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Abstract
We use time-dependent density functional theory to examine the character of various resonances
corresponding to peaks in the optical response of small metallic nanoparticles. Each resonance
has both ‘sloshing’ and ‘inversion’ character. The sloshing mode is an oscillation in the
occupation of the shells nearest the Fermi energy, transferring charge back and forth from below
the Fermi level to above it. It results in oscillation in charge density near the surface of the
particle. Inversions monotonically move charge from occupied to unoccupied states, and result in
oscillation in charge density in the core of the particle. We also discuss the dependence of the
optical response on the size of the simulation grid, noting that the character of resonances
appears stable with respect to changes in simulation size, even though the details of the spectrum
change. This makes a reliable characterization possible. We consider what characteristics are
important in deciding that a resonance is plasmonic.

S Online supplementary data available from stacks.iop.org/jopt/16/114022/mmedia
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1. Introduction

Plasmons in metallic nanoparticles (MNPs) could potentially
be used as the quantum excitations in quantum computing,
communication and measurement schemes. Nanoscale trans-
mission of quantum excitations can occur as the energy and
quantum information in a plasmon move between a MNP and
other nanoscale quantum emitters. Therefore, we need to
know what characterizes excitations in finite metallic systems
that are small enough to be quantum, but large enough to have
plasmon-like excitations.

The response of single atoms and small metallic clusters
is described in terms of single electron transitions. In large
particles, plasmons are classical oscillations of charge near the
metal surface. A clear characterization of excitations in

intermediate size particles, small enough to have quantized
single-particle excitations but large enough to sustain col-
lective charge oscillations, is more difficult. This question has
been discussed for many years. Theoretical quantum
descriptions in infinite or semi-infinite systems can provide
guidance but clearly donʼt describe MNPs. Models that help
us understand the quantum properties of plasmons in finite
systems must be employed. Classical hydrodynamic
descriptions wonʼt capture size quantization, quantum
(coherent) coupling and quantum hybridization of states in
multiple nanoscale particles, or interparticle tunneling.
Quantum electronic structure calculations have been used for
thirty years to describe small metal particles. Typically den-
sity functional theory (DFT) and time-dependent density
functional theory (TDDFT) have been used [1–17]. A jellium
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model for the ion cores allows a quantum mechanical
description of delocalized interacting valence electrons that
captures the important elements described above [5]. TDDFT
can be used to calculate linear response functions or deter-
mine the time evolution of the response [17]. Figure 1 shows
an example of the optical response for a 100 electron jellium
sphere calculated using real-time TDDFT. (The horizontal
axis is measured in units of the classical surface plasmon
resonance, ω ω ε= = n e m3 [( ) (3 )]osp p e

2 1 2, where ωp is
the bulk plasma frequency, ne is the electron density, e and m
are the electronic charge and mass and εo is the vacuum
permittivity.)

Ekardt [1], Puska et al [2], and Beck [3] were some of the
first authors to use frequency-space (linear response) TDDFT
on jellium spheres to calculate the optical response of MNPs.
The response functions they calculated are similar to the
response shown in figure 1, though with less fine frequency
resolution. We expect that the different peaks seen in the
optical response have different character, and different
authors have attempted to tease out what this character might
be, and which peaks might best be described as surface
plasmons. Generally the spectrum is described as one broad
surface plasmon peak that is fragmented into multiple peaks
by various interactions, plus many additional smaller peaks.
(There is also a second, much smaller, broad and fragmented
peak at slightly higher energy that is visible if the amplitude is
plotted on a logarithmic scale. This is generally identified as a
volume plasmon.)

Beck [3] looked at the induced electron density of the
eigenmodes corresponding to some of these peaks and char-
acterized those with induced charge near the surface of the
particle as collective excitations and those with induced
charge near the core of the particle as single-particle excita-
tions (particle-hole transitions). However he cited trouble
making these identifications clearly due to coupling of single-
particle and collective excitations. He stated that a collective
or plasma excitation is one where the electronic charge den-
sity as a whole is excited and oscillates, and ‘none of the
electrons are transferred from an occupied to an unoccupied

energy level and the induced density ... can be an infinitesimal
perturbation of the ground-state system.’

