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Abstract 
 
We discuss a geometric error model for those large volume laser scanners that have the laser 
source and a spinning prism mirror mounted on a platform that can rotate about the vertical axis. 
We describe the terms that constitute the model, address their effect on measured range and 
angles, and discuss the sensitivity of different two-face and volumetric length tests to each term 
in the model. We report on experiments performed using commercially available contrast targets 
to assess the validity of the proposed model. Geometric error models are important not only in 
improving the accuracy of laser scanners, but also in facilitating the identification of test 
procedures for performance evaluation of these instruments and therefore in the development of 
documentary Standards. The work described in this paper lays the foundation for such efforts. 
 
1. Introduction 
 
Large volume laser scanners are used for a variety of purposes including dimensional metrology 
of large artifacts, digitization and reverse engineering, historical preservation and archiving, etc. 
The extremely high data collection rates and noncontact measurements made possible through 
advancements in optoelectronics are rapidly shifting dimensional metrology toward this form of 
measurement. There are currently two broad mechanical designs of large volume laser scanners 
suitable for dimensional metrology. One design is similar in construction to a laser tracker, 
where the laser source is stationary and located in the base and the spinning mirror is mounted on 
the gimbal head. Such a design has already been discussed in the literature [1] and is not the 
focus of this paper.  
 
In this paper, we present a geometric error model for the second design, which comprises those 
laser scanners that incorporate a source and a spinning mirror on a platform that can rotate about 
the vertical axis. We describe the terms in the model and their influence on the measured range 
and angles. The model parameters apply to front-face measurements of the scanner (vertical 
angle in the range of 0° to 180°) but some scanners, such as the one tested, also allow 
measurements in back face. That is, the target can be measured by rotating the scanner 180° 
about the vertical axis (i.e., the horizontal angle changes by 180°) and then rotating the mirror 
past 180° in the vertical angle to locate the target. We describe how corrections to the measured 
range and angles can be obtained for measurements made using both faces of the scanner. The 
model applies to all scanners that employ such a stacked construction and is not limited by the 
technology employed to detect range. The particular scanner considered in this study is a phase 
shift scanner that uses amplitude modulation to detect range [2]. 
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The objective of this work is not simply to model errors for the purpose of reducing or 
eliminating their effects, but also to understand how these errors manifest as two-face or point-
to-point length errors so that we may then identify suitable artifact test positions and orientations 
for the performance evaluation of these instruments. We therefore discuss possible placement of 
targets and reference lengths to achieve high sensitivity to the different terms in the model. We 
report on experiments performed using commercially available contrast targets to assess the 
validity of the proposed model.  
 
Laser scanner measurements suffer from several other error sources such as those associated 
with the optical interaction of the laser and the part surface, the choice of targets, material 
properties, surface finish, reflectivity, etc. Determining the optimal positioning of targets and 
reference lengths to detect opto-mechanical scanner errors will comprise one test among a suite 
of performance tests for laser scanners. In this paper we only focus on the opto-mechanical errors 
of scanner performance evaluation and use target materials that minimize the interaction of the 
scanner beam with the target properties.  
 
It should be pointed out that most commercial laser scanner systems do incorporate a geometric 
error model within the system but that information is often proprietary. Further, scanner 
manufacturers may not necessarily provide the user with the ability to determine the parameters 
of the model (a procedure referred to as ‘compensation’) in-situ in a manner similar to that of 
laser trackers. This is possibly because laser scanner systems available today have less stringent 
accuracy specifications due to ranging errors that are substantially larger than errors induced by 
optical and geometric misalignments within the system. However, ranging accuracies of laser 
scanners have been improving steadily over the years and it will only be a matter of time before 
ranging errors are substantially smaller and scanner compensation will become an important 
aspect in performing accurate measurements. As in the case of laser trackers, ranging 
performance evaluation of a laser scanner along the radial direction can be done independently of 
volumetric performance evaluation. The focus of this paper is on evaluating the volumetric 
performance, not ranging. 
 
Much of the focus of reported research [3-6] in the literature on scanner modeling is on the 
subject of self-calibration, that is, the development of procedures to mitigate the effects of 
geometric misalignments. The work described in this paper not only details the geometric 
misalignments within the system, but more importantly, suggests placement of targets and 
reference lengths in order to expose the presence of such errors, thus facilitating the creation of 
documentary (national or international) Standards for performance evaluation in the future. 
 
2. Coordinate system and terminology 
 
First we define the coordinate system associated with a perfect laser scanner.  In later sections 
we will address the geometric errors in the scanner.  Consider a Cartesian coordinate system XYZ 
that is fixed to the scanner base with its origin located at O as shown in Fig. 1. The Z axis is 
referred to as the vertical axis or the standing axis and the XY plane is referred to as the 
horizontal plane. We define the Z axis to be coincident with the vertical rotation axis of the 
scanner. The mirror rotation axis is referred to as the horizontal axis, also known as the transit 
axis. Two axes OT and ON are attached to the platform which rotates about the Z axis. Axis OT 
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is defined to be coincident with the horizontal axis of a perfect scanner and is defined to be in the 
XY plane. Point O is also the point where the laser strikes the mirror (for a perfect scanner) and is 
reflected towards the target P. Axis ON is normal to OT and also lies on the XY plane and is 
oriented such that ON, OT, and OZ form a right handed coordinate system. Point O' lies on the 
OT axis and is the source where the laser is emitted. After reflection off the mirror the laser beam 
path lies in the ONZ plane, this also defines the normal to the mirror surface to be tilted at a 45 
degree angle with respect to axis O'T. We refer to the plane O'OP as the laser plane; this plane 
contains the laser beam emitted from the source and the beam reflected to the target P. Axes O'N' 
and O'Z' intersect at point O' and are parallel to ON and OZ, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Coordinate system definition for a perfect scanner 
 
We adopt the following terminology. The measured range, horizontal angle, and vertical angle 
are denoted by Rm, Hm, and Vm respectively. The corrected range and angles are denoted by Rc, 
Hc, and Vc respectively. The corrections to the range and angles are denoted by Rm, Hm, and 
Vm. For the purposes of computing errors associated with geometric misalignments in the 
scanner, the corrected values are also assumed to be the true values; we do not consider random 
errors in this paper. The corrections are added to the measured values to obtain a better estimate 
of the corresponding quantities.  The corrections have the opposite sign than their associated 
error and hence the corrections are the differences between the true values and the measured 
values.  
 
