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We derive the ground-state energy for a small number of ultracold atoms in an isotropic har-
monic trap using effective quantum field theory (EFT). Atoms are assumed to interact through
pairwise energy-independent and energy-dependent delta-function potentials with strengths propor-
tional to the scattering length a and effective range volume V, respectively. The calculations are
performed systematically up to order [ =%, where | denotes the harmonic oscillator length. The ef-
fective three-body interaction contains a logarithmic divergence in the cutoff energy, giving rise to a
non-universal three-body interaction in the EFT. Our EFT results are confirmed by nonperturbative
numerical calculations for a Hamiltonian with finite-range two-body Gaussian interactions. For this
model Hamiltonian, we explicitly calculate the non-universal effective three-body contribution to

the energy.

PACS numbers: 05.30.Jp, 34.50.-s, 67.85.-d

I. INTRODUCTION

The properties of dilute Bose gases are to leading order
determined by the two-body free-space s-wave scattering
length a [1]. Two-body contact interactions between each
pair of bosons are typically assumed, and used to derive
expansions around the non-interacting [2—17] or strongly-
interacting unitary limit [14, 15, 18-21]. Both few- and
many-body systems have been considered and, in some
cases, the two limits have been connected using the local
density approximation [1, 19, 22, 23]. If the expansion is
carried out to sufficiently high order in a or 1/a, respec-
tively, corrections due to the two-body effective range
volume V have to be accounted for if a consistent de-
scription that allows one to connect to atomic systems
with realistic interaction potentials is desired [2, 4, 10—
14, 17, 24].

A question that has intrigued researchers for decades
is how three-body interactions come into play [7, 10—
13, 20, 25-28]. In the strongly-interacting regime,
three-body physics manifests itself in the Efimov effect.
Signatures of the Efimov effect are seen by detecting
atom losses governed by the three-body recombination
rate [20, 29]. In contrast, we investigate in this work
elastic three-body scattering processes. We consider N
identical bosons with mass M in a spherically symmetric
harmonic trap with angular frequency w and harmonic
oscillator length | = y/A/(Mw) in the regime where the
two-body s-wave scattering length a and two-body effec-
tive range volume V are small compared to the harmonic
oscillator length { and volume {3, respectively. The effec-
tive range volume V is related to the effective range reg
by

(1)

V= —Teffa™ .

Earlier work developed a perturbative effective field the-
ory (EFT) and derived a low-energy Hamiltonian that
accounts for terms up to order (a/l)® and V/I® [17]. The
resulting ground-state energy was interpreted in terms
of universal effective two-, three-, and four-body interac-
tions. The present paper extends this earlier work and
determines universal and non-universal contributions of
the terms proportional to (a/l)%, aV/I*, and g:_g,o)/l4 to
the ground-state energy; here, géo) denotes a three-body
coupling constant. Throughout this paper, the term uni-
versal is used to indicate that the quantity under consid-
eration is fully determined by the low-energy two-body
scattering observables. The term non-universal, in con-
trast, is used to indicate that the quantity under con-
sideration cannot, in general, be determined from the
low-energy two-body scattering observables.

Our key findings are the following. (i) The (a/l)* term
contains effective five-, four-, three- and two-body inter-
actions. The aV/I* term contains effective three- and
two-body interactions. (ii) The effective three-body in-
teraction at order [~* contains a logarithmic divergence
in a cutoff energy A, introduced to regularize the EFT,
which signals a fundamental difference in character be-
tween the two- and three-body interactions. Specifically,
our results imply that the effective three-body interac-
tion contains a non-universal contribution that cannot be
predicted from the low-energy two-body scattering ob-
servables. Similar physics has previously been seen for
the homogeneous system [8, 9, 30] and for few-body sys-
tems confined to a periodic box [10-13]. (#i7) We extract
the non-universal three-body contribution from numeri-
cal ground state energies for N = 3—5 bosons interacting
via a short-range two-body Gaussian model potential.

Section II introduces the system Hamiltonian and sum-
marizes our final expression for the ground-state energy
of the trapped N-boson system. Sections III and IV dis-



cuss the structure of the terms at order {~%. In addition,
Sec. IV elucidates that the field theoretical treatment in-
dicates the presence of a non-universal three-body inter-
action. Lastly, Section V summarizes our results and
discusses implications.

