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Angular dependence of spin-orbit spin-transfer torques
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In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is
usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding
models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization
direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial
angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio
of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque
acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than
the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi
sea contribution. The angular dependence is consistent with experimental observations and can be important to
understand magnetization dynamics induced by spin-orbit spin-transfer torques.
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I. INTRODUCTION

In-plane current-induced spin-orbit spin-transfer torques
in ferromagnet/heavy-metal bilayers provide an efficient way
of inducing magnetization dynamics and may play a role in
future magnetoelectronic devices [1–15]. Two mechanisms
for spin-orbit torques have been proposed to date: the bulk
spin-Hall effect in the heavy-metal layer [16–20] and the
interfacial spin-orbit coupling effect at the ferromagnet/heavy-
metal interface [21–31] frequently referred to as the Rashba
effect. Substantial efforts have been expended in identifying
the dominant mechanism for the spin-orbit torque [30–35]. For
this purpose, one needs to go beyond qualitative analysis since
both mechanisms result in qualitatively identical predictions,
i.e., two vector components of spin-orbit torque [see Eq. (1)].
For a quantitative analysis, we adopt the commonly used
decomposition of the spin-orbit torque T,

T = τfM̂ × ŷ + τdM̂ × (M̂ × ŷ), (1)

where the first term is commonly called the fieldlike
spin-orbit torque, the second term the dampinglike spin-
orbit torque or the Slonczewski-like spin-orbit torque, M̂ =
(cos φ sin θ, sin φ sin θ, cos θ ) is the unit vector along the
magnetization direction, ŷ is the unit vector perpendicular
to both current direction (x̂) and the direction in which
the inversion symmetry is broken (ẑ), τf and τd describe
the magnitude of fieldlike and dampinglike spin-orbit torque
terms, respectively. Since T should be orthogonal to M̂, the
two terms in Eq. (1), which are orthogonal to M̂ and also
to each other, provide a perfectly general description of the
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spin-orbit torque regardless of the detailed mechanism of T.
The quantitative analysis of T then amounts to the examination
of the properties of τf and τd.

One of the intriguing features of spin-orbit torque observed
in some experiments is the strong dependence of τf and τd on
the magnetization direction [36,37]. Comparing the measured
and calculated angular dependence will provide clues to the
mechanism of the spin-orbit torque. The detailed angular
dependence also determines the magnetization dynamics
and hence is important for device applications based on
magnetization switching [1,3,10–13], domain wall dynamics
[2,5–9,14,15], and magnetic skyrmion motion [38].

Theories based on the bulk spin-Hall effect combined with
a drift-diffusion model or Boltzmann transport equation [30]
predict no angular dependence of τf and τd, which is not
consistent with the experimental results [36,37]. For theories
based on the interfacial spin-orbit coupling, the angular
dependence is subtle. Based on the Rashba model including
D’yakonov-Perel spin relaxation, Pauyac et al. [39] studied
the angular dependence of spin-orbit torque perturbatively
in the weak (r ≡ αRkF/J � 1) and strong (r � 1) regimes,
where αR is the strength of the Rashba spin-orbit coupling,
kF is the Fermi wave vector, and J is the exchange coupling.
They found that both τf and τd are almost independent of the
angular direction of M̂ in the weak Rashba regime. In the
strong Rashba regime, on the other hand, they found that τd

exhibits strong angular dependence. The origin of the angular
dependence within this model is the anisotropy of the spin
relaxation, which arises naturally since the Rashba spin-orbit
interaction is responsible for the anisotropic D’yakonov-Perel
spin relaxation mechanism. For τf , in contrast, they found it to
be almost constant in the strong Rashba regime even when the
spin relaxation is anisotropic. Experimentally [36,37], both the
dampinglike and the fieldlike contributions depend strongly on
the magnetization direction.
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Here, we reexamine the angular dependence of the spin-
orbit torque based on the Rashba interaction motivated by the
following two observations. The first motivation comes from a
first-principles calculation [40] of Co/Pt bilayers, according to
which both the spin-orbit potential and the exchange splitting
are large near the interface between the heavy metal and
the ferromagnet. This implies that the problem of interest
is not in the analytically tractable weak or strong Rashba
regimes but in the intermediate Rashba regime (r ≈ 1). We
examine this intermediate regime numerically and find that in
contrast to both the strong and weak Rashba regimes, τf has
a strong angular dependence. The second motivation comes
from a recent calculation [29,31] showing that the interfacial
spin-orbit coupling can generate τd through a Berry phase
contribution [41]. In contrast, earlier theories [26–28] of the
interfacial spin-orbit coupling found a separate contribution
to τd from spin relaxation. Moreover, those calculations [31]
suggest that the Berry phase contribution to τd is much larger
than the spin relaxation contribution. Here, we examine the
angular dependence of the Berry phase contribution.