Ekardt [1] identified ‘fine cusps’ in the spectrum to be
single-particle-hole pairs and the broader central feature as a
Mie resonance but did not identify any fragmentation. He
examined the induced electron density in the radial direction
as a function of frequency for some of these eigenmodes.
From this he noted that one of the eigenmodes he identified as
a single-particle-hole excitation had very little change in the
charge density near the surface, with more change in the
interior of the sphere. The opposite was true for the eigen-
mode he identified as the surface resonance.

Puska et al [2] also identified bound-bound cusps and
bound-continuum edges in their spectra. Their calculations were
done both with and without electron–electron interactions.
Broader features were present only when electron–electron
interactions are turned on, whereas there were narrow cusp-like
peaks both with and without electron–electron interaction.

In a review article, Brack [5] attributed the fragmentation
of the surface plasmon peak to coupling between the surface
plasmon and particle-hole excitations, volume plasmons, or
more complicated excitations.

Yannouleas et al [4], using discrete-matrix random-phase
approximation (RPA) of jellium spheres, calculated RPA
oscillator-strength functions and showed that the surface
plasmon is ‘fragmented’ by a renormalization (shift) of the
plasmon energy due to single electron transitions with change
in principle quantum number of 1, followed by hybridization
with the rest of the single electron transitions, some of which
are very near the renormalized surface plasmon.

Kummel et al [10] identified plasmon-like behavior in
Na2 based on the fact that local current approximation
quantum fluid dynamics provided a description very similar to
TDDFT, suggesting a convergence between viewing the
excitations as valence electron oscillations and as transitions
between molecular states.

Bernadotte et al [14] identified plasmons in molecules by
scaling the electron–electron interaction by a parameter λ, in
TDDFT. Single particle excitations have little or no depen-
dence on λ, while plasmon excitations scale linearly with λ.
Piccini et al [15] simplified the analysis of Bernadotte et al
Rather than a full scaling with multiple values of λ, they
examined the full TDDFT and Kohn–Sham transitions which
are the λ = 1 and λ = 0 limits of the scaling. Raitza et al [13]
identified whether excitations were collective (plasmonic)
based on a bi-local auto-correlation function.

Previously, we have used real-space and real-time
TDDFT to examine the spatial and time variation of the
various eigenmodes of these jellium spheres [17]. We have
seen that some eigenmodes have their induced charge density
fluctuations near the surface of the sphere, referred to as
‘classical surface plasmons’, and some in the interior, called
‘quantum core plasmons’. In [17] we identified both of these
kinds of eigenmodes as collective states, because electrons
from multiple shells were contributing to the change in charge
density in both cases.

In the present article we continue this investigation into
the character of the different resonances present in single

Figure 1. Optical response of a 100 electron MNP. Horizontal axis
measured in units of the classical surface plasmon frequency.
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MNPs. Using real-space, real-time TDDFT, we examine the
transitions of electrons between different Kohn–Sham states
as a function of time, and identify two types of behavior that
each resonance exhibits. Each resonant mode has electrons
sloshing back and forth between shells above and below the
Fermi surface and excitation of electrons continuously from
occupied states to unoccupied states. We consider the possi-
ble interpretations of these two types of transitions in iden-
tifying collective plasmon resonances in small MNP systems.
We also discuss the unexpected dependence of our absorption
spectra on the size of our (spherical) simulation box. The
TDDFT simulations in the current work are refinements of
those in [17]. New to this work is the analysis based on the
projections of time-dependent single-particle states onto sin-
gle-particle ground states. This new analysis shows the pre-
sence of both sloshing and inversion modes in each of the
classical surface plasmons and quantum core plasmons. Many
new calculations have also been done varying the size of the
simulation boundaries.