The directions for the positive (increasing) horizontal and vertical angles are shown in Fig. 1. 
The horizontal angle Hm is the extent of the angular rotation of the spinning platform about the 
vertical axis. The Vertical angle Vm is the extent of rotation of the spinning mirror about the 
horizontal axis. While the pole (+Z axis) is the zero for vertical angle measurements, there is no 
absolute zero for horizontal angle measurements for the scanner that we tested. The spinning 
platform can be positioned at any orientation and set as the zero. 
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3. Model parameters 

There are several sources of offsets, tilts, and eccentricities in the opto-mechanical construction 
of the laser scanner that may produce errors in the measured coordinates. We describe them in 
this section; a list is provided in Table 1. The equations presented in this paper are simply stated 
but can be derived using simple trigonometry. They are valid to first order in x/R, where x is the 
offset and R is the range value, over the entire measurement volume except for the points near 
the poles, i.e., Vm = 0° and Vm = 180°.  The Vm = 180° case is unimportant since the scanner 
tripod blocks this region from being measured.  The region near the pole (e.g., within 1°) where 
Vm = 0° is more complicated.  In particular, several of the error correction terms have 
singularities at the poles.  Additionally, some error sources such as mirror offset (section 3.3) 
prevent the scanner from physically directing the laser beam in the pole (i.e., Z) direction even 
though the scanner will report measured values with Vm = 0°.  Consequently, it is recommended 
that measurement data with Vm near zero be rejected because the uncorrected data is unreliable 
and the corrections are not applicable.  A more complex model that accounts for these effects 
will be addressed in another publication.   
 
Table 1: Model parameters for the scanner 
Parameter Description Two-face sensitivity Sensitive length tests1 Correction 

terms2 
x1n Beam offset along n Vertical angle direction Asymmetrical horizontal length test ΔHm1, ΔVm1 
x1z Beam offset along z Horizontal angle direction Asymmetrical vertical length test ΔHm2, ΔVm2 
x2 Transit offset Vertical angle and ranging 

direction 
Scanner placed in line and in between two 
targets 

ΔRm1, ΔVm3 

x3 Mirror offset Horizontal angle direction Asymmetrical horizontal length test ΔRm3, ΔHm3 
x4 Vertical index offset Vertical angle direction Symmetrical horizontal length test with the 

length positioned at an elevation 
ΔVm4 

x5n Beam tilt component along n Vertical angle direction Symmetrical vertical length test ΔHm4, ΔVm5 
x5z Beam tilt component along z Horizontal angle direction Symmetrical left and right diagonal test ΔHm5, ΔVm6 
x6 Mirror tilt Horizontal angle direction Asymmetrical diagonal test ΔHm6 
x7 Transit tilt Horizontal angle direction Symmetrical left and right diagonal test ΔHm7 
x8x Horizontal angle encoder 

eccentricity component along x 
Horizontal angle direction Symmetrical horizontal length test ΔHm8 

x8y Horizontal angle encoder 
eccentricity component along y 

Horizontal angle direction Symmetrical horizontal length test ΔHm9 

x9n Vertical angle encoder 
eccentricity component along n 

Vertical angle direction Symmetrical vertical length test ΔVm7 

x9z Vertical angle encoder 
eccentricity component along z 

 Symmetrical horizontal length test with the 
length positioned at an elevation 

ΔVm8 

x10 Zero-offset (Bird-bath error)  Scanner placed in line and in between two 
targets 

ΔRm3 

x11a Second order scale error in the 
horizontal angle encoder 

 Long symmetrical horizontal length test far 
away from scanner 

ΔHm10 

x11b Second order scale error in the 
horizontal angle encoder 

 Long symmetrical horizontal length test far 
away from scanner 

ΔHm11 

x12a Second order scale error in the 
vertical angle encoder 

 Asymetrical diagonal length test ΔVm9 

x12b Second order scale error in the 
vertical angle encoder 

 Symmetrical vertical length test ΔVm10 

1There may be many positions and orientations of a reference length that are sensitive to any given term in the model. We only list one illustrative 
position here. 
2The correction terms are described in subsequent sections 

 
3.1 Beam offset (x1n and x1z) 
 
Description: We are interested in obtaining the true values of the coordinates to a target at point 
P. Suppose the laser beam strikes the mirror at a point O1 that is offset by x1 from its ideal 
location O as shown in Fig. 2. This could arise, for example, by the laser source being displaced 



5 
 

from its ideal position O' by a constant offset (x1) to emerge from A1, as shown in Fig. 2. An 
offset beam can also arise in combination with a beam originating from O' having a beam tilt 
error and thus striking the mirror at O1; beam tilt errors will be addressed in section 3.5. In this 
section we address a pure beam offset and hence the beam is parallel to the OT axis.  The offset 
beam strikes the mirror at O1 and travels along the O1P1 direction. A perfect scanner would have 
measured the target P and recorded the correct coordinates as shown in Fig. 2. At another time 
the beam is directed to the point P, and the horizontal and/or vertical angles have different values 
than when the beam was directed along the O1P1 direction. The magnitude of the corrections to 
these measured angles can be estimated by resolving the beam offset into two components, x1n 

along the ON direction, and x1z along the OZ direction. Each component produces an error in 
both the measured horizontal and vertical angles.  From the geometry shown in Fig. 2, the 
corrections to the measured front-face angle can be derived as 
       Hm1 = (x1n.sinVm)/(Rm.sinVm) = x1n/Rm      (1) 
       Hm2 = (x1z.cosVm)/(Rm.sinVm) = x1z/(Rm.tanVm) 
       Vm1 = (x1n.cosVm)/Rm 
       Vm2 = (-x1z.sinVm)/Rm, 
where Rm is the measured range. The subscript i in Hmi and Vmi is simply an index that will 
be used for summing over all the component corrections arising from each term in the model in 
order to obtain the total correction for the vertical, horizontal, and range values. 
 