To be specific, we examine the angular dependence of the
spin-orbit torques for two-dimensional free-electron models
of ferromagnetic systems with Rashba spin-orbit coupling.
The model [see Eq. (2)] has two energy bands and assumes
all material parameters are isotropic. While the model is
drastically simplified compared to realistic materials, it reveals
clearly how the competition between spin-orbit coupling and
exchange coupling generates angular dependence. We expect
this mechanism for the angular dependence to persist in real
materials. Another reason to consider such simple models
comes from the observation that the existing measurements
[36,37] of the angular dependence are for granular materials. In
such systems, mechanisms for anisotropy that arise explicitly
from the crystallinity (or magnetocrystallinity) are likely to
average to zero, leaving mechanisms related to those found in
models [Eq. (2)] with isotropic material parameters.

When an electric field is applied to generate an in-plane cur-
rent, the spin-orbit torque arises from the two types of changes
caused by the electric field. One is the electron occupation
change. For a small electric field, the net occupation change is
limited to the Fermi surface so that the spin-orbit torque caused
by the occupation change comes from the Fermi surface. For
this reason, this contribution is referred to as the Fermi surface
contribution. The other is the state change. The electric field
modifies the potential energy of the system, which in turn
modifies wave functions of all single particle states. Thus the
spin-orbit torque caused by the state change comes not only
from the states near the Fermi surface but also from all states
in the entire Fermi sea. This contribution is referred to as
the Fermi sea contribution and often closely related to the
momentum-space Berry phase [31].

For the Rashba model [Eq. (2)], we find that in the
absence of spin relaxation, the Fermi surface contribution
to τd is vanishingly small, while τf remains finite. In the
intermediate Rashba regime, τf has a substantial angular
dependence. This nontrivial angular dependence of τf is related
to Fermi surface distortion, which becomes significant when
the Rashba spin-orbit coupling energy (∼αRkF ) is comparable
to the exchange coupling (∼J ). On the other hand, the Fermi
sea contribution generates primarily τd which exhibits strong

angular dependence in both the intermediate and strong Rashba
regimes. The nontrivial angular dependence of τd is caused by
the combined effects of Fermi surface distortion and the Fermi
sea contribution. We also compute the angular dependence
of the spin-orbit torques for a tight-binding model and find
that the results are qualitatively consistent with those for a
free-electron model. Lastly, we comment briefly on possible
angular dependence of crystalline or magnetocrystalline ori-
gin, which we do not examine in the present study.

II. SEMICLASSICAL MODELS

In this section, we use subscripts (1) and (2) to denote the
Fermi surface and the Fermi sea contributions, respectively.
The model Hamiltonian for an electron in the absence of an
external electric field is

H0 = p2

2m
+ αRσ · (k × ẑ) + Jσ · M̂, (2)

where k = (kx,ky) is the two-dimensional wave vector, m is
the electron mass, J (>0) is the exchange parameter, p is the
momentum, and σ is the vector of Pauli matrices, and Mx ,
My , and Mz are the x, y, and z components of M̂, respectively.
When M̂ is position-independent, which will be assumed all
throughout this paper, k is a good quantum number. For each
k, there are two energy eigenvalues since the spin may point
in two different directions. Thus the energy eigenvalues of H0

form two energy bands, called majority and minority bands.
The one-electron eigenenergy of H0 is

E±
k = �

2k2

2m
∓ εk, (3)

where the upper (lower) sign corresponds to the majority
(minority) band, k2 = k2

x + k2
y , and εk = |JM̂ + αR(k × ẑ)|.