2. Methods

For the TDDFT calculations we use Octopus, a Gnu-public
licensed software package [18, 19]. The MNP is modelled as
a gold jellium sphere with single-electron radius

= =r a3 0.159 nmos . We consider particles with radius of
= =R a8.42 0.446 nmoMNP (20 valence elctrons) to
= =R a13.9 0.737 nmoMNP (100 valence electrons). The

particle is defined on a real-space grid (12–16 grid points per
RMNP). The grid is defined inside a simulation sphere with a
radius of 2–6 times the size of the particle. The charge density
and wave functions must go to zero at the edges of the
simulation sphere. The ground state of the jellium sphere is
calculated self-consistently in the local density approximation
(LDA). This gives the Kohn–Sham single-particle
eigenstates. In our DFT calculations, the electron density is
created by filling the Kohn–Sham states with electrons
according to a finite-temperature Fermi function, =f 1n

+E k T(exp ( ) 1)n B smearing , where En is the energy of a
Kohn–Sham state, kB is the Boltmann constant, and Tsmearing is
a temperature parameter that determines the smearing of
levels. Typically we are using a smearing temperature of
0.001 E kh B, which is 0.005 ωsp or 316 K. Eh is a hartree, the
energy unit used by Octopus.

We first do a ground state calculation, then we evolve the
Kohn–Sham states in time using an approximated, enforced
time reversal symmetry propagator with a timestep of

= × − E0.1 1.5 10 nsh
8 . This approximates applying the

operator − Htexp ( i ˆ ) to the Kohn–Sham states in small
timesteps. The exponential is Taylor expanded to fourth
order.

There are two different time-evolution calculations we
do: the first finds the optical response as a function of fre-
quency, the second characterizes each resonant mode. In the
first calculation a linearly-polarized delta pulse electro-
magnetic field is applied at t = 0 and the states are propagated

forward with no further applied potential. The Fourier trans-
form of the resulting time-dependent dipole moment gives the
dynamical polarizability as a function of frequency, the
imaginary part of which is proportional to the dipole strength
function and the optical cross section, as seen in figure 1. The
peaks in this response are the resonant frequencies of the
system. Long time evolutions improve the frequency resolu-
tion. Up to the approximations of our calculation (LDA and
the truncation of the expansion of the Hamiltonian for the
time evolution) this response is proportional to the density–-
density many-body Greenʼs function which has peaks at the
energies of all quasiparticle-hole pair excitations (renorma-
lized single-particle states) and collective modes (plasmons).

In the second time-evolution calculation, we apply a
sinusoidally-varying electric field oscillating at one of the
resonant frequencies, driving the particle. This allows us to to
examine the electron density, the Kohn–Sham eigenstates,
and the dipole or higher order-multipole moments of the
system as a function of space and time. We can also project
the time-evolved Kohn–Sham eigenstates onto the ground-
state Kohn–Sham eigenstates to identify the single-particle
transitions involved.

3. Results

3.1. Transitions between Kohn–Sham states as a function of
time and frequency

We begin by examining the single-particle transitions that
contribute to the resonances of a 100 electron MNP. This will
allow us to understand how the individual electrons come to
behave collectively.

Figure 1 shows the photoabsorption cross section of the
100 electron MNP when the radius of the simulation volume
is 3.4 times the radius of the particle ( =R R3.4grid MNP). There
are five principal resonances, with a pair of very strong
resonances at 0.9041 ωsp and 0.9124 ωsp. These two have a
very similar character to one another, and exhibit charge
oscillation throughout the particle, with significant charge
oscillation near the surface. This can be seen in figure 2,
which shows the induced change in electron density along the
driving axis of the 100 electron MNP when it is driven with
an oscillating electric field at 0.9041 ωsp , the frequency of the
strongest peak in figure 1. The horizontal axis is time mea-
sured in the period of the driving frequency, π ω=T 2 driving

and the vertical axis is position along the axis measured in
terms of the radius of the MNP, RMNP. The dark dotted line
indicates the ground-state electron density as a function of
position along the y-axis. These resonances are described in
reference [17] as classical surface plasmons (these two peaks
were not resolved as separate peaks in that paper). There are
two moderately strong resonances at 0.8163 ωsp and 0.7337
ωsp. These are the quantum core plasmons of reference [17],
in which the charge oscillation occurs near the center of the
MNP. There is an additional strong resonance at 0.8579 ωsp

which has mixed character, with charge oscillations at the
surface of the particle for some times in the evolution, but not
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consistently throughout the time evolution. All of the reso-
nances are made from multiple single-particle transitions [17].

