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Abstract— The purpose of this paper is to present a physics-
based electro-thermal Saber®* model and parameter
extraction sequence for high-voltage SiC buffer layer n-
channel insulated gate bipolar transistors (IGBTs). This model
was developed by modifying and extending the previously
developed physics-based silicon buffer layer IGBT electro-
thermal model and IGBT Model Parameter extrACtion Tools
(IMPACT) to include SiC specific device and material
properties. The validated simulation results in this paper
demonstrate that the new electro-thermal Saber® model for
high-voltage SiC buffer layer n-channel IGBTs can be used to
describe the static and dynamic behaviors for a wide range of
device designs and circuit conditions for IGBTs with blocking
voltages from 12 kV to 20 kV. The new physics-based model
provides both device and circuit predictive capability.

L INTRODUCTION

Silicon carbide (SiC) has emerged as a material of
choice for the next generation of high-voltage power
semiconductor devices. The primary advantage of the SiC
material for power devices is that it has an order of
magnitude higher breakdown electric field (2x10° V/em to
4x10° V/em) and a higher temperature capability than
conventional silicon materials [1]. The higher breakdown
electric field allows the design of SiC power devices with
thinner (0.1 times that of silicon devices) and more highly
doped (more than 10 times higher) voltage-blocking layers.
For minority carrier conductivity modulated devices such as
PiN diodes or IGBTs, the voltage blocking layer of 0.1
times the thickness of a silicon device can result in a factor
of 100 times faster switching speed. This is possible because
the diffusion length, L, required to modulate the
conductivity of the blocking layer can also be reduced to
1/10th the value required for a Si device with the same
blocking voltage, thus permitting the reduction of the
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lifetime, 1, by a factor of 100 according to 7, = \/D ¢ , where
D is the diffusion coefficient.

Recently, ultra high-voltage (from 12 kV to 22 kV) 4H-
SiC buffer layer n-channel IGBTs (N-IGBT) with an active
area of 0.16 cm” for the 12 kV device and 0.37 cm® for the
20 kV device have shown superior characteristics such as a
differential on-state resistance (Ron,sp,diff) of 5.3 mQ-cm’
for the 12 kV device at a gate bias of 20 V [2]. The purpose
of this work is to present an electro-thermal Saber® model
and parameter extraction sequence for this new class of
high-voltage SiC buffer layer N-IGBTs. The validated
results shown in this work demonstrate that the developed
electro-thermal Saber® model can be used to describe the
static and dynamic behaviors of the 12 kV and 20 kV 4H-
SiC buffer layer N-IGBT.

II.  HIGH VOLTAGE 4H-SIC BUFFER LAYER N-IGBT
STRUCTURE

Fig. 1 shows simplified cross-sections of the 4H-SiC
buffer layer N-IGBT [2]. As an example, the 12 kV N-
IGBTs studied in this work utilize a 2x10"* cm™ doped, 140
pum thick N-type epilayer as the drift layer, and have N-type
field-stop buffer layers with dog)ing concentrations ranging
from 1x10"7 cm™ to 5x10'7 cm™. The P+ 4H-SiC substrate
serves as the electron injector layer for the N-IGBTs. The
field-stop buffer layers in the N-IGBTs have thicknesses
ranging from 2 pm to 10 um. The MOS channel length,
defined by the distance between the edge of the P-well to the
edge of the N+ source region for N-IGBTs, is approximately
1 pm. SiO, layers with an approximate thickness of 50 nm
were thermally grown on N-IGBTs, for %ate dielectric.
Similarly, the 20 kV IGBTs utilize a 2x10™ cm™ doped,
180 um thick N-type epilayer as the drift layer, and have N-
type field-stop buffer layers with doping concentrations in
the range of ranging of 1 ~ 5x10'® cm™ and thicknesses in
the range 2 um [3].

T Contribution of NIST, not subject to copyright. The devices discussed in this paper were produced by Cree Inc. and funded by U.S. Army Research

Laboratory located at Adelphi, MD, USA.