To determine the spin state of the majority and minority
bands, it is useful to combine the last two terms of H0 into an
effective Zeeman energy term (= − μBBeff,k · σ ), where the
effective magnetic field is k-dependent and given by

Beff,k = − J

μB
M̂ − αR

μB
(k × ẑ). (4)

Here, μB is the Bohr magneton. Beff,k fixes the spin direction
of the majority and minority bands. For the eigenstate |ψk,±〉 in
the majority/minority band, its spin expectation value s±

k(1) ≡
(�/2) 〈ψk,±| σ |ψk,±〉 is given by

s±
k(1) = ±�

2
B̂eff,k, (5)

where B̂eff,k is the unit vector along Beff,k. In terms of the
k-dependent angle θk and φk, which are defined by B̂eff,k =
(sin θk cos φk, sin θk sin φk, cos θk), the eigenstate |ψk,±〉 is
given by

|ψk,+〉 = eik·r
(

cos(θk/2)
sin(θk/2)eiφk

)
, (6)

|ψk,−〉 = eik·r
(

sin(θk/2)
− cos(θk/2)eiφk

)
. (7)

Together with the energy eigenvalue E±
k in Eq. (3), the

eigenstate |ψk,±〉 completely specifies the properties of the
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equilibrium Hamiltonian. The ground state of the system
is then achieved by filling up all single-particle eigenstates
|ψk,±〉, below the Fermi energy EF .

When an electric field E = Ex̂ is applied, one of the
effects is the modification of the state occupation. This effect
generates the nonequilibrium spin density s±

(1) as

s±
(1) =

∫
dk2

(2π )2

[
f±

(
k − eEτ

�
x̂
)

− f± (k)

]
s±

k(1), (8)

where −e is the electron charge, τ is the relaxation time,
and f±(k) = 	(EF − E±

k ) is the zero-temperature electron
occupation function where 	(x) is the Heaviside step function.
Note that the net contribution to s±

(1) arises entirely from the
states near EF due to the cancellation effect between the
two occupation functions in Eq. (8). Thus s±

(1) is a Fermi
surface contribution. The total spin density generated by the
occupation change becomes s(1) = s+

(1) + s−
(1). This is related to

the spin-orbit torque T(1) generated by the occupation change
via T(1) = (J/�)s(1) × M̂. In Eq. (8), we use the relaxation
time approximation with the assumption that the scattering
probability is isotropic and spin independent.

The other important effect of the electric field other
changing than the occupation is that it modifies the potential
energy that the electrons feel, and hence modifies their wave
functions, generating in turn a correction to s±

k(1). We call this
correction s±

k(2). It is calculated in Appendix and given by

s±
k(2) = ±�

2
αReE

[
J

2ε3
k

(M̂ × ŷ) + αR

2ε3
k

(x̂ × k)

]
. (9)

Summing over all occupied states in the majority/minority
band, gives the total spin density s±

(2) generated by the state
change in that band, and is given by

s±
(2) =

∫
dk2

(2π )2
f±(k)s±

k(2). (10)

Note that the equilibrium occupation function f appears in
Eq. (10) rather than the difference between the two occupation
functions. The occupation change effect is ignored in Eq. (10)
since we are interested in linear effects of the electric field E

and s±
k(2) is already first order in E. Note that all the occupied

single-particle states in the Fermi sea contribute to s±
(2). Thus

s±
(2) is a Fermi sea contribution. The total spin density generated

by the state change becomes s(2) = s+
(2) + s−

(2). This is related
to the spin-orbit torque T(2) generated by the state change via
T(2) = (J/�)s(2) × M̂.

A few remarks are in order. In Eq. (8), the two occupation
functions cancel each other for most k values. They do not
cancel for k points that correspond to an electron excitation
slightly above the Fermi surface or a hole excitation slightly
below the Fermi surface. Thus the direction of s±

(1) can be
estimated simply by evaluating the difference of Beff,k between
two k’s of electronlike and holelike excitations. This shows
that s±

(1) points along Ex̂ × ẑ = −Eŷ. Thus the spin-orbit

torque T(1) should be proportional to Eŷ × M̂, which is
nothing but the fieldlike spin-orbit torque. Thus the Fermi
surface contribution T(1) contributes mostly to τf . To be
precise, however, this statement is not valid for spin-dependent
scattering, which we neglect in deriving Eq. (8). If the

scattering is spin-dependent, T(1) produces τd as well as τf

as demonstrated in Refs. [26–28]. In this paper, we neglect
the contribution to the angular dependence of τd from T(1) and
spin-dependent scattering since it has been already treated in
Ref. [39]. The contribution to τd in our study comes from the
Fermi sea contribution T(2). One can easily verify that the first
term in Eq. (9) generates the spin-orbit torque proportional
to (M̂ × ŷ) × M̂, which has the form of the dampinglike
spin-orbit torque. The second term in Eq. (9) on the other
hand almost vanishes upon k integration in Eq. (10). This
demonstrates that the Fermi sea contribution T(2) contributes
mostly to τd.