To understand the different behavior of these resonances,
we must understand how electrons in different shells behave.
For this purpose we project the time-dependent Kohn–Sham
states, ϕ t( )n , onto the ground-state (t = 0) Kohn–Sham states,
ϕ (0)m , where n and m are state indices ordered by energy (En).
As the nth state evolves in time its occupation remains the
same, however it acquires components from states other than
n in the ground-state basis. Each evolving state remains
mostly in its original (t = 0) Kohn–Sham state, but evolves
with time to contain other ground-state (t = 0) components.
Thus there is some probability that the electron has made a
transition from the nth Kohn–Sham state to the mth Kohn–-
Sham state. The square of the projection ϕ ϕ< >t( )| (0)n m gives
the probability that at time, t, the nth eigenstate will have
evolved into the mth ground-state eigenstate. Because we are
interested in transitions, we want to know how much an
occupied evolving state remains in or moves out of the Fermi
sea. The probability that any occupied state has evolved into
the mth ground-state Kohn–Sham state is

∑ ϕ ϕ= < >P m t f t( , ) ( ) (0) . (1)
n

n n m
2

The driving field amplitude is small, so very little charge is
moving, and the projections are nearly a delta function, δnm.
To see the variation, we instead plot the change in this
probability:

∑Δ ϕ ϕ= < > −P m t f t f( , ) ( ) (0) . (2)
n

n n m m
2

The occupation of each evolving Kohn–Sham state is

constant. P m t( , ) shows how an occupied state evolves into
another t = 0 state. For simplicity, however, we will some-
times refer to P m t( , ) as occupation and ΔP m t( , ) as a
change in occupation of the Kohn–Sham states.

By examining the time- and frequency-dependence of the
transitions between Kohn–Sham states, we can identify which
shells are participating in a resonance and how.

3.1.1. Classical surface plasmon. As mentioned above, the
classical surface plasmon resonance exhibits charge oscillation
at the surface of or throughout the particle. This is apparent
from figure 2. Figure 3 shows ΔP m t( , ) for the 100 electron
MNP driven at this resonance. The positive (red) areas indicate
shells that electrons have moved to, while negative (blue) areas
indicate shells that electrons have left. The vertical axis
identifies which shell each time-dependent Kohn–Sham state
belongs to. (Shell identities are deduced from the degeneracy
of the states.) This figure shows two kinds of changes in the
occupation of the Kohn–Sham states. Shells near the Fermi
level in the middle of 2f (shells 2d, 3s, 1h, 2f, 1i, 3p, and 2g)
exhibit an oscillation in their occupation, while shells 1d, 1f,
1g, 3d, 2h and 3f exhibit a monotonic increase or decrease in
their occupation. We identify the oscillating occupation as a
‘sloshing’ of charge back and forth with the applied field,
created by electrons near the Fermi surface. The monotonic
evolution we identify as an inversion, electrons deeper in the
core being excited to higher energy states. In all five of the
(different frequency) resonances we have examined in this
system, sloshing oscillatory occupation occurs between states
just below and just above the Fermi energy. The sloshing

Figure 2. Classical surface plasmon (ω ω= 0.9041 sp) in 100

electron MNP: color indicates change in the electron density along
the axis (x) parallel to the applied field through the center of the
MNP. Bottom blue line indicates the phase of the applied electric
field as a function of time. Solid line with circles is the ground state
electron density as a function of position, whose horizontal axis is at
the top of the figure. T is the period of the driving field.

Figure 3. Change in the probability of occupation of Kohn–Sham
states (Δ ϕ ϕ= ∑ < > −P m t f t f( , ) | ( ) | (0) |n n n m m

2 ) for the classical
surface plasmon in the 100 electron MNP. The Fermi energy is in the
middle of the 2f shell.
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component corresponds closest to a plasmonic response with
the charge near the Fermi level involved. Different resonances
have different states involved in the inversions.

By examining a snapshot of the projections of time-
evolved Kohn–Sham states onto ground states (figure 4) we
can confirm that the oscillations in charge leaving some shells
are connected by transitions (non-zero projections) to
oscillations in charge entering other shells (e.g. 2d → 3p
(weak), 3s → 3p (moderate), 1h → 1i (moderate), 1h → 2g
(weak), 1f → 3d (weak)). Likewise, there are transitions
between monotonically decreasing states and monotonically
increasing states (e.g. 1f → 3d, 1g → 2h, 1g → 3f).