II. SYSTEM HAMILTONIAN AND
GROUND-STATE ENERGY

We consider N identical bosons with mass M in a
three-dimensional isotropic harmonic trap with angular
trapping frequency w. Our aim is to derive an expres-
sion for the ground-state energy of the N-boson system,
applicable in the low energy regime, using quantum field
theory [31]. Our Hamiltonian is

H:Hl—i-iv: >

p=2m=0,2,...

H(m) (2)

p,bare’

where H; denotes the single-particle Hamiltonian

. 2 ~
= [ 5160) (g ¥+ g3 ) d) drs )

and the bosonic field operators ¢(7) and ¢(7) destroy
and create particles at position 7, respectively. The term

H(nL)

p.bare denotes p-body contact interactions

m 1 N — n — m)/—> = _
Hé,blrf H/¢T(T1)"'¢T(Tp)wzg NGRS
X P(F1) - (7)) diydiy - - - dF,,. (4)

The superscript “(m)” indicates the order of the deriva-
tive operator in the p-body potentials W,gm). In our
calculations, we expand the field operators in terms of
the eigenstates of the single-particle harmonic oscillator
Hamiltonian [16, 17].
Through order [=%, we find that only three po-
0)/» 2,
Wy (7). Wi (71, 7), and
W3(O) (71,72, 73); no local four- or higher-body potentials

tentials are needed:

are necessary. The two-body potential Wz(o)(f'hf'g) cor-
responds to the “usual” §-function pseudopotential [32]

Wi (71, 7) = g5 pared (71 — T2), (5)

where géogare is the two-body bare coupling constant. The

m = 2 two-body potential W2(2)(7?1,F2) depends on the
energy through the second-derivative operators [11, 17]

2,4 o 1
WiD (7, 7) = 595,11%3

[F328(71 — ) + 671 — ) V3], (6)
where gg?gare is another two-body bare coupling constant.

The operators %12 and ?12 are gradients with respect

to the relative distance vector 7; — 7 that act to the left
and right, respectively. Note that the two-body interac-
tion with m = 1 is absent due to symmetry constraints.
The lowest order three-body potential is modeled by the
product of two d-functions,

WJ(O) (7?17 FQ» Fd) = gi(‘)(,)llared(_’l - F2)5(F2 - F3)’ (7)

where g:(,)ogare is the three-body bare coupling constant.

The three-body potential acts only when three particles
are at the same position.

We calculate the N-boson ground-state energy using
renormalized Rayleigh-Schrodinger perturbation theory.
Divergences arise at second- and higher-order in pertur-
bation theory [31]. To obtain physical results we in-
clude counterterm interactions for each p and m combi-
nation. Specifically, we write the bare coupling constant
as [16, 17]

g e =gt 4 g ®)

where gz(,m)

the counterterm coupling constant.
ggogt and ggzc)t are determined self-consistently such that
the EFT enérgy shifts reproduce the ground-state energy
for two harmonically-trapped bosons interacting through
a short-range potential with free-space s-wave scattering
length a and free-space effective range volume V up to
order [=* (see, e.g., Ref. [17]). In this renormalization
scheme, the physical coupling constants are

is the physical coupling constant and ggzt)

The counterterms

Amh? Amh?
gy = —-a and g ==V (9)

We find it convenient to organize the contributions
to the ground-state energies Fn in terms of powers of
1/1 [16, 17]. To understand this structure, it is instruc-
tive to perform a dimensional analysis. The coupling

constants ggré)are, and correspondingly g,(,m), have units

of energy x (length)3~3+™_ For the scaled ground-state

energy En /(hw) this implies that the first-order correc-

tion due to the Hamiltonian term proportional to géo)

corresponds to an energy shift of order 1/I. Similarly,

the term proportional to (géo))2 corresponds to a shift

of order 1/I?, and the terms proportional to (géo))?’ and
géz) correspond to shifts of order 1/i3. Finally, the con-

tributions (géo))47 Qéo)géz), and géo) lead to terms of order

1/1*. Thus, we can write the scaled energy as

N
Ex 3 N
= §N+p§:2 (p)Up, (10)

where the dimensionless effective p-body interaction en-



ergies U, are power series in 1/1:

L)
_ § E (k2,0,k2,2,k3,0)
Up _ Up . (11)
K=1 k2,0,k2,2,k3,0
k2 0+3k2 2+4k3 0=K

O(l—K)

The notation O(I¥) indicates that the term is propor-
tional to [~%. The dimensionless partial energies

_ C;k2,o,kz,2,k3,o) (12)

k2,0 k2 2 k3.0
S S A T Y S | 95" 1
amh? /M 1 Anh? M I3 12 /M I3

are proportional to (géo))kzvo (géz))k?’2 (géo))k?’vo. The three
superscripts kj, , take the values 0,1, 2, ... subject to the
constraint kg g + 3k22 + 4k3 o = K; here, the prefactors
of the k, ,,, are given by 3p +m — 5. The factors of +4r
in the first two terms in the second line of Eq. (12) are
included for later convenience.