* Saber® mixed-technology system simulation software is a registered trademark of Synopsys®, Inc. Certain commercial products or materials have been
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does it imply that the products are the best for the purpose.
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Fig. 1: Simplified cross-sections of the 12 kV 4H-SiC buffer layer N-IGBT.

III. IMPLEMENTATION OF HIGH-VOLTAGE 4H-
S1IC BUFFER LAYER N-IGBT MODEL INTO THE
SABER® CIRCUIT SIMULATOR

The previously developed silicon buffer layer IGBT
model was implemented into the Saber® circuit simulator
using the Saber® MAST modeling language [4, 5]. In this
work, the model is extended to include the device and
material properties of SiC by incorporating the material
properties described in [6, 7] into the models described in [4,
5]. To implement the high voltage 4H-SiC buffer layer N-
IGBT electro-thermal model into the Saber® circuit
simulator, the nonlinear functions of the system variables
listed in Table I as in [4] and the power MOSFET equations
listed in Table II as in [7] are combined. The new extended
model can be used to describe the static and dynamic
behaviors for both Si and 4H-SiC buffer layer N-IGBT.

IV. HIGH-VOLTAGE 4H-SIC BUFFER LAYER N-
IGBT PARAMETER EXTRACTION

Previously, a software package called IGBT Model
Parameter extrACtion Tools (IMPACT) [6, 8] for extracting
parameters of silicon IGBTs was extended to include SiC
power MOSFETs in a software package called SiC—
IMPACT [7]. In this work, the SiC-IMPACT software tools
are extended to include features that are needed for SiC
IGBTs, including an alternate Tau-Effective-Extraction
Program (TAUEFFMSR) to extract the base lifetime (tHL)
and buffer-layer lifetime (tbuf) model parameters. These
tools are now capable of extracting the 20 physical and
structural parameters of the physics-based Hefner IGBT and
power MOSFET models for both Silicon and SiC.

To perform the parameter extraction, the material type is
first selected as demonstrated in Fig.2, and then the
extraction steps are performed in the order that they are listed
in the subsections below.
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Fig. 2: Temperature dependent material parameters for 4H-, 6H-, and 3C-
SiC was added to SiC--IMPACT extraction tools.

A. tHL and tbuf Extraction (TAUEFFMSR)

The new TAUEFFMSR program is used to perform the
extraction of THL and tbuf by using the measured data
directly from the inductive load turn-off switching
measurements. Figs. 3-8 show the front panel and sub-panels
of the TAUEFFMSR program.

Fig. 3 shows the front panel of the TAUEFFMSR
program with measured current and voltage waveforms of
inductive load turn-off switching at an IGBT anode current
of 16 A, clamp voltages of 1 kV to 8 kV, and at an IGBT
temperature of 25 °C. The program allows the user to load
any complete set of measurements into memory, but it can
also suppress the display of waveforms that the user may not
be manually processing at the moment during the parameter
extraction. This facilitates the analysis of each {temperature,
voltage, current} set of measurements individually by
displaying only the data of interest to the user.
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Fig. 3: Front panel of the TAUEFFMSR program showing measured current
and voltage waveforms of inductive load turn-off switching at 16 A, and 1
kVto8kV at25 °C.



After loading all the desired inductive load turn-off
switching measured data into the program as demonstrated in
Fig. 3, the user then selects a particular waveform to extract
the effective lifetime (teff) at that clamp voltage by double-
click a voltage waveform. Figs. 4 to 6 show the pop-up
panels of the TAUEFFMSR program used to extract the
lifetime parameters form the effective lifetime versus clamp
voltage.

To extract the effective lifetime from the current
waveform at a given clamp voltage, the user selects the
portion of the voltage waveform in the Data Analysis tab as
shown in Fig. 4, where the behavior resembles an
exponential decay. The program provides controls and
smoothed data curves to refine the process of fitting the data
when too much noise or oscillations are present. The lower
graph in Fig. 5 aids in the visualization of this effective
lifetime extraction by allowing the comparison of the natural
log curves of data and exponential fit.