Two-face tests: Laser scanners typically have the capability to measure a point in both front-face 
and back-face.  In back-face the scanner has changed the horizontal angle by 180° and the 
vertical angle has continued to increase until the laser beam of a perfect scanner points at the 
same nominal point as it did in the front-face measurement.  It should be noted that x1z is 
sensitive to two-face testing along the horizontal angle direction but not along the vertical angle 
direction, while the reverse is true for x1n. Therefore Hm2 and Vm1 reverse in sign in the back-
face but Hm1 and Vm2 do not. Two-face sensitivity arises from the geometry of the 
construction, not from the functional form of the equations. The two-face error E is defined as 
the distance (always a positive quantity) between the coordinate measured in front-face and the 
coordinate measured in back-face of the same target [7]. For x1n, this is given by  

E = 2(Vm1)Rm = 2|x1ncosVm|        (2) 
and for x1z, this is given by  

E = 2(Hm2)RmsinVm = 2|x1zcosVm|.       (3) 
Higher sensitivity is obtained for both terms when the target is placed near the pole or on the 
floor, there being no dependence on the range to the target. 
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Figure 2 Geometry of beam offsets in the front face. The offset beam originates from A1, strikes 
the mirror at O1, and travels to P1 instead of P. In order to direct the beam to the target P, the 
horizontal and/or vertical angle axes have to be exercised, which results in horizontal and/or 
vertical angle readings being different from the true values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Sensitivity of the asymmetrical horizontal length test to x1n shown in the figure (top 
view).  
 
Volumetric length tests: As mentioned in [8], sensitivity of a model parameter to a length test is 
achieved if the error vectors at the two ends of the length have components along the length with 
a non-zero sum. Each offset term produces errors in both the horizontal and the vertical angle. 
Therefore, there will be numerous possible positions and orientations of a reference length that 
satisfy the aforementioned condition. An example of a length test that is sensitive to x1n is shown 
in Fig. 3 (top view shown). In that figure, the scanner is placed close to one end of a horizontal 
length BC instead of at the center. We refer to this position as the asymmetrical horizontal length 
test. The offset x1n produces horizontal angle errors at B and C resulting in measured coordinates 
being located at B' and C'. The components of these errors along the direction of the length are 
BB' and CC''. Even though these components are along the same direction, they are not of equal 
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magnitude. The resulting sum is non-zero as shown in Fig. 3. An asymmetric vertical length is 
sensitive to x1z for a similar reason. It should be noted that these are not the only sensitive 
positions for these terms. An example of another sensitive position for both terms is a 
symmetrical horizontal length test (scanner placed centrally with respect to both ends) with the 
length positioned at an elevation (not at scanner height). 
 
3.2 Transit offset (x2) 

Description: If the horizontal (mirror rotation) axis and the laser beam axis are coincident but 
shifted together so that they do not intersect the vertical axis at O, this offset can be resolved into 
two components, one along OZ and the other along ON. The component along the OZ direction 
is not of any consequence as it is equivalent to a translation of the origin O along the Z axis. The 
component along the ON direction will produce an error in the range and vertical angle readings. 
(For the case where the mirror rotation axis shifts a different amount than the laser beam, this can 
be considered as a combination of shifting them both together, followed by a beam offset (i.e., 
x1n ) described in section 3.1.) 
 
Consider a shift in the mirror rotation and laser beam axis along the ON direction by an amount 
x2 (taken as positive when in the +N direction) to point O2 as shown in Fig. 4(a); the horizontal 
axis now passes through O2 and into the plane of the paper. The path of the ideal beam from O to 
target P is shown in the figure along with the path of the actual beam from O2 to target P2 due to 
the transit offset. But in order to direct the offset beam to the target, the spinning mirror has to 
rotate counterclockwise by an angle (x2cosVm)/Rm. The measured vertical angle will therefore 
be smaller than the true angle. The correction is given by  

Vm3 = (x2cosVm)/Rm.         (4) 
The measured range will also be smaller than the true range; the correction to the range is given 
by  

Rm1 = x2sinVm.         (5) 
 
Two-face tests: Transit offset is sensitive to two-face testing along both the ranging and vertical 
angle directions. The two-face error E along the vertical angle direction is given by  

E = 2(Vm3)Rm = 2|x2cosVm|.        (6) 
Highest sensitivity is obtained by placing a target near the pole or on the floor where cosVm is a 
maximum; while there is no range dependence at all, in order to maximize cosVm the target is 
usually required to be close to the scanner. The two-face error E along the ranging direction is 
given by  

E = 2(Rm1) = 2|x2sinVm|.         (7) 
Highest sensitivity is obtained by placing a target at scanner height where sinVm =1. In both 
these two-face error calculations either the front–face or back-face Vm value may be used and 
although they are different the change to the E value is much less than one part in a thousand. 
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Figure 4 (a) Transit offset (b) Mirror offset (c) Vertical index offset 
 
Volumetric length tests: The transit offset is sensitive to a length test where the scanner is placed 
in-line and in-between two targets (at scanner height), where the distance between targets has 
already been calibrated by other means. 
 
3.3 Mirror offset (x3)  

Description: In the ideal case, the plane of the mirror intersects the horizontal axis and the 
vertical axis at point O. If that plane is offset from its ideal location along axis O'T (with a 
positive displacement defined in the OT direction) by an amount x3 then the laser beam strikes 
the mirror at a point O3 (as shown in Fig. 4(b) for the case where x3 is negative) and travels to P3. 
The distance the laser beam travels to O3 is the distance O'O + x3; in Fig 4(b) x3 is negative and 
consequently the path to the mirror is foreshortened. The scanner will hence make a range error 
of x3 and thus the correction that must be added to the measured range value is -x3 and denoted  

Rm2 = -x3.          (8) 
 
The reflection from point O3 also results in an angular error (i.e., the measured horizontal angle 
minus the horizontal angle of point P3) of -x3/(RmsinVm). The correction to the horizontal angle 
is therefore given by  

Hm3 = x3/(RmsinVm).        (9) 
In some scanner systems there is a reference surface located below the mirror in the Vm = 180° 
direction that is used to set Rm = 0 at point O3 and thus compensate for the ranging effects of the 
x3 displacement. Using this technique, Rm2 = 0 but the angular error still persists, and so the 
corresponding compensation value Hm3 is still required.  The data collected and described later 
in this paper uses a scanner that employs such a reference surface and consequently we omit the 
Rm2 correction term during its analysis.      
 