We also compute the spin-orbit torques based on a tight-
binding model because free electron models with linear Rashba
coupling, like that the one we use here, can exhibit pathological
behavior when accounting for vertex corrections to the impu-
rity scattering. For example, the intrinsic spin Hall effect [41],
that has the same physical origin of the Fermi sea contribution
to spin-orbit torque, gives a universal result that vanishes when
vertex corrections are included [42–46]. However, the intrinsic
spin-Hall effect does not vanish when the electron dispersion
deviates from free electron behavior or the spin-orbit coupling
is not linear in momentum [47–50]. Since we neglect vertex
corrections in the calculations presented in this paper, it is
necessary to check whether or not the angular dependence
of spin-orbit torque obtained in a free-electron model is
qualitatively reproduced in a tight-binding model, where the
electron dispersion deviates from free-electron behavior and
the spin-orbit coupling is not strictly linear in momentum.
To compute spin-orbit torque in the two-band (majority and
minority spin bands) tight-binding model on a square lattice
with the lattice constant a, we replace kx and ky by sin(kxa)/a
and sin(kya)/a, respectively. The corresponding spin density
is then calculated by integrating the electric field-induced spin
expectation value up to the point of band filling. For most cases,
in a tight-binding model, the result converges for a k-point
mesh with mesh spacing dk = 0.026 nm−1 and 320 000 k
points, where the convergence criterion is 1% change of results
with a finer mesh by a factor of 2. All results presented in this
paper are converged to this criterion.

III. RESULTS AND DISCUSSION

We first discuss the Fermi surface distortion as a function
of r(=αRkF/J ). When the Fermi surfaces are not circular, we
define kF through its relation with the electron density n; k2

F =
2πn. Figure 1 shows the Fermi surface and the spin direction at
each k point for various values of the ratio r . Without Rashba
spin-orbit coupling (r = 0), the spin direction does not depend
on k for ferromagnetic systems [Fig. 1(a)]. Without exchange
coupling [nonmagnetic Rashba system (r = ∞)], on the other
hand, the spins point in the azimuthal direction [Fig. 1(b)].
For these extreme cases, the Fermi surfaces of two bands are
concentric circles.

The Fermi surfaces distort significantly when r ≈ 1.
Figure 1(c) compares two Fermi surfaces (majority band) for
r = 0 and 1.0 when M̂ = (0,1,0). When the magnetization has
an in-plane component as in this case, each sheet of the Fermi
surface shifts in a different direction and distorts from perfect
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FIG. 1. (Color online) Fermi surface and spin direction for a free-electron model. (a) r = 0 (only exchange splitting), (b) r = ∞ (only
Rashba spin-orbit coupling and nonmagnetic), (c) comparison of Fermi surfaces (majority band) for r = 0 and 1.0, (d) 0.8, (e) 1.0, and (f) 1.2.
We assume M̂ = (0,1,0), EF = 10 eV, m = m0, and J = 1 eV. Here, m0 is the free electron mass. The outer red (inner blue) Fermi surface
corresponds to the majority (minority) band. Arrows are the eigendirections of spins on the Fermi surface. The coordinate system is shown on
the right.

circularity [Fig. 1(c): note that the dotted Fermi surface is for
r = 0 and is a circle]. This distortion arises because the k-
dependent effective magnetic field [Eq. (4)] contains contribu-
tions both from the exchange and Rashba spin-orbit couplings.
An effective field from the exchange is aligned along M̂ and
uniform regardless of k, whereas that from the Rashba spin-
orbit coupling lies in the x-y plane and is k-dependent. For
example, for M̂ = (0,1,0) and the majority band, an effective
field from the Rashba spin-orbit coupling is parallel (antipar-
allel) to that from the exchange at k = (kF,1,0) (k = (kF,2,0)),
where kF,1 (>0) and kF,2 (<0) are the Fermi wave vectors
corresponding to the electric field-induced electronlike and
holelike excitations, respectively. The k-dependent effective
field distorts the Fermi surface distortion as demonstrated in
Figs. 1(c)–1(f).