Equation (10) is valid when a/l, V/I3, and
% /[(h?/M)I*] are much smaller than one. The expan-

. . ka,0,k2,2,k N
sion coefficients cé 20:k2.2:83.0) 416 summarized in Table L.

After renormalization of the two-body interactions all co-
efficients are finite except C§4,0,0)’ which diverges loga-
rithmically with the cutoff. The origin and implications
of this logarithmic divergence are discussed in Sec. IV.
The p = 2 coefficients agree with what one obtains by
expanding the exact zero-range solution for two s-wave
interacting particles in a harmonic trap [14, 33].

U(k2,07k2,2,k3,0)
p

III. THE UNIVERSAL EFFECTIVE FOUR-
AND FIVE-BODY INTERACTIONS

References [16, 17| showed that the renormalized per-
turbation theory treatment at orders K = 2 and 3 re-
quires a counterterm coupling constant gé?gt, which can-
cels all divergences at these orders. As we discuss now,
new physics emerges at order K = 4.

We start our discussion of the K = 4 terms by consid-
ering the effective four- and five-body interaction ener-
gies Ui4’0’0) and U§4’0’0). The five-body term, which first
arises at this order, is finite. The four-body term is finite
after renormalization of the two-body interaction, with

0 . . . 4,0,0
gé’gt removing power-law divergences. Since U, i ) and

U5(4’0’0) are fully determined by a/l, we refer to these ef-
fective interactions as universal. We were unable to eval-
uate the sums that give the coeflicients cfl4’0’0 and 054’0’0
analytically. Numerical estimates and uncertainties are
reported in Table I.

To validate our EFT results for the effective four- and
five-body interactions, we compare to numerical simula-
tions of N = 2, 3,4, and 5 bosons interacting via a finite-
range, non-singular potential. We consider a Hamilto-
nian with pairwise additive Gaussian model interaction
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FIG. 1. (Color online) (a) and (b) show the effective four-
and five-body contributions UF’O’O) and Ué4,o,0)7 respectively,
as a function of a/l. The interaction energies are scaled by
(a/1)™*, such that the EFT predictions at order K = 4 are
given by the solid horizontal lines. Circles show numerical
values for a model Hamiltonian with a pairwise Gaussian in-
teraction with 79 = 0.01l. The numerical data is unreliable
in the regime |a/l| < 0.007 and |a/l| < 0.11 for (a) and (b),
respectively, as the numerical uncertainty becomes compara-
ble to or larger than 0.3 times the quantity of interest. The
dashed line in panel (a) includes the scaled K = 5 effective
range volume dependent contribution, which is proportional
to cf’l’O)V/ a®’. We use the numerically obtained effective
range volume, as a function of a, for the Gaussian potential
with ro = 0.017, and ¢{>"?) = 25.422472 as determined within
the EFT. The dotted line in panel (b) shows a linear fit of the
form cé4’0’0) + cé5’0’0)a /1l to the numerically determined ener-
gies in the regime |a/l| > 0.11, with cé4’0’0) fixed at our EFT
value of —11.12. We find Cf’o’o) = 210. The error bars, which
are one standard deviation, are estimated from the basis set
extrapolation errors of the numerically determined N = 3,4,
and 5 energies Fn.

Vg(r) = Vo exp[—(r/ro)?/2], with depth V; and width 7,
and determine the energies Ey, N > 2, numerically us-
ing an explicitly correlated Gaussian basis set [17, 34, 35].
For N = 2, we use a grid-based B-spline approach. For
a given width rg, we adjust the depth V5 (V5 < 0 and
Vo > 0) such that Vg(r) reproduces the desired physi-
cal free-space s-wave scattering length a at zero collision
energy. The parameters are chosen such that Vi(r) sup-
ports at most one bound state.

The effective range volume for the Gaussian potential
as a function of Vjy and thus scattering length a was previ-
ously numerically calculated by us. The result is shown
in Fig. 3 of Ref. [17]. Crucial here is that in the limit
of zero scattering length the effective range volume ap-
proaches zero. In fact, we have V = —arg + O(a?) from a
perturbative Born calculation of the two-body free-space
scattering amplitude.