Figures 5 and 6 show the real and imaginary parts of the
Fourier transform of figure 3, showing the frequency behavior
of the occupation of the shells. We see a main peak consistent
with the real and imaginary parts of the form

ω ω δ− −ϕe ( i )i
driving . The oscillations in the occupation

(sloshing) occur as peaks at the driving frequency. The
monotonic transitions (inversion) show up as peaks near zero
frequency that extend broadly across many frequencies. We
can also see that the monotonic inversion is also present in the
shells with the oscillatory transitions.

3.1.2. Quantum core plasmons. The corresponding results
for one of the quantum core plasmon resonances
ω ω=( 0.7337 )sp , with charge oscillation only in the MNP
interior, are shown in figures 7–11. This resonance has only
a few of the monotonic inversion transitions (3s → 4p, 2d →
4p, 2d→ 3f) and the sloshing transitions are much weaker (1h
→ 1i, 2f→ 2g, 2d→ 4p (very weak), 2d→ 3f (very weak), 2p
→ 3d (very weak), 3s → 4p (very weak), 2d → 4p(very
weak)). States from different shells are involved in the
inversions for the other core resonances. The insets in
figures 10 and 11 show that the quantum core plasmon has a
weak resonance at the classical surface plasmon frequency
ω ω=( 0.9041 )sp in addition to its response at the driving
frequency.

In all of the core resonances there is a response at both
the driving frequency and, to some extent, at the frequency of
the surface resonance. Also, the relative strength of the peaks
at ω = 0 and ω ω= driving are different for the core resonances
and the surface resonances. The core resonances have less to
much less strength in the peak at the driving frequency. The
sloshing behavior is more dominant in the suface resonances
and the inversion behavior in the core resonances. This is

Figure 4. Magnitude squared projections ( ϕ ϕ< >t| ( ) | (0) |n m
2) of time-evolved Kohn–Sham states onto the ground-state Kohn–Sham states

for the classical surface plasmon in the 100 electron MNP. The snapshot is shown for an arbitrarily chosen time.
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consistent with the picture of a sloshing resonance being split
or fragmented by transitions from core states into unoccupied
states and the core resonances being more single-particle like.

Some states have mixed character and are not clearly
either classical surface plasmons or quantum core plasmons.

For example, the mixed character state at 0.8579 ωsp has
strong responses both at at ω = 0 and ω ω= driving with
nearly all of the shells involved in the inversion transitions,
but with one particular shell (1h) being the source of most of
the inversion electrons.

Figure 5. Real part of the Fourier transform of ΔP m t( , ) for the
classical surface plasmon in the 100 electron MNP.

Figure 6. Imaginary part of the Fourier transform of ΔP m t( , ) for the
classical surface plasmon in the 100 electron MNP.

Figure 7. Quantum core plasmon (ω ω= 0.7337 sp) in the 100

electron MNP: color indicates change in electron density along the
axis parallel to the applied field through the center of the MNP.
Bottom blue line indicates the phase of the applied electric field.
Solid line with circles is the ground state charge density, whose
horizontal axis is at the top of the figure.

Figure 8. Change in occupation of Kohn–Sham states
Δ ϕ ϕ= ∑ < >P m t f t( ( , ) | ( ) | (0) | )m m n m

2 for quantum core plasmon
in the 100 electron MNP. The Fermi energy is in the middle of the 2f
shell.
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3.2. Variation with simulation volume

To ensure that these assignments are robust to the details of
the calculation, we have examined the dominant resonant
modes of dozens of single MNPs, varying their size and the
simulation parameters. The calculated photoabsorption cross
sections are robust to variations in the magnitude of the delta
kick, the length of the time step, the grid spacing, and the
convergence energy for the self-consistency, indicating that
we are in a regime of linear response and that our time step,
grid spacing, and convergence energy are sufficiently small.
Because we Fourier transform a finite time series, we get
better resolution in the photoabsorption as a function of fre-
quency for longer time series.