Fig. 6 shows the extracted teff values versus clamp
voltage at 16 A and 25 °C. To obtain this curve, the process
shown in Fig. 4 is repeated for all the measured voltage
levels at each temperature. Fig. 6 is then used to extract the
values of the high-doped base (HDB) and low-doped base
(LDB) lifetime versus temperature. Fig. 7 shows the
comparison of measured values of teff versus clamp voltage
with extraction curve [4] used to obtain HDB and LDB
lifetimes. Fig. 8 shows the extracted values of the HDB and
LDB lifetimes versus temperature, compared with the
temperature dependent model for these parameters that is
used within the Hefner IGBT model.
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Fig. 4: A pop-up panel of the TAUEFFMSR program showing the tail
current section used to extract effective lifetime (teff) at a clamp voltage of
8 kV. The solid red and black curves are the cubic spline fit and exponential
fit, respectively.
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Fig. 5: A pop-up panel of the TAUEFFMSR program showing the natural
log of the tail current that is used to extract teff.
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Fig. 6: A pop-up panel of the TAUEFFMSR program showing the teff
values versus clamp voltage at 16 A and 25 °C.
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Fig. 8: Extracted values of the HDB and LDB lifetime versus temperature
extracted using TAUEFFMSR.

B. Isne, Wb, Nb, Wbuf Extraction (BTAMSR & DIMPACT)

The value of the Nb parameter for SiC IGBTs is
extracted using the Capacitance-Voltage (CV) program,
included in the automated software package called Diode
Model Parameter extrACtion Tools (DIMPACT) as
described in [9] rather than using the BTAMSR program as
described in [6]. The parameters Wb and Wbuf are extracted
as described in [6].

C. VT, Kpsat, [, Kfl, dVTI Extraction (SATMSR)

Figs. 9 and 10 show the SATMSR front panel and the
final fit window demonstrating extraction of low- and high-
current saturation region parameters, respectively. In
SATMSR, the saturation current versus VGS is used to
extract VT, KP, low current transconductance factor (KFL),
low current threshold voltage differential (dVTL), and the
temperature coefficients of threshold voltage (VT1) and
transconductance (KP1) [5].
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Fig. 9: SATMSR front panel demonstrating extraction of Kp, VT, (1, Kfl,
and dVTL
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Fig. 10: SATMSR final fit window demonstrating low- and high-current fit.

D. Kplin, Rs, trat, tmod Extraction (LINMSR)

Fig. 11 shows the front panel of the LINMSR extraction
program. In this program, the on-state voltage versus VGS
for a constant current is used to extract KPlin, KPlinl, RS,
NB. The values of KPlin, KPlinl, RS, and NB parameters
are calculated from the model equations [6-8] that are valid
for the linear region. In this LINMSR program the values of
the parameters extracted from the SATMSR program are
used as known values in the equations.
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Fig. 11: LINMSR front panel demonstrating extraction of Kf, Rs, and Nb.

E. Cgs, Coxd, Agd, VTd, Nbuf Extraction (CAPMSR)

Fig. 12 shows the front panel for the CAPMSR program.
The CAPMSR program measures gate and gate-drain charge
characteristics for negative and positive gate voltages to
extract CGS, COXD, AGD, and VTD.
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Fig. 12: CAPMSR front panel demonstrating the extraction of Cgs, Coxd,
Agd, and VTd.

V. MEASURED AND SIMULATED RESULTS

A. 12 kV 10 A SiC buffer layer N-IGBT

Figs. 13 and 14 show the 12 kV, 10 A SiC buffer layer
N-IGBT model (solid) compared with measured (dashed)
output characteristics at 25 °C and 175 °C, respectively.
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Fig. 13: Measured (dashed) and simulated output characteristics of a 12 kV,
10 A 4H-SiC buffer layer N-IGBT at 25 °C.
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Fig. 14: Measured (dashed) and simulated output characteristics of a 12 kV,
10 A 4H-SiC buffer layer N-IGBT at 175 °C.