TABLE I. Expansion coefficients c;,kQ’U’k“’k&O), defined in Eq. (12), of the effective p-body interactions for N bosons in an
isotropic harmonic trap, up to order {~%. Columns 4 and 5 give analytic expressions and numerical values, respectively, obtained
using renormalized perturbation theory. The numbers in round brackets in column 5 denote the numerical uncertainty; those
without error bars have been rounded. After renormalization of the two-body interactions, all coefficients are finite except for

the logarithmically diverging c§4’0’0

) The terms D., Dy, D., and D4 are defined in the text. To interpret Fig. 1(a), we calculate

the K =5 effective four-body contribution proportional to Va?. This gives cf’l’o) = 25.42247. No other K = 5 contributions
are calculated in the present paper. The function ((z) is the Riemann Zeta function.

D (k2,0,k2,2,k30) K compact expression / comment numerical value

2 (1,0,0) 1 (2/m)/? 0.797884561
(2,0,0) 2 (2/7)(1 = log2) 0.195348572
(3,0,0) 3 (2/m)3/%(1 - ;Lj —3log2 + £log”2) —0.391118531
(0,1,0) 3 (3/2)(2/m)'/? 1.196826841
(4,0,0) 4 512+ 7%(—2 +log4) — 4(—3 + log4)* log 4 — 3((3)] —0.408766776
(1,1,0) 4 (1/7)(8 — 6log 2) 1.222665489

3 (2,0,0) 2 (2/m)[—4v/3 + 6 — 121og 2 — 6log(2 — v/3)] —0.855758313
(3,0,0) 3 see Ref. [17] (sum evaluated numerically) 2.7921(1)
(4,0,0) 4 10.8629(1) — 12(2D, + Dy, + 2D, — 3Dg) log-divergent
(1,1,0) 4 —(4/3m)[—36 + 261/3 + 9log 64 — 271og(2 + V/3)]  —4.628397857
(0,0,1) 4 16/(3v/3) 0.980140259

4 (3,0,0) 3 see Ref. [17] (sum evaluated numerically) 2.433174845
(4,0,0) 4 sum evaluated numerically —20.0(2)

5 (4,0,0) 4 sum evaluated numerically —11.12(2)

Interestingly, following Refs. [11, 12], we can extract

UF’O’O) and U5(4’0’0) from the numerically determined F
using

Ut = P00 64 (By— 4B+ 6E)/(hw)+O(17)
(13)
and

U0 = 15/24 (Bs—5E4+10E5—10E,) / (hw)+O(17%),
(14)

3,0,0
) has been

where the dimensionless partial energy U, i

obtained and validated in Ref. [17].
Figure 1(a) compares the numerically extracted scaled

U£4’0’0)/(a/l)4, for ro = 0.01l, to the EFT prediction

04(14’0’0) = —20.0 given in Table I, as a function of a/I.

Similarly, Fig. 1(b) compares U{"*% /(a/l)* to the EFT
prediction cé4’0’0) = —11.12. In both cases, the EFT at
order K = 4 predicts horizontal lines. Comparison to
the numerics shows reasonable agreement, including the
correct sign.

We can attempt to understand the deviations in
Figs. 1(a) and 1(b) by looking at the K = 5 contri-
butions. The effective four-body interaction contains
terms proportional to a®, a?V, and agéo). We have cal-
culated the a?V coefficient from the EFT. The dashed
line in Fig. 1(a) shows the contribution proportional to

0512’1’0)a2V, using the effective range volume V for the
Gaussian potential with rg = 0.01l. It can be seen that
this effective range volume correction to the solid line is
negligible in the regime for which our numerical data is
reliable. Note that as V' o —a for very small |a|, the cor-
rection diverges as |a| — 0. We conjecture that the devi-

ation between the EFT predictions for the effective four-
body interaction and the numerical data for |a/I] 2 0.01

is due to both the (a/l)% and agéo) contributions. More-

over we expect that g:(go) depends nontrivially on a/l (see
also Sec. IV).

The effective five-body interaction at order K = 5
has only an (a/l)® contribution. As we have not cal-
culated this contribution using EFT, the numerical data
in Fig. 1(b) is fit to a line [see dotted line in Fig. 1(b)]
with coefficients given in the caption of Fig. 1. From the

. (5,0,0)
slope we extract an estimate for c; .