Two-face tests: Mirror offset is sensitive to two-face testing along the horizontal angle direction; 
the ranging error does not change and hence is insensitive to the reversal. The two-face error E is 
given by  

E = |2(Hm3)RmsinVm| = 2|x3|.        (10) 
The sensitivity is constant at any point in the work volume and is equal to twice the offset. 
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Volumetric length tests: The asymmetric horizontal length test (shown in Fig. 3) is one example 
of a length test that is sensitive to this term. 
 
3.4 Vertical index offset (x4) 
 
Description: A shift in the zero of the vertical angle encoder from the Z direction results in a 
constant error in the measured vertical angle, a misalignment parameter referred to as vertical 
index offset and denoted x4. A positive vertical index shift is in the +V direction as shown in Fig. 
4(c). The error in the front-face vertical angle is Vm (the measured vertical angle) minus the 
vertical angle of point P from the pole and is -x4, i.e., a negative value as shown in Fig 4 (c). The 
correction to the vertical angle is therefore given by  

Vm4 = x4.           (11) 
 
Two-face tests: Vertical index offset is sensitive to two-face testing along the vertical angle 
direction. The two-face error E is given by  

E = |2(Vm4)Rm| = 2Rm|x4|.         (12) 
The two-face error is larger when the target is farther away from the scanner.  
 
Volumetric length tests: A symmetrical horizontal length test (scanner placed centrally with 
respect to both ends) with the length positioned as close to the scanner as possible (so that the 
change in horizontal angle is as large as possible) and at an elevation as high as possible (so that 
the vertical angle is small) will result in the error vectors at each end of the length to either point 
towards each other or away from each other resulting in high sensitivity to this term. 
 
3.5 Beam tilt (x5n and x5z) 
 
Description: In addition to an offset, the laser emerging from the source may also suffer from a 
tilt error meaning that the beam is not parallel to the OT axis. Fig. 5 shows a pure beam tilt error 
with the laser emerging from point A5 to strike the mirror at point O. (If the beam does not strike 
the mirror at O, that effect is modeled by the beam offset term described in section 3.1). The tilt 
in the laser can be resolved into two components x5n and x5z as shown in Fig. 5. The beam tilt is 
expressed in units of angle, i.e., x5/OO'. For positive offsets, as shown in Fig. 5, the corrections 
are given by  
       Hm4 = (x5n.sinVm)/sinVm = x5n        (13) 
       Hm5 = (x5z.cosVm)/sinVm = x5z/tanVm 
       Vm5 = x5n.cosVm 
       Vm6 = -x5z.sinVm. 
 
Two-face tests: Both tilt components are sensitive to two-face testing. As in the case of beam 
offset, Hm5 and Vm5 reverse in sign in back-face, but Hm4 and Vm6 do not. The two-face 
error E for x5n is given by  

E = 2 Rm |(Vm5) |  = 2Rm|x5ncosVm|       (14) 
and that for x5z is given by  

E = 2Rm|(Hm5) sinVm| = 2Rm|x5zcosVm|.       (15) 
Higher sensitivity is obtained for both terms near the pole or on the floor and farther away from 
the scanner. 
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Volumetric length tests: A symmetrical vertical length test (scanner placed centrally with respect 
to both ends) is a sensitive position for x5n. The symmetrical left and right diagonals are sensitive 
tests for x5z. A symmetrical horizontal length test (scanner placed centrally with respect to both 
ends) with the length positioned at an elevation (not at scanner height) is sensitive to both x5n and 
x5z. 
 

 
Figure 5 Geometry of beam tilt 
 
3.6 Mirror tilt (x6) 
 
Description: The plane of the mirror is oriented so that the reflected beam is orthogonal to the 
incident beam. If the mirror has a small negative tilt x6 (expressed in units of angle) as shown in 
Fig. 6, the reflected beam is directed towards P6 instead of P. This results in the measured 
horizontal angle being larger than the true angle by x6/sinVm. The correction is therefore given 
by  

Hm6 = 2x6/sinVm.         (16) 
 
Two-face tests: Mirror tilt is sensitive to two-face testing along the horizontal angle direction. 
The two-face error E is given by  

E = 2|(Hm6)RmsinVm| = 4|x6Rm|.       (17) 
 The error is larger farther away from the scanner. 
 
Volumetric length tests: This term is similar to the well-known collimation error [9] in 
theodolites and beam tilt in certain types of laser trackers. An asymmetrical diagonal length test 
is sensitive to this term, as described in [8]. 
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3.7 Transit tilt (x7) 
 
Description: The horizontal (transit) and vertical (standing) axes, although intersecting may be 
non-orthogonal. This lack of squareness between the axes is referred to as transit tilt and is also a 
common theodolite error source. Again, as in beam and mirror tilt, the parameter x7 is a ratio of 
offset per unit length and is expressed in units of angle. Lack of squareness between the two axes 
produces an error only in the measured horizontal angle. Let, N´, T´, Z´ be the coordinate system 
of the actual scanner, i.e., T´ is the actual rotation axis of the mirror; this system is coincident 
with the N, T, Z system for the case of a perfect scanner. For an out-of-squareness condition with 
the N´, T´, Z´ system rotated about the T axis, the result is equivalent to a vertical index offset 
error (section 3.4) and hence will not be considered further.  For an out-of-squareness condition 
with the N´, T´, Z´ rotated about the N axis (in the right hand sense) by an amount x7, and hence 
making an angle of x7 between Z´ and Z) the correction is given by 

Hm7 = -x7/tanVm.         (18) 
 
Two-face tests: Transit tilt is sensitive to two-face testing along the horizontal angle direction. 
The error E is given by  

E = |2(Hm7)RmsinVm| = 2Rm|x7cosVm|.       (19) 
The error is larger near the pole and on the floor and farther away from the scanner. 
 