Figs. 15 and 16 compare the measured (dashed) and
simulated (solid) anode current and anode voltage
waveforms for clamped inductive load switching at different
clamp voltages for the 12 kV, 10 A SiC buffer layer N-IGBT
at a switching current of 16 A, gate resistor of 24 Q, and
IGBT temperatures of 25 °C and 175 °C, respectively.
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Fig. 15: Measured (dashed) and simulated (solid) anode current and anode
voltage waveforms for different inductive load turn-off clamp voltages for a
12 kV, 10 A 4H-SiC buffer layer N-IGBT at 25 °C.
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Fig. 16: Measured (dashed) and simulated (solid) anode current and anode

voltage waveforms for different inductive load turn-off clamp voltages for a
12 kV, 10 A 4H-SiC buffer layer N-IGBT at 175 °C.



Figs. 17 and 18 compare the measured (dashed) and
simulated (solid) anode current and anode voltage
waveforms for clamped inductive load switching at three
different switching currents (i.e., 8 A, 12 A, and 16 A) for
the 12 kV, 10 A SiC buffer layer N-IGBT at the clamped
voltage of 8 kV, gate resistor of 24 €, and IGBT
temperatures of 25 °C and 175 °C, respectively.
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Fig. 17: Measured (dashed) and simulated (solid) anode current and anode
voltage waveforms for different collector currents for a 12 kV, 10 A 4H-SiC
buffer layer N-IGBT at 25 °C.
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Fig. 18: Measured (dashed) and simulated (solid) anode current and anode
voltage waveforms for different collector currents for a 12 kV, 10 A 4H-SiC
buffer layer N-IGBT at 175 °C.
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B. 20 kV 20 A SiC buffer layer N-IGBT

Figs. 19 and 20 show the 20 kV, 20 A SiC buffer layer
N-IGBT model (solid) compared with measured (dashed)
output characteristics at 25 °C and 175 °C, respectively.
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Fig. 19: Measured (dashed) and simulated output characteristics of a 20 kV,
20 A 4H-SiC buffer layer N-IGBT at 25 °C.
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Fig. 20: Measured (dashed) and simulated output characteristics of a 20 kV,
20 A 4H-SiC buffer layer N-IGBT at 175 °C.

Figs. 21 and 22 compare the measured (dashed) and
simulated (solid) anode current and anode voltage
waveforms for clamped inductive load switching at different
clamp voltages for the 20 kV, 20 A SiC buffer layer N-
IGBT at a switching current of 50 A, gate resistor of 5.5 Q,
and IGBT temperatures of 25 °C and 175 °C, respectively.

Figs. 23 and 24 compare the measured (dashed) and
simulated (solid) anode current and anode voltage
waveforms for clamped inductive load switching at three
different switching currents (i.e., 30 A, 40 A, and 50 A) for
the 20 kV, 20 A SiC buffer layer N-IGBT at the clamped
voltage of 8 kV, gate resistor of 5.5 Q, and IGBT
temperatures of 25 °C and 175 °C, respectively.
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Fig. 23: Measured (dashed) and simulated (solid) anode current and anode
voltage for different collector currents for a 20 kV, 20 A 4H-SiC buffer layer
N-IGBT at 25 °C.
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Fig. 24: Measured (dashed) and simulated (solid) anode current and anode
voltage for different collector currents for a 20 kV, 20 A 4H-SiC buffer layer
N-IGBT at 175 °C.



VI. CONCLUSIONS

This paper presents a new electro-thermal model

implemented in the Saber® circuit simulator and an
extraction sequence for high-voltage SiC buffer layer IGBT
devices. The results for 12 kV, 10 A and 20 kV, 20 A
devices indicated that the developed electro-thermal Saber®
model can be used to accurately simulate the circuit
performance of the new device types. Since the model is
physics-based and parameterized in terms of structural and
physical parameters, the model also provides a predictive
device design capability for the new SiC IGBT devices.
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