This Fermi surface distortion also affects the spin direction
at each k point because the spin eigendirection is k-dependent
due to the Rashba spin-orbit coupling. In the weak (strong)
Rashba regime, the spin landscape is similar with that in
Fig. 1(a) [Fig. 1(b)]. In these extreme cases, the spin landscape
is not significantly modified by the change in the magnetization
direction as one of the effective fields (either from the exchange
or from the Rashba spin-orbit coupling) is much stronger than
the other. As a result, τf has almost no angular distortion in
these regimes. The spin landscape for r ≈ 1 on the other hand
becomes highly complicated [Figs. 1(d)–1(f)] as the Fermi
surface distortion is maximized. One can easily verify that
the spin landscape for r ≈ 1 varies significantly with the
magnetization direction because the Fermi surface distortion is
closely related to the in-plane component of the magnetization
as explained above.

As the nonequilibrium spin density corresponding to τf (i.e.,
s(1)) is obtained from the integration of the spins on the Fermi
surface, this magnetization-angle-dependent change in the spin
landscape generates a nontrivial angular dependence of τf . A
similar argument is valid for τd (i.e., s(2)), which comes from
the Fermi sea contribution because the Fermi surface distortion
affects the interval of the integration. Therefore the results
shown in Fig. 1 suggest that the spin-orbit torque originating
from the interfacial spin-orbit coupling should have a strong
dependence on the magnetization angles θ and φ when r is
close to 1.

Several additional remarks for the Fermi surface distortion
are as follows. First, the two Fermi surfaces touch exactly for
r = 1 [Fig. 1(e)] and they anticross for r > 1 [Fig. 1(f)]. As a
result, the spin landscape rapidly changes when r varies around
1 so that a similar drastic change in the angular dependence of
the spin-orbit torque is expected. Second, all effects from the
Fermi surface distortion, described for a free-electron model
above, should also affect the results obtained for a tight-binding
model. However, as the shape of the Fermi surface is different
for the two models (i.e., for J = 0 and αR = 0, the Fermi
surface for a free-electron model is a circle, whereas that for
a tight-binding model with half band-filling is a rhombus), the
results for the two models are quantitatively different.

We next show the angular dependence of τf and τd for the
two models. Here, we do not attempt to analyze the detailed
angular dependence quantitatively, because it is very parameter
sensitive. In contrast, our intention is to identify the general
trends that emerge from these numerical calculations. Figure 2
shows the angular dependence of τf for a free-electron model
[(a) and (b)] and a tight-binding model [(c) and (d)]. In both
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FIG. 2. (Color online) Polar angle (θ ) dependence of fieldlike
spin-orbit torque coefficient τf . Free-electron model [(a)and (b)]:
(a) azimuthal angle of magnetization φ = 0 and (b) φ = π/2.
Tight-binding model [(c) and (d)]: (c) φ = 0 and (d) φ = π/2. For
both models, we use EF = 4 eV, m = m0, and J = 1 eV. For a
tight-binding model, we use a = 0.25 nm.

models, we obtain nontrivial angular dependence of τf in
certain parameter regimes. In the free-electron model, we find
τf is almost constant in the weak (r � 1) and strong (r � 1)
Rashba regimes, consistent with earlier works [23,24]. In the
intermediate Rashba regimes, however, τf is not a constant.
We find that τf depends not only on the polar angle θ but also
the azimuthal angle φ, as expected from the Fermi surface
distortion (Fig. 1). In Fig. 2(b), τf for r < 1 (r > 1) is maximal
(minimal) at θ = π/2, which is caused by the anticrossing of
the two Fermi surfaces [Figs. 1(d)–1(f)]. Despite the strong
angular dependence, the sign of τf is preserved since the spin
direction of nonequilibrium spin density is unambiguously
determined once the direction of electric field and the sign of
αR are fixed. These overall trends are qualitatively reproduced
in a tight-binding model [Figs. 2(c) and 2(d)]. The magnitude
and angular dependence of τf differ quantitatively from those
of the free electron model, due to the different shape of
the Fermi surfaces for the two models. In contrast to the
almost circular Fermi surfaces (centered almost at k = 0) of
the free-electron model (Fig. 1), the Fermi surfaces of the
tight-binding model have different shapes depending on the
electron density; when a given band is only weakly filled,
half filled, or almost fully filled, the corresponding Fermi
surface has a circular shape centered at the 
 point (k = 0),
a diamond shape, or a circular shape centered at the M point
[k = (π/2a,π/2a)], respectively. Such Fermi surface shape
variation is accompanied by spin configuration differences
between the two models. For instance, whereas the Rashba
spin-orbit coupling αRσ · (k × ẑ) = αR(σxky − σykx) for the
free-electron model vanishes only at the 
 point, the Rashba
spin-orbit coupling (αR/a)[σx sin(kya) − σy sin(kxa)] for the
tight-binding model vanishes not only at the 
 point but also
at the M and X points [k = (0,π/2a) and (π/2a,0)].