Volumetric length tests: This term is very similar to squareness error in Cartesian CMMs and a 
symmetrical diagonal length test is sensitive to this error.  
 
3.8 Encoder eccentricity (x8 and x9) 
 
Description: The horizontal and vertical angle encoder eccentricities contribute to error in the 
measured angles. The horizontal angle encoder eccentricity can be resolved along the X and Y 
axes, i.e., (x8x, x8y) where the coordinates are the center of the encoder wheel in the X, Y system, 
and similarly for the vertical angle encoder eccentricity along N and Z axes, i.e., (x9n, x9z). The 
error components x8 and x9 are taken as dimensionless quantities; they are the ratio of the 
encoder offset to the encoder wheel radius. The corrections are:  
       Hm8 = -x8x sinHm         (20) 
       Hm9 = x8y cosHm 
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Figure 6 Mirror tilt; shown with Vm = 90 degrees 
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       Vm7 = x9n.cosVm  
       Vm8 = -x9z.sinVm. 
  
Two-face tests: The term x9z is not sensitive to two-face testing and therefore Vm8 does not 
reverse in sign in the back-face. The other terms are sensitive to two-face testing and therefore 
Hm8, Hm9, and Vm7 do reverse in sign in the back-face. The error E for each of the terms is 
given by 2|x8xsinHm|, 2|x8ycosHm|, and 2|x9ncosVm|. 
 
Volumetric length tests: A symmetrical horizontal length test is sensitive to both the horizontal 
angle encoder eccentricity terms, x8x.and x8y. A symmetrical vertical length test is sensitive to x9n. 
A symmetrical horizontal length test (scanner placed centrally with respect to both ends) with the 
length positioned at an elevation (not at scanner height) is sensitive to x9z. 
 
3.9 Zero-offset (x10) 
 
Description: The correction due to the constant error in range is given by 
       Rm3 = x10.           (21) 
 
Two-face tests: This term is not sensitive to two-face testing.  
 
Volumetric length tests: The zero-offset is sensitive to a length test where the scanner is placed 
both in-line and in-between two targets (at scanner height), where the distance between targets 
has already been calibrated by other means. 
 
3.10 Second order scale error in the encoder (x11 and x12) 
 
Description: The corrections due to the second order scale error [10] in the encoders are given by 
       Hm10 = x11a.cos2Hm          (22) 
       Hm11 = x11b.sin2Hm 
       Vm9 = x12a.cos2Vm  
       Vm10 = x12b.sin2Vm. 
 
Two-face tests: These terms are not sensitive to two-face testing. 
 
Volumetric length tests: Sensitive tests for the horizontal angle scale error have been reported in 
[10]. These tests involve measuring a symmetrical long horizontal length placed far away from 
the scanner. Similar special tests for the vertical angle encoder such as a symmetrical long 
vertical length placed far away can also be envisioned but they will be much more challenging to 
perform. But tests already described earlier such as the asymmetrical diagonal test and the 
symmetrical vertical length test are reasonably sensitive to x12a and x12b, respectively. 
 
3.11Wobble 

It is known that laser scanner heads suffer from wobble [11] as they rotate about the vertical axis. 
We have not yet estimated the magnitude of this problem and therefore do not present any terms 
in our model to account for this. 
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4 Geometric error model 
 
Combining the corrections Hmi, Vmi, and Rmi, the error model for the scanner is given by 
∆ܴ݉ ൌ ∆ܴ݉ଵ ൅ ∆ܴ݉ଷ         (23) 
݉ܪ∆ ൌ ∑ ௜݉ܪ∆

ଵଵ
௜ୀଵ             

∆ܸ݉ ൌ ∑ ∆ܸ݉௜
ଵ଴
௜ୀଵ  . 

 
Substituting for the terms, we get, 
            (24) 
 
 
 
 
 
 
 
 
 
 
 
where k is +1 for the front-face and -1 for the back-face.  
 
The model above shows the corrections due to the different terms for front face measurements 
(Vm lies between 0 and 180) when k = 1. In order to determine the corrections to the measured 
coordinates in the back face, the value of k is set to -1, but the vertical angle to be used in the 
model is still the corresponding front face value, i.e, Vm lies between 0 and 180. In other words, 
the model assumes that the scanner always reports front face coordinates (Vm lies between 0 and 
180). In order to determine the parameters of the model and also to assess the validity of the 
model itself, we perform a series of experiments using contrast targets. These are described next. 
 
5 Contrast targets 

The commercially available contrast target is a plate with a partial sphere on the back. On the 
front-face of the plate is a square that is partitioned into 4 triangles by its two diagonals. Two 
opposing triangles are black and the other two are white. The point of intersection of the two 
diagonals on the front-face of the plate is also the theoretical center of the partial sphere. Figs. 
7(a) and (b) show views from the front and back of a contrast target, respectively.  
 
The one standard deviation repeatability from 10 consecutive scans in determining the center of 
three different types of targets as a function of range is shown in Table. 2.  The targets include 
the planar contrast targets and two spherical targets: a 2.375″ diameter ‘Scan Sphere’ and a 4″ 
Titanium sphere. A software tool provided by the manufacturer of the scanner was used to locate 
the center of the contrast target while the spherical targets are evaluated for their center location 
using a custom written least squares sphere fitting algorithm. A point density of 40 points per 
degree and 40 lines per degree was used in the measurements throughout. 
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Table 2 indicates that the one standard deviation repeatability in determining the coordinate of a 
contrast target located 4 m away is generally smaller than 30 µm. This is notably better than the 
repeatability of determining the center of matte finish spherical targets, which have at least a 40 
µm standard deviation. By averaging measurements from 4 scans on contrast targets, we reduce 
the repeatability of the mean to less than 15 µm. All target coordinate measurements described in 
subsequent sections are therefore the average from 4 scans. 
 