For longer time series that provide better frequency
resolution, a significant dependence of photoabsorption on the
size of our simulation volume (a sphere) becomes apparent, as
seen in figure 12. Color indicates the photoabsorption cross
section, which is a function of frequency on the y-axis and a
function of the radius of the simulation volume, Rgrid, in terms
of the radius of the MNP, RMNP, on the x-axis.

Figure 12 shows that the dominant spectral weight of the
response remains at nearly a constant energy for a wide range

of simulation sizes. However the details of the ‘fragmenta-
tion’ discussed in the introduction vary considerably. There
are always multiple peaks clustered around the same energy,
but their location and relative strengths vary with Rgrid. Less
prominent peaks appear to red shift with increasing volume,
and it appears that these weaker peaks pass through the
plasmon resonance, causing splittings. Even with an Rgrid of
six times the particle radius, the levels have not fully con-
verged to stable positions or relative strengths.

Only a small fraction of the total charge is moving. The
maximum electron density in the particle is about 1000 times
the maximum change in electron density in the particle. An
even smaller fraction of the charge is near the edges of the
simulation grid. The maximum electron density in the particle
is at least 109 times the maximum electron density at the edge
of the simulation during the entire time evolution. Thus the
charge density is not reaching the edges of the simulation
volume in significant amounts. Hence, the bound, occupied
Kohn–Sham states are not sensitive to the simulation size.
This suggests that unbound, continuum states are playing an
important role in our calculation. The Fermi energy is at

ω−0.5702 sp in the 100 electron MNP. Since the primary
resonances are in the range of 0.62 ωsp to 1.1 ωsp , transitions

Figure 9. Magnitude squared projections ( ϕ ϕ< >t| ( ) | (0) |n m
2) of time-evolved Kohn–Sham states onto the ground-state Kohn–Sham states

for the quantum core plasmon in the 100 electron MNP.
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into the continuum states are possible, and the quantization of
the continuum into discrete box states is likely the source of
this dependence. Indeed, the energy of some of the peaks in
figure 12 show a clear dependence on the size of the simu-
lation sphere. Of those levels which can be more clearly
tracked, a reasonable fit can be obtained of their energy to

R1 grid
2 .
Most importantly, the general character of the different

resonances does not change with the size of the simulation
sphere. In each case that we have examined, we see quantum
core plasmons and classical surface plasmons.

The quantum core plasmon discussed above for the
simulation size of =R R3.4grid MNP, occurs at a frequency of
0.7337 ωsp. Figure 12 shows that there is consistently a
resonance near this frequency regardless of simulation size.
However the peak is sometimes accompanied by a series of
levels that are red-shifting with increasing simulation size.
Repeating the analysis of the previous section on this reso-
nance for a simulation size of =R R4grid MNP gives results that
are nearly identical to those for the quantum core plasmon just
discussed for a size of R3.4 MNP.

Likewise, both of these two simulation sizes have reso-
nances near 0.91 ωsp. Examining the transitions between
Kohn–Sham states for this resonance in the larger simulation
volume again yields results very nearly identical to those for
the classical surface plasmon just discussed for the smaller
simulation volume. The same shells are involved with similar
relative strength between the inversion behavior and the
sloshing behavior. We conclude that the time and frequency
dependence of the level occupations for both the quantum
core plasmon and classical surface plasmon depend only
weakly on simulation size. This reassures us that although our

Figure 10. Real part of the Fourier transform of ΔP m t( , ) for the
quantum core plasmon in the 100 electron MNP. Inset shows the
indicated region with a color scale that is 20 times more sensitive, to
reveal additional weak peaks.

Figure 11. Imaginary part of the Fourier transform of ΔP m t( , ) for
the quantum core plasmon in the 100 electron MNP. Inset shows the
indicated region with a color scale that is 20 times more sensitive, to
reveal additional weak peaks.

Figure 12. Photoabsorption cross section of 100 electron MNP,
varying simulation size. Darker colors indicate greater absorption, in
arbitrary units.
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spectra appear dependent on simulation size, the classification
of the dominant resonances is largely independent of simu-
lation size. We think that the primary size dependence comes
from discrete transitions involving empty states far above the
Fermi level that are unbound or nearly so.

