions exactly (see following), the residual
correlation mismatches are sufficiently small to either escape
detection or to be hidden by the typically much larger
correlation artifacts of the same order as the jitter introduced
by the detection apparatus. We also note that in an experiment,
the source and jitter distributions are not known beforehand,
making a statistical test for correlation artifacts introduced
by the LR source difficult. Comparisons of the correlation
functions for ju = 0.11 are in Fig. 7. Note that the mean
time separation between 2̄2̄ coincidences seems to match that
for other settings. That is, there is no tell-tale broadening
that might be expected from the earlier coincidence-loophole
examples in Sec. III.

Here is a sketch of the LR source construction. To generate
LR time-tag sequences according to p′ and ju, we first
decompose p′ = λLRpLR + λPRpPR, where λLR is maximized
subject to pLR being an LR probability distribution and pPR

a Popescu-Rohrlich (PR) box’s [28] probability distribution.
Here, the PR box is perfectly correlated on all settings except at
2̄2̄, where it is perfectly anticorrelated. To create an apparent
PR box signal, we proceed as follows. Let J (x,ju) be the
distribution of the time separation x between pairs of initially
coincident time tags both of which are jittered uniformly with
width ju. The density J (x,ju) has a triangle shape centered
at 0, supported on [−ju,ju], with J (0,ju) = 1/ju. Let pX

c be
the detection rate of X at setting c. We begin by generating
time tags for A at setting 2̄ at a uniform rate pA

2̄ . This gives
the time-tag sequence tA2̄ . For each time tag t thus generated,
with probability λPR/2, we wish to generate a corresponding
timetag of tB2̄ that is generally far enough from t to be

missed as a coincidence by the conventional analysis and is
indistinguishable from background. The trick is to do this while
preserving the ability to generate B’s detections at setting 2̄
according to a uniform process of rate pB

2̄ . A first attempt is
to generate time tags for tB2̄ so that the rate of detections at
s is λPRJ (s − t,3ju) (three times the apparent jitter width).
For fixed t , the probability of at least one detection for tB2̄ thus
generated is 1 − e−λPR . If there is at least one such detection, we
allocate it to a “hidden” coincidence for purposes of keeping
track of the detection statistics. The hidden coincidence will
be attributed to a PR-type anticorrelation if this detection is
not recognized as a coincidence.

Note that detections generated at a uniform rate r can
be realized by independently generating detections according
to rate distributions ρi where

∑
i ρi = r . Thus, if ρ1(s) =∑

t λPRJ (s − t,3ju) � pB
2̄ , we can generate further detections

to get the desired marginal statistics for B at setting 2̄. Actually,
we need to exclude the rate of coincidences p′(11|2̄2̄) from
pB

2̄ in this inequality because these “original” coincidences
are to be added separately later. In addition, to ensure that
ρ1 is below the corrected bound pB

2̄ − p′(11|2̄2̄), we have
to deal with the problem that for nearby time tags of tA2̄ ,
the distributions J (s − t,3ju) overlap. For this purpose, we
made λPR = λPR(t) depend on the time tag t and used a linear
programming technique to maximize

∑
t∈tA2̄

λPR(t) subject to
the bound. The actual rate of apparent PR boxes is affected
by the result. These rates were determined by a Monte Carlo
method as a function of the jitter and matched to λPR/2 by
adjusting δc as needed.

The PR boxes inserted into the time tags at setting 2̄2̄ by
hiding coincidences need to be extended to recognizable coin-
cidences at the other settings. We first fill in these coincidences
by spreading them across the 2̄1̄, 1̄1̄, and 1̄2̄ settings at the
regular jitter width ju by dividing the hidden coincidences’
2̄2̄ separations equally into the separations involving the time
tags at the non-2̄ settings. Extra coincidences with normal jitter
width are then added to get the desired coincidence rates at
the non-2̄2̄ settings. The resulting marginal detection rates are
subtracted from the uniform rates pX

1̄ and extra detections are
then filled in accordingly.

While our implementation required substantial elaboration
of the above outline, the success of the strategy is witnessed by
the false violation discovered by the conventional coincidence
analysis visible in Fig. 6 and the empirical autocorrelation and
cross-correlation functions shown in Fig. 7. The figure shows
the correlation functions for a LR source that simulates the
quantum sources used for the analyses shown in Fig. 5 with
ju = 0.11. In this case, the LR source’s apparent coincidence
rate at the 2̄2̄ setting matches the corresponding quantum
source’s rate. Small deviations from the quantum source’s
correlation functions are visible in the plots. In practice, such
deviations are common and therefore hard to distinguish from
normal experimental artifacts. Thus, we expect that it would
be difficult to find true LR violation in the quantum data, even
if its statistics cannot be exactly simulated by a LR source.
For comparison, the maximum jitter for which the time-tag
analysis finds a violation is about ju ≈ 0.06.

The estimated correlation functions shown in Fig. 7 are
determined from binned data as follows: Let r and t be two
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FIG. 7. Autocorrelation (ACF) and cross-correlation functions (CCF) (unnormalized) for LR-generated time-tag data. Each subfigure is
labeled with the measurement setting(s) used to record the time-tag data. The points with error bars show estimated correlation function
values and their associated approximate 68% confidence intervals for the LR time-tag data determined from 200 000 trials. The LR source was
designed to match time-tag data from the quantum source with an efficiency η = 0.8 and uniform jitter ju = 0.11 that was used for the results
shown in Fig. 5. The continuous curves are the corresponding theoretical correlation functions for the quantum source. See the text for the
definition of correlation functions used here. The bin width is wb = ju/4. The “lag” is defined as d ∗ wb.
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time-tag sequences and wb a bin width. Let T be the total
observation period of the time-tag sequences and assume that
the initial time is 0. We construct functions bs : {0,1, . . . ,N =
�T/wb�} → N for s = r and s = t by defining bs(k) to be the
number of time tags s in s with kwb � s < (k + 1)wb. The esti-
mated correlation function for r and t is defined by c(d,r,t) =∑i+d=N

i=0 br(i)bt(i + d). (Note that we do not normalize the
correlation function.) The empirical values shown in the figure
are the sample means of the c(d,r,t) over the appropriate
pairs of time-tag sequences from 200 000 trials. Note that
the autocorrelation functions are of the form c(d,r,r) and are
symmetric about d = 0, so only the half with d � 0 is shown.

We end with a brief note on how an adversary might realize
the LR model of this section. Suppose that the adversary can
surreptitiously manipulate the measurement instruments of
each party so that the polarization angles of the two settings are
approximately orthogonal. Also, suppose that the true jitter of

the detectors is small but the experimenter does not realize this.
In this case, for each trial, the adversary can randomly generate
four time-tag sequences according to the LR model and, for
each event in the time-tag sequences, send a photon at the
event’s time to the appropriate party with the polarization that
ensures it is only detected at the intended setting. Because of
the way that the LR model’s time-tag sequences are generated,
the detections will appear to be detections from photon pairs
with detector jitter. The manufacturer of the measurement
instruments can build in the features that the adversary needs to
exploit in this scenario. It is therefore unlikely that a protocol
relying on a conventional coincidence analysis can achieve
device-independent security. We leave open the question of
whether a LR model based on our techniques can be realized
by an adversary who can control only the source, when the
characteristics of the measurement instruments are fixed and
known to the experimenter.
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