Figure 3 shows the angular dependence of τd for a free-
electron model [(a) and (b)] and a tight-binding model [(c)
and (d)]. This τd results from the Fermi sea contribution

FIG. 3. (Color online) Angular dependence of dampinglike spin-
orbit torque coefficient τd. Free-electron model [(a) and (b)]: (a) polar
angle dependence at φ = 0 and (b) azimuthal angle dependence at
θ = π/2. Lines for r = −1.2, −1.6, and −2.0 are not clearly visible
since τd = 0 for these cases. Tight-binding model [(c) and (d)]:
(c) polar angle dependence at φ = 0 and (d) azimuthal angle
dependence at θ = π/2. Same parameters are used as in Fig. 2.

[Eqs. (9) and (10)]. In both models, we obtain nontrivial
angular dependence of τd both in the intermediate and strong
Rashba regimes [Figs. 3(a) and 3(c)]. This is in contrast to
τf , which exhibits nontrivial angular dependence only in the
intermediate Rashba regime. To understand this difference,
we derive an approximate τd by expanding up to third order in
αRkF

J
and assuming no Fermi surface distortion (i.e., the Fermi

wave vector kF does not depend on the direction of k), which
is analytically tractable. By integrating Eq. (10) with these
assumptions, we find τd ∝ (16J 2 − 3α2

Rk2
F − 9α2

Rk2
F cos(2θ )).

Therefore the Fermi sea contribution induces an intrinsic angu-
lar dependence in τd, which increases with |αR |kF

J
irrespective

of the Fermi surface distortion. The results in Fig. 3, which are
obtained numerically, include the Fermi surface distortion, so
that the nontrivial angular dependence of τd results from the
combined effects of the intrinsic Fermi sea contribution and
the Fermi surface distortion. For example, Fig. 3(a) shows a
sharp difference in the angular dependence of τd for r > 1 and
r < 1. This is qualitatively similar to the results of τf shown in
Fig. 2(b), showing that the Fermi surface distortion (together
with the accompanying spin configuration change) also has a
role in the angular dependence of τd.

The sign of τd does not change with the magnetization
angle despite the strong angular dependence, similar to the
behavior of τf . When θ = π/2 [Fig. 3(d)], a steep increase of τd

is obtained at φ = π/4 and 3π/4, originating from the shape
of the Fermi surface. We expect that this strong dependence
of τd on φ can be observed in epitaxial bilayers but may be
absent in sputtered bilayers as sputtered thin films consist of
small grains with different lattice orientation in the film plane.
However, the dependence of τd on the polar angle θ [Figs. 3(a)
and 3(c)] is irrelevant to this in-plane crystallographic issue so
we expect that it will be observable in experiments when the
interfacial spin-orbit coupling is comparable to or stronger than
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the exchange coupling. We note that a strong dependence of τd

on θ (but a very weak dependence on φ) was experimentally
observed in sputtered bilayers [36].

We finally illustrate the connection between τd (i.e., T(2))
and the Berry phase. This examination is motivated by
Ref. [31], which called T(2) the Berry phase contribution. To
clarify the connection, it is useful to express the Fermi sea
contribution s(2) in the Kubo formula form,

s(2) = 1

2
eE�

2AIm
∑
ab

∫
d2k

(2π )2
[fa(k)

− fb(k)]
〈k,a|σ |k,b〉〈k,b|vx |k,a〉
[Ea(k) − Eb(k) + 2iδ]2

, (11)

where a, b are band indices, and δ is an infinitesimally small
positive constant. In the present case, |k,a〉 is either |ψk,+〉 or
|ψk,−〉. One then uses the relations

vx = 1

�

∂H0(k,M)

∂kx

, σα = 1

J

∂H0(k,M)