Table 2: Repeatability (one standard deviation) in locating target center from 10 
consecutive scans as a function of range in units of millimeters1 
 Contrast target Scan sphere Titanium sphere 
Range σR RσH RσV σR RσH RσV σR RσH RσV 
2 m 0.005 0.012 0.022 0.010 0.026 0.025 0.009 0.025 0.023 
4 m 0.005 0.019 0.033 0.017 0.024 0.042 0.020 0.024 0.042 
6 m 0.004 0.036 0.048 0.020 0.034 0.057 0.043 0.039 0.056 
8 m 0.012 0.045 0.086 0.058 0.089 0.112 0.047 0.108 0.114 
1. The terms σR, σH,  and σV refer to the one standard deviation repeatability along the ranging direction (in units of 
millimeters), the horizontal angle direction (in units of radians), and the vertical angle direction (in units of radians) 
respectively.  In order to compare the repeatability along the range and the angular axes, we scale the one standard 
deviation repeatability along the angular axes by the nominal range to express them in units of length, hence the 
notation RσH and RσV.  
 
We note that contrast targets are not dimensional targets because the coordinate of the center is 
determined from intensity measurements on the triangles on the front-face of the target. We 
choose contrast targets for this study as they offer higher repeatability and are therefore more 
suitable in discerning systematic errors in the instrument under test. Contrast targets also offer a 
planar surface as opposed to spheres, where the curvature of the surface might produce 
systematic errors in the determination of the center. But we do understand that contrast targets 
may not be applicable to all types of large volume scanners.  
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Figure 7 (a) View from the front of a contrast target (b) view from the back of a contrast target 
(c) eight contrast targets on a vertical rail for two-face testing 
 
6 Parameter estimation overview 

The experiments performed to estimate parameters and establish the effectiveness of the model 
include a two-face range test, an in-line length test, two-face transverse tests, volumetric length 
tests using an uncalibrated 8 m length, and volumetric length tests using a calibrated 2.3 m 
length. We next present a brief overview of the procedure adopted to estimate the parameters and 
describe key results in subsequent sections. 
 
Two-face range test: We first estimate the transit offset x2 by performing front-face and back-
face measurements on a target located at scanner height, placed about 2 m from the scanner and 
examine the difference in the measured range. Half the difference in the change in the range 
measurements is the transit offset x2. It was determined to be only 0.005 mm for the scanner 
under test.  
 
In-line length test: We then estimate the zero-offset error x10 from the in-line length test. For this 
purpose, we place two nests (at scanner height) that are approximately 4 m apart and calibrate 
the inter-nest distance using a laser tracker. The scanner is placed centrally, i.e., in-line, between 
the nests; the alignment is not critical and is performed to the extent the operator can do by visual 
inspection. The targets are mounted on the nests and scanned in the front-face. While this test is 
sensitive to both the zero-offset and the transit offset errors, we have already determined the 
transit offset to be extremely small and hence we can assign the error from the in-line test as 
twice the zero-offset. The zero-offset was determined to be 0.1 mm in this case. 

(a) (b) 

(c) 



16 
 

 
Two-face transverse tests: Two-face transverse tests involve measuring a target in the front-face 
and then measuring the target again in the back-face and examining the difference in the target 
coordinates due to systematic errors in the horizontal and vertical angle measurements. These 
differences can then be fit to the model in section 4 using the method of least-squares. We 
estimate three parameters, x1n, x4, and x5n from the differences between the front- and back-face 
vertical angle on eight targets located on a vertical rail (we describe the two-face measurements 
in the next section). We estimate five parameters, x1z, x3, x6, x8x, and x8y, from the differences 
between the front- and back-face horizontal angles on the same set of eight targets. We also 
estimate the sum of x5z and x7 from the differences between the front- and back-face horizontal 
angles and later use volumetric length test results to separate the two quantities. The two-face 
test procedure and results are described in section 7. 
 
Volumetric length tests using an 8 m uncalibrated length: We estimate parameters x11a and x11b 
associated with second order scale error in the horizontal angle encoder from measurements 
made on an uncalibrated 8 m long horizontal length. The test procedure and results are described 
in section 8. 
 
Volumetric length tests using a 2.3 m calibrated length: We perform a series of volumetric length 
tests on a calibrated 2.3 m length and use this data to separate the individual contributions of x5z 
and x7. The volumetric length tests are described in section 9. 
 
Finally, we note that the beam tilt parameter x9n is indistinguishable from x5n as far as its 
influence on vertical angle is concerned. We therefore consider x9n to be zero. The term x9z is 
indistinguishable from x5z and is therefore also considered to be zero. It may be possible to 
design special volumetric length tests to isolate these terms, but we have not done so at this time. 
We have also not performed sensitive volumetric length tests to determine the value of the 
second order scale errors in the vertical angle encoder and therefore we set x12a and x12b to zero. 
 
7 Two-face transverse tests using contrast targets on a vertical rail 

We placed 8 contrast targets on a vertical rail as shown in Fig. 7(c). The laser scanner was first 
placed about 2 m away (we refer to this as the near position) from the rail and it was raised so 
that the target on the floor is just visible in the field of view. We performed 4 scans and 
determined the average front- and back-face coordinate of each target. We then rotated the laser 
scanner and stand by 45º and again performed 4 scans. The rotation of the stand is a coarse 
operation; any tilt and translations in the stand are not of any consequence as the purpose of this 
experiment is to document the two-face errors of the different targets from various positions and 
orientations of the scanner. 
 
In this manner, we acquired front-face and back-face coordinates for each of the 8 targets at each 
of the 9 clocking angles (horizontal angles) of the stand: 0º, 45º, 90º, 135º, 180º, 225º, 270º, 
315º, 360º. The last clocking angle is a duplicate of the first position to determine if there are any 
closure errors. We then moved the laser scanner to a distance of about 4 m away from the rail 
(we refer to this as the far position). We repeated the same sequence of measurements as 
described earlier. For each of the 9 clocking angles of the laser scanner, we determined the 
average front-face and back-face coordinate of each target based on 4 scans. 
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For the 8 targets and 9 clocking angles at the near scanner position, there are 72 front-face 
coordinates and 72 back-face coordinates. We calculate the difference, dHm, between the front- 
and back-face horizontal angles for the 9 clocking angles at the near scanner position and plot 
that in Fig. 8(a). We calculate the difference, dHm, between the front- and back-face horizontal 
angles for the 9 clocking angles at the far scanner position and plot that in Fig. 8(b). Figs. 8(a) 
and (b) also show the results of the model prediction for the two cases.  
 