IV. THE NON-UNIVERSAL THREE-BODY
INTERACTION

This section considers the effective three-body interac-
tion. Unlike the four- and five-body terms, U:§4’O’O) con-
tains a logarithmic divergence that is not renormalized by
ggoc)t. To shed light on this behavior, Figs. 2(a)-2(d) dia-
grémmatically represent the diverging sums D,, Dy, D,
and Dy that enter into U§4’0’0). Note that these are modi-
fied Rayleigh-Schrédinger perturbation theory diagrams,
using the formalism described in Refs. [16, 17], and not
Feynman diagrams. For brevity, we do not show the di-
agrams corresponding to convergent sums. Solid lines
represent particles in the single-particle ground state.
Dotted lines represent particles in single-particle excited
states. Vertices represent interactions. The dot repre-
sents the two-body interaction with coupling constant

ggo)’ while the circled dot represents the two-body coun-

terterm with coupling constant gé?c)t. We evaluate these



FIG. 2. Diagrammatic representation of the divergent sums
that contribute to the effective three-body interaction U3(4’0‘0).
Diagrams (a)-(d) represent the quantities Da, Dy, Dc, and Dy,
(see Table I and text). The dot represents the two-body inter-
(). The circled dot represents

the two-body counterterm with coupling constant gé?c)t.

action with coupling constant g,

FIG. 3. Diagrammatic representation of the non-universal
three-body interaction. The square represents the three-body

interaction with coupling constant géo).

diagrams numerically as a function of the cutoff energy
A, where terms corresponding to intermediate states with
total energy greater than A are not included in the sums.
We find that the diagrams shown in Figs. 2(a), 2(b), and
2(d) diverge as (A/hw)'/?, log(A/hw), and (A/hw)'/?,
respectively. The diagram shown in Fig. 2(c) contains
terms that diverge as (A/hw)/? and log(A/hw).

The power-law divergences contained in the diagrams
D, and D, [see Figs. 2(a) and 2(c)| are renormalized by
the two-body counterterm diagram Dy [see Fig. 2(d)].
The log(A/hw) divergences contained in the diagrams
Dy, and D, remain, however, and the properly weighted
diagrams D,-D4 evaluate to a term of the form ¢qg +
q11log(A/hw), where g and ¢; are constants. This signals
that a non-universal, local three-body interaction with
cutoff dependent coupling constant géo), represented dia-
grammatically in Fig. 3, is needed [8, 10, 12]. Specifically,
renormalization requires a three-body interaction energy

U(O 0,1) (0)

, generated by g5, which cancels the logarithmic

divergence in U§4’0’0). The corresponding Céo,o,l) value
can be found in Table I.
The above discussion motivates us to define a

renormalization-scheme-independent three-body contri-

bution (see also Refs. [11, 12])
USK‘: U(4 0,0) + UéO,O,l). (15)

As g( )is a new, undetermined parameter in the Hamil-
tonian, the EFT does not make a unique prediction for
U£=1* based on the values of gé and gé ). Instead, Uf=1
depends on the short-range features of the true, “intrin-
sic” underlying interaction potentials. The interaction
energy UX=% must therefore either be obtained by mea-
surement or by accurate numerical simulation of an N-
body system (N > 2). We can extract the value of UX=4,
to order =%, using the numerically determined N-body
ground state energies Fy,

N\ gy Enx 3
—_Ex 3,
(3)U3 hw 2

4
N
_<2) {Z%(k,om Lo U2<1,17o>}

k=1

( ) {Z k00 U?Sl.,l,o):|

k=2

(D)o (Feseon oo

(k2,0,k2,2,k3,0)

ot

The key point is that the U quantities on the
right hand side of Eq. (16) are known from the EFT (see
Table I). This implies that we can calculate U£=* for
N =3,4,5---, provided the FEy are known.

Figure 4 shows UX=%/(a/l)* as a function of a/l deter-
mined from Eq. (16) for N = 3, 4, and 5 using the numer-
ically determined ground-state energies for the Hamil-
tonian with pairwise Gaussian interactions with width
ro = 0.01l. We make two observations. First, for a
fixed potential width ro, the UX=* calculated for N = 3,
4, and 5 collapse, to a good approximation, to a single
curve. This confirms that the extracted value of Uf£=*
scales with the number of trimers in the system, i.e., that
the physics seen is indeed a three-body effect. Second,
the fact that UE=4/(a/)* is not independent of a shows
that U£=* is not simply proportional to a*. This, com-
bined Wlth other analysis, indicates that the three body
physics at order K = 4 is not fully described by the
two-body s-wave scattering length and two-body effec-
tive range volume.