∂Mα

, (12)

where the notation H0(k,M) emphasizes that the unperturbed
Hamiltonian H0 is a function of the momentum k and the
magnetization M. Note that here we use M instead of M̂
since one needs to relax the constraint |M̂| = 1 to establish
the connection with the Berry phase. Equation (12) allows one
to convert the numerator of Eq. (11) as follows:

〈k,a|σ |k,b〉 = − 1

J
[Ea(k) − Eb(k)]〈k,a|∇M|k,b〉,

〈k,b|vx |k,a〉 = −1

�
[Eb(k) − Ea(k)] 〈k,b| ∂

∂kx

|k,a〉. (13)

Thus the numerator of Eq. (11) acquires the factor [Ea(k) −
Eb(k)]2, which cancels the denominator in the limit δ → 0.
Then one of the two summations for the band indices a and b

can be performed to produce

[s(2)]α = 1

2

eE�A

J

∑
a

∫
d2k

(2π )2
fa(k)

[
∂

∂kx

Aa
Mα

(k)

− ∂

∂Mα

Aa
kx

(k)

]
, (14)

where the spin-space Berry phase Aa
Mα

(k) and the momentum-
space Berry phase Aa

kx
(k) are defined by

Aa
Mα

(k) = i〈k,a| ∂

∂Mα

|k,a〉,

Aa
kx

(k) = i〈k,a| ∂

∂kx

|k,a〉. (15)

Here these Berry phases are manifestly real. Equation (14) es-
tablishes the connection between T(2) and the spin-momentum-
space Berry phase.

A few remarks are in order. First, through an explicit
evaluation of the Berry phases, one can verify that the integrand
of Eq. (14) generates s±

k(2) in Eq. (9) precisely. Second,
Eq. (14) contains the occupation function fa(k) itself rather
than difference between the occupation functions or derivatives
of the occupation function. Thus s(2) may be classified as a
Fermi sea contribution. We note, however, that the Fermi sea
contribution Eq. (14) may be converted to a different form

[51], where the net contribution is evaluated only at the Fermi
surface. To demonstrate this point, we integrate Eq. (14) by
parts, which generates

[s(2)]α = 1

2

eE�A

J

∑
a

∫
d2k

(2π )2

[
−∂fa(k)

∂kx

Aa
Mα

(k)

+ ∂fa(k)

∂Mα

Aa
kx

(k)

]
. (16)

Note that in the zero temperature limit, both ∂fa(k)/∂kx and
∂fa(k)/∂Mα are nonzero only at the Fermi surface, and thus the
net contribution to s(2) depends only on properties evaluated at
the Fermi surface. In this sense, this Fermi surface contribution
is analogous to Friedel oscillations. Friedel oscillations form
near surfaces when electrons reflect and the incoming and
outgoing waves interfere. Then, each electron below the Fermi
energy makes an oscillatory contribution to the density with a
wavelength that depends on the energy. However, integrating
up from the bottom of the band to the Fermi energy gives a
result that only depends on the properties of the electrons at the
Fermi energy where there is a sharp cutoff in the integration.

IV. SUMMARY

We use simple models to examine the angular dependence
of spin-orbit torques as a function of the ratio of the spin-orbit
interaction to the exchange interaction. We find that both the
fieldlike and dampinglike torques are angle independent when
the spin-orbit coupling is weak but become angle-dependent
when the spin-orbit coupling becomes comparable to the
exchange coupling. When the spin-orbit coupling becomes
much stronger than the exchange coupling, the angular
dependence of the fieldlike torque goes away, but that of
the dampinglike torque remains. The angular dependence of
the fieldlike torque becomes significant when the spin-orbit
coupling becomes strong enough to distort the Fermi surface
so that it changes when the direction of the magnetization
changes. On the other hand, the angular dependence of the
dampinglike torque is caused by the combined effects of
the intrinsic Fermi sea contribution and the Fermi surface
distortion. We expect that these qualitative conclusions will
hold for more realistic treatments of the interface. The strong
angular dependence of the spin-orbit torques will significantly
impact their role in large amplitude magnetization dynamics
like switching or domain wall motion. This suggests caution
when comparing measurement of the strength of torques with
the magnetizations in different directions.