There are two important points to note in the data in Figs. 8(a) and (b). First is the systematic 
error or trend seen from targets 1 through 8 for any given clocking position. The second is the 
negative bias in those errors. The model predicts that the transit tilt x7 is the primary contributor 
to the trend in the errors while mirror tilt x6 is the source of the bias. In section 9, we will show 
volumetric length test results that confirm the presence of transit tilt in our scanner. The mirror 
tilt does not manifest in the volumetric length test as it is not of sufficiently large magnitude. 
 
Similar front- and back-face differences, dVm, along with model predictions are shown for the 
vertical angle, for the near and far position in Figs. 8(c) and 8(d). Again, we note the trend in the 
errors at any given clocking angle along with the negative bias in the errors. The model predicts 
that the trend in the errors is due to beam tilt x5n, while the bias is due to vertical index offset x4. 
In section 9, we will show volumetric length test results that confirm the presence of beam tilt in 
our scanner. The vertical index offset, however, was not large enough to influence the volumetric 
length tests that we performed. 
 
Fig. 8 indicates that the largest front-face to back-face difference was about 200 µrad for both the 
horizontal and vertical angle for a target that is about 4 m away. This translates to a linear error 
of 0.8 mm front-face to back-face difference. In other words, if the scanner were used to measure 
this target in front-face alone (or in back-face alone), the error in locating the target would be 
about 0.4 mm.  
 
The model predictions are shown in Fig. 8 as blue lines. The model does an excellent job of 
fitting to the data; the residual errors are generally on the order of 20 µrad.  This, then, implies 
that at a 4 m distance, an error of 0.4 mm would be reduced to 0.04 mm after error correction 
using the model, which is a ten-fold improvement in accuracy. The measurements shown in Fig. 
8 were repeated over a period of several months and the results were found to be stable. Clearly, 
stability is important for purposes of compensation.  
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Figure 8 (a) Measured difference between front- and back-face horizontal angle for the 9 
clocking angles at the near position (2 m) along with model predictions (b) Measured difference 
between front- and back-face horizontal angle for the 9 clocking angles at the far position (4 m) 
along with model predictions (c) Measured difference between front- and back-face vertical 
angle for the 9 clocking angles at the near position (2 m) along with model predictions (d) 
Measured difference between front- and back-face vertical angle for the 9 clocking angles at the 
far position (4 m) along with model predictions 
 
Note that we use the notation dHm and dVm to denote the difference between front- and back-
face angles (measured or model predictions), and ΔHm and ΔVm to denote the model based 
corrections to the measured angles Hm and Vm.  For a term that is sensitive to two-face testing, 
the magnitude of the front-face to back-face difference dHm (dVm) will be twice the correction 
ΔHm (ΔVm) because the corrections reverse in sign in the back-face. 
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8 Volumetric length tests using an 8 m uncalibrated length 

We placed two contrast targets on stands that were approximately 8 m apart and at scanner 
height. The scanner itself was placed centrally with respect to the nests and about 8 m away from 
the horizontal length created by the two nests. We measured the length between the two targets 
from 20 different azimuth positions (clocking angles) of the scanner in its front-face. The 
resulting lengths are shown as a function of the azimuth in Fig. 9, where a clear second order 
sinusoidal error is discernible. We estimate the two parameters x11a and x11b from these tests 
using the procedure described in [10]. The values for these parameters were determined to be     
22 µrad and 19 µrad respectively. The model predictions based on the computed parameters are 
also shown in the figure. The model does an excellent job of fitting to the data with the residual 
errors being smaller than ±0.1 mm. 
 

 

 
Figure 9 (a) Results from the second order scale error test showing measured length and model 
predictions as a function of azimuth (b) Residuals from the second order test 
 
9 Volumetric length tests using a 2.3 m calibrated length 

A 2.3 m long scale bar is mounted on a rotary table in our laboratory, see Fig. 10. The center-to-
center distance of this scale bar is calibrated using a laser tracker and 1.5″ spherically mounted 
retro-reflectors that seat into kinematic nests on the bar. The expanded uncertainty in the length 
is 0.01 mm (k = 2). After calibration, we place a contrast target into the nests at each end of the 
scale bar. The center-to-center length of this scale bar is measured by the scanner from different 
positions. The scale bar is also rotated to the horizontal, vertical, and diagonal orientations. A 
total of 9 scanner/scale bar positions/orientations were considered. For each of those 9 
positions/orientations, 4 clocking angles of the scanner were considered. A total of 36 lengths 
were therefore measured. At any given position/orientation, we perform four scans and consider 
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the average as the measured length. The results are shown in Fig. 11 and are used to determine 
parameters x5z and x7 through a least squares fit of the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Volumetric length testing of position 5 (symmetrical right diagonal) shown.  
 
The 9 positions/orientations of the scanner/scale bar considered are described below: 
 

Position 1 – symmetrical horizontal length test: The scale bar is horizontal with the 
scanner placed centrally and about 1 m from the bar. The scanner is at the same height as 
the bar. 
Position 2 - symmetrical horizontal length test:  The scale bar is horizontal with the 
scanner placed centrally and about 3 m from the bar. The scanner is at the same height as 
the bar. 
Position 3 - symmetrical vertical length test: The scale bar is vertical with the scanner 
placed centrally and about 1 m from the bar. The scanner is raised so that the head is at 
the same height as the bar center. 
Position 4 - symmetrical left diagonal length test: The scale bar is diagonal (left side is 
high, right side is low) with the scanner placed centrally and about 1 m from the bar. The 
scanner head is at the same height as the bar center. 
Position 5 - symmetrical right diagonal length test: The scale bar is diagonal (right side is 
high, left side is low) with the scanner placed centrally and about 1 m from the bar. The 
scanner head is at the same height as the bar center. 
Position 6 – asymmetrical horizontal length test, left: The scale bar is horizontal with the 
scanner placed near the left end of the bar and about 1 m from the bar. The scanner is at 
the same height as the bar. 
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Position 7 – asymmetrical horizontal length test, right: The scale bar is horizontal with 
the scanner placed near the right end of the bar and about 1 m from the bar. The scanner 
is at the same height as the bar. 
Position 8 – asymmetrical diagonal length test 1: The scale bar is in the left diagonal 
position (left side raised, right side low). The scanner is placed near the right target, but 
raised so that it is at the same height as the left target. 
Position 9 – asymmetrical diagonal length test 2: The scale bar is in the right diagonal 
position (right side raised, left side low). The scanner is placed near the left target, but 
raised so that it is at the same height as the right target 