To investigate the dependence of the non-universal
three-body interaction on the short-range interaction
scale of the Gaussian model interaction, we addition-
ally calculated U£=*/(a/1)* for ro = 0.005[, 0.0075/, and
0.0125]. We find that the U#£=* for fixed a but differ-
ent rg differ on the negative scattering length side where
one expects the formation of three-body bound states to
be sensitive to the details of the underlying two-body in-
teraction model. On the positive scattering length side,
the UX=* shows a comparatively weak dependence on rg.
We believe that this can be attributed to the fact that
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FIG. 4. (Color online) Scaled three-body interaction

Uf=*/(a/1)* as a function of a/l, extracted from numeri-
cal N-body ground-state energies for the Gaussian two-body
potential with width ro = 0.01l and using Eq. (16). Cir-
cles, squares and diamonds are determined from Eq. (16) for
N = 3,4, and 5, respectively. The numerical data is unreli-
able for |a/l| < 0.005, as the numerical uncertainty becomes
comparable to or larger than 0.3 times the quantity of inter-
est. The error bars, which are one standard deviation, are
estimated from the basis set extrapolation errors of the nu-
merically determined N = 3,4, and 5 energies Ex.

the purely repulsive Gaussian interaction model behaves
similar to a hard core potential, especially for relatively
“large” a/l. For the hardcore potential, UX=* has been
shown to scale as a? [10].

If non-perturbative numerical N-body energies are not
available, we can still make rough, order-of-magnitude,
estimates of U£=* by evaluating the logarithmically di-
verging sums in the EFT up to the characteristic energy
scale of the two-body system, i.e., up to A = h?/(mrd).
In practice, one might want to use the scale correspond-
ing to the van der Waals length as suggested in Ref. [8].
In the present work, however, it seems more appropri-
ate to use the energy scale corresponding to the Gaus-
sian potential. For rg = 0.01/, this corresponds to
A = 10,000hw. Because we are unable to numerically
evaluate the necessary sums in diagrams D,, Dy, D. and
Dqy of the EFT to a value of A this large, we instead
extrapolate to A = 10,000hw using numerically deter-
mined estimates with smaller A and the expected power-
law and logarithmic divergences. This approach yields
UE=4/(a/l)* ~ —8.6. Comparison with Fig. 4 shows that
this estimate gives the correct sign and order of magni-
tude of the true Uf£=* for the Gaussian model potential
with r¢g = 0.011.

Finally, we note that at order K = 4, the effective

three- and two-body interactions Uél’l’o) and UQ(M’O) also
depend on the effective range volume. These universal

contributions have been determined analytically and are
given in Table I. Following the convention introduced in
Sec. I, we refer to Uél’l’o) and U2(1,1,0) as universal as they
are fully determined by the low-energy two-body scatter-
ing properties, expressed in harmonic oscillator units.

V. CONCLUSION

In this paper, we utilized a quantum field theory ap-
proach to derive the ground-state energy for a small num-
ber of bosons in a spherically-symmetric harmonic trap
up to order [~*, where [ is the harmonic oscillator length.
We showed that the ground-state energy at this order de-
pends on two two-body parameters (the scattering length
a and effective range volume V') and one emergent non-

universal three-body interaction strength (géo)). In the
spirit of effective field theory, these parameters can be
determined by performing measurements at two trap fre-
quencies of the ground-state energy of the two-body sys-
tem and one measurement on the three-body system. Us-
ing these three data points as input, the ground-state
energy up to order [~* is then known for any trapping
frequency and any number of particles.

The emergence of the non-universal three-body inter-
action derived here for harmonically-trapped atoms has
been discussed for other systems. For few-boson sys-
tems confined to a periodic box [10-13], the ground-state
energy can be organized, similar to the harmonically-
trapped system, in terms of powers of 1/L and p-body
interactions, where L is the length of the cubic box. In-
terestingly, the leading order three-, four-, and five-body
energy contributions for N bosons in the periodic box
are proportional to a®, a*, and a®, respectively [10-13],
rather than the leading order contributions a2, @, and
a* for bosons in a harmonic trap. Just as for the har-
monically trapped system, the non-universal three-body
interaction is renormalization scheme dependent. Similar
physics has also been observed in the homogeneous sys-
tem [8]. Our analysis extends the EFT approach to non-
universal few-body interactions of harmonically trapped
bosons.
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