Lastly, we comment on possible other sources of angular
dependence. In crystalline materials, the Rashba spin-orbit
coupling coefficient αR may depend [52] on the angular
direction of the magnetization M̂ and the exchange coupling
coefficient J may not be strictly isotropic. Such angular de-
pendence in spin-related coefficients will generate additional
angular dependence to τf and τd, which may show up even in
the weak Rashba regime. We neglect such effects in the present
calculation. Experimentally, testing for angular dependence of
crystalline (or magnetocrystalline) origin, would require high
quality crystalline samples in contrast to existing experimental
measurements [36,37] of the angular dependence of τf and
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τd for granular materials, where the angular dependence of
crystalline origin is expected to average out.
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APPENDIX: DERIVATION OF EQ. (9)

Here, we derive the Fermi sea contribution of the spin-orbit
torque. First, we calculate the change of the eigenstates
in the presence of an external electric field. Second, we
calculate the resulting spin accumulation. We use time-
dependent perturbation theory, adiabatically turning on the
electric field, which is treated as a perturbation. We adopt
the time-dependent perturbation approach instead of the Kubo
formula for pedagogical reasons since it directly shows how
the states change due to the perturbation. One can show that
both approaches give the same result.

Let us consider an in-plane electric field E′(t) = E exp (δt),
where exp (δt) gives the adiabatic turning-on process. The
electric field starts to increase from t = −∞ until t = 0,
for very small δ, which will be set to zero at the end of
the calculation. This is represented by the vector potential
A = −t exp (δt)E since E = −∂A/∂t . In the presence of a
vector potential, the momentum operator p is replaced by
p + eA. Thus the total Hamiltonian becomes

H = (p + eA)2

2m
+ αR

�
σ · [(p + eA) × ẑ] + Jσ · M̂

= H0 + H1(t) + O(E2), (A1)

where

H1(t) = − e (E · p)

m
t exp (δt) + αR

�
[(eE × σ ) · ẑ]t exp (δt).

(A2)

Here, the first term comes from the kinetic energy and the
second term from the Rashba spin-orbit coupling. In the
interaction picture, the propagator of the order of O(E1) is

U
(I)
1 = − i

�

∫ 0

−∞
dt H(I)

1 (t), (A3)

where

H(I)
1 (t) = eiH0t/�H1(t)e−iH0t/� = −e (E · p)

m
t exp (δt)

+ αR

�
[(eE × σ (I)(t)) · ẑ]t exp (δt), (A4)

and

σ (I)(t) = eiH0t/�σe−iH0t/�

= σ cos

(
2εkt

�

)
+ (n̂ × σ ) sin

(
2εkt

�

)

+ n̂(n̂ · σ )

[
1 − cos

(
2εkt

�

)]
. (A5)

Here we define

εk = |JM̂ + αRk × ẑ| (A6)

and

n̂ = 1

εk
(JM̂ + αRk × ẑ). (A7)

Thus

U
(I)
1 (k) = U

(I)
1(a)(k) + U

(I)
1(b)(k), (A8)

where

U
(I)
1(a)(k) = −i

e (E · k)

m

1

δ2
(A9)

and

U
(I)
1(b)(k) = − i

�

αR

�

{
1

2
[(eE × σ ) · ẑ]

(
1

(2εk/� + iδ)2
+ 1

(2εk/� − iδ)2

)

+ 1

2i
[(eE × (n̂ × σ )) · ẑ]

(
1

(2εk/� + iδ)2
− 1

(2εk/� − iδ)2

)

+ [(eE × n̂) · ẑ](n̂ · σ )

[
− 1

δ2
− 1

2

(
1

(2εk/� + iδ)2
+ 1

(2εk/� − iδ)2

)]}
. (A10)

Thus the change in the state due to the adiabatically turned-on electric field is given by

δ |ψk,±〉 = U
(I)
1 (k) |ψk,±〉 . (A11)
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Now, the spin accumulation arising from the changes in the occupied states is

s±
k(2) = �

2
[(δ 〈ψk,±|)σ |ψk,±〉 + 〈ψk,±| σ (δ |ψk,±〉)]δ→0 = �

2
× 2Re

[ 〈ψk,±| σU
(1)
1 (k) |ψk,±〉 ]

δ→0

= ±�

2
αReE

{
J

2ε3
k

[M̂ × (ẑ × Ê)] + αR

2ε3
k

(Ê × k)

}
, (A12)

where ± indicates majority/minority bands, respectively. When the electric field is applied along the x̂ direction, we arrive at

Eq. (6). Note that U
(I)
1(a) does not contribute to the spin expectation value since it is purely imaginary.
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