 

 

 
Figure 11 (a) Measured lengths and model predictions for the 36 positions/orientations (b) 
Residuals for the 36 positions/orientations. 
 
The model does a resonable job of predicting measured errors for the 9 different 
positions/orientations of the scanner/scale bar with residuals generally on the order of about 0.1 
mm. There are three points worth emphasizing. 
 
First, we note that Fig. 11 shows approximately 200 µm difference in length between the left 
(position 4) and right (position 5) symmetrical diagonal length tests. This is an indication of 
squareness (transit tilt) problem in the system.  These data are thus a validation of a model 
prediction made earlier, in which the trend in the horizontal angle two-face measurements was 
indicative of transit tilt. 
 
Second, we note that Fig. 11 shows that the symmetrical vertical length test (position 3) has a 
positive bias, whereas most other length errors are negatively biased. Our model suggests that 
this is an indication of beam tilt in the system.  Again, the results in Fig. 11 are a validation of a 
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model prediction made earlier, in which the trend in the vertical angle two-face measurements 
was indicative of beam tilt. 
 
Finally, we note that there exists a saw-tooth pattern in the measured length from the four 
clocking positions at any given position. Our model suggests that this is an indication of second 
order scale error in the horizontal angle encoder. In fact, model predictions clearly capture the 
saw-tooth pattern seen in the measurement data. These length tests thus reinforce earlier results 
obtained from an uncalibrated 8 m length, which suggested the presence of a second order scale 
error in the horizontal angle encoder. 
 
While the model does a reasonable job of predicting most of the errors, we observe an offset 
between the measured length and the model. This is sometimes as large as 0.2 mm, as seen for 
position 9, in Fig. 11.  Target properties such as eccentricity in construction, tilt (angle of 
incidence), etc, influence measurement results. We are currently working to reduce this source of 
error so that we can perform length measurements with higher accuracy. It should be noted that 
target-induced errors are common-mode in two-face testing, but not in volumetric length tests. 
 
10 Model parameters and dominant terms 

For purpose of completeness, we present the model parameters determined from the data in 
Table 3.  
 
Table 3: Model parameters for the scanner 
Parameter Description Value 
x1n Beam offset along n 0.024 mm 
x1z Beam offset along z 0.015 mm 
x2 Transit offset 0.005 mm 
x3 Mirror offset 0.033 mm 
x4 Vertical index offset 0.000049 rad 
x5n Beam tilt along n 0.000123 rad 
x5z Beam tilt along z 0.000034 rad 
x6 Mirror tilt 0.000021 rad 
x7 Transit tilt -0.0001 rad 
x8x Horizontal angle encoder eccentricity along x 0.000005  
x8y Horizontal angle encoder eccentricity along y -0.000006  
x9n Vertical angle encoder eccentricity along n Not determined 
x9z Vertical angle encoder eccentricity along z Not determined 
x10 Bird-bath error 0.1 mm 
x11a Second order scale error in the horizontal angle encoder 0.000022 rad 
x11b Second order scale error in the horizontal angle encoder 0.000019 rad 
x12a Second order scale error in the vertical angle encoder Not determined 
x12b Second order scale error in the vertical angle encoder Not determined 

  
In Fig. 12, we plot the relative contributions of each of the model terms separately to the dHm 
and dVm errors (two-face errors) for the eight targets on the vertical rail. We show the results 
only for the first clocking angle (horizontal angle of zero) and at the near position. The plot is 
informative in that it clearly captures the leading contributor for the observed two-face errors in 
the horizontal angle as the transit tilt (x7) and the leading contributor for the observed vertical 
angle two-face errors as the beam tilt along the ON (x5n) axis. Fig. 12 also suggests that the 
leading contributor to the negative bias in the horizontal angle two-face errors is the mirror tilt, 
x6 and that the leading contributor to the negative bias in the vertical angle two-face errors is the 
vertical index offset, x4. 
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Figure 12 Relative contributions of the different model terms to differences between front-face 
and back-face errors dHm and dVm. The contribution from some terms are not shown here as 
they are not sensitive to two-face testing. 
 
11 Conclusions and future work 
 
We describe a geometric error model for a large volume laser scanner that has a spinning prism 
mirror mounted on the gimbal head to direct the laser to the target. We determine the model 
parameters and demonstrate its effectiveness by performing several two-face and volumetric 
length experiments. We show that measured two-face errors are on the order of 200 µrad at 4 m 
(which translates to 800 µm at 4 m) for the scanner we tested, which is much larger than the 
repeatability in locating the target. Further, the residuals from our fit are on the order of 20 µrad, 
thus suggesting that our model can in fact be applied to improve the accuracy of the instrument. 
Geometric error models are important not only in improving the accuracy of the instrument but 
also in understanding error sources and developing standardized test procedures that are sensitive 
to all known sources of error. In this paper, we therefore not only document the different 
misalignment terms but also describe their influence on measured range and angles. We then 
suggest target placement for two-face and length tests to achieve high sensitivity to the different 
terms. This work therefore lays the foundation for possible future work in the area of laser 
scanner volumetric performance evaluation and documentary standards development. 
 
Disclaimer: Commercial equipment and materials may be identified in order to adequately 
specify certain procedures. In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply that the 
materials or equipment identified are necessarily the best available for the purpose. 
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