3.3. Variation with particle size

We have performed similar analysis of the excitations for
smaller MNPs, with 20 and 40 valence electrons. In each of
these systems there is one significant resonance with induced
charge at the surface of the particle and a much weaker
resonance with induced charge in the core of the particle. The
surface resonance is about ten times stronger than the core
resonance. Figures showing the change in electron density,
ΔP m t( , ), and the real and imaginary parts of the Fourier
transform of ΔP m t( , ) for the two largest resonances for the
20 electron MNP are available as supplementary information
on the website of this journal. Both of these resonances have a
significant sloshing response at the driving frequency and a
significant inversion response at zero frequency. All shells
seem to have both sloshing and inversion character, consistent
with the more mixed character expected for smaller particles.
The most noticable difference between the core and surface
plasmon is the addition of transitions from states well below
the Fermi level to well above the Fermi level for the core
plasmon. This also occurs for the 100 electron MNP. The
results for the 40 electron MNP (not included) are similar to
those for the 20 electron MNP.

4. Discussion and conclusion

We have seen that any given resonance of a MNP is com-
posed of two types of behavior, which we name sloshing and
inversion. The electrons in the shells nearest the Fermi energy
are most able to participate in sloshing behavior. Sloshing is
an oscillation in the occupation of the states in these shells
near the Fermi surface, which results in oscillation in the
charge density near the surface of the particle. Inversions,
which excite electrons from occupied states (core states or
those near the Fermi energy) to unoccupied states, exhibit a
monotonic change in the occupation of states involved, and
are responsible for oscillation of the charge density in the
center of the particle. In the Fourier transform of ΔP m t( , ),
showing the occupation of shells as a function of frequency,
sloshing is seen as a ω1 peak at the driving frequency, while
inversions are seen as a ω1 peak at zero frequency. Each
resonance is ‘collective’ to the extent that multiple transitions
are involved in any given resonance. However the resonances
with charge density oscillations at the surface (classical sur-
face plasmons) have more states involved in both kinds of
transitions. Sloshing is more significant in these resonances
than those resonances with charge density oscillations pri-
marily in the center of the MNP (quantum core plasmons).

Each of the resonances in the spectrum (quantum core
plasmons and classical surface plamons) has this dual char-
acter (sloshing plus inversion). The dependence of each

resonance in the spectrum on simulation size also has a dual
character. The dominant contribution to the main mode
depends only weakly on simulation size. This allows us to
give a robust characterization of the mode. At the same time,
each mode mixes with weaker excitations that strongly
depend on simulation size. Since the bound Kohn–Sham
states and the ground state electron density have almost no
dependence on the size of the simulation sphere, the size
dependence should arise mostly from transitions involving
highly excited, continuum states. Our results suggest that we
can identify the sloshing behavior as plasmonic and the
inversions as more single-particle like. We classify individual
resonances in the spectra as either classical surface plasmons
or quantum core plasmons based on where in the MNP the
charge is oscillating. Each of those resonances, however,
displays both sloshing and inversion behavior. ‘Sloshing’ and
‘inversion’ indicate how the individual electron states change
their population over time. Thus, each of the resonances we
examined is a hybridization of plasmonic and single-particle
behavior.

This work continues our attempt to understand how the
collective behavior of plasmons is built up from individual
quantized interacting electrons. Having a clear characteriza-
tion of the MNP plasmons is important for developing a
similar understanding for assemblies of MNPs and for hybrid
molecules of coupled MNPs and quantum dots. Surface and
quantum core plasmons will have different interparticle cou-
pling due to the different dipole moments they provide. This
must be accounted for in analyzing multiparticle systems.

We have also investigated the dependence of optical
absorption spectra on simulation sphere size. Although the
spectra show dependence on simulation size in their details, the
broad character of the spectra and those resonances we have
examined appear robust with respect to simulation size.
However for studies of assemblies of MNPs and hybrid
molecules, this dependence on simulation size becomes more
problematic. Level crossings are an essential feature of coupled
particles. Additional level crossings that arise from size-
dependence effects complicate the analysis of multiparticle
systems and are an analytical challenge that must be dealt with.
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