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As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore
how best to assign photon-number uncertainties to output waveforms of a superconducting transition edge sensor
and how those assignments change over that extended dynamic range. Three methods are used. At the lowest
photon numbers (up to 20 photons), the widths of histogram peaks of individual waveforms are used to determine
the uncertainty. From 100 to 1000 photons, mean waveforms are used to create a photon-number scale. The
photon-number uncertainty of the detector in this range is given by the excess of the total variance of the photon
number obtained from individual waveforms on this scale beyond the shot noise due to the source. In the
midrange (from 10 to 100 photons), including a range where the two other methods do not produce definitive
results, we fit waveforms to several adjacent mean waveforms to estimate the photon-number uncertainty.
A one-standard-deviation uncertainty in photon number of no more than �1 is found for pulses of up to 100
photons.

OCIS codes: (040.5570) Quantum detectors; (120.5630) Radiometry.
http://dx.doi.org/10.1364/JOSAB.31.000B20

1. INTRODUCTION
A goal of metrology is to link macroscopic observables to fun-
damental physics and to fundamental units of measurement
that can be a quantum. One promising tool in pursuit of that
goal [1–3] is the superconducting transition edge sensor
(TES), which offers a number of remarkable photon-detection
characteristics. Because it is a microcalorimeter whose ther-
mal sensor is a superconductor operated in the transition
between normal and superconducting, it can sense the heat
of a single photon and even resolve, in some cases, the num-
ber of photons. In addition, because the TES works by regis-
tering the heat of absorbed radiation, its spectral sensitivity is
governed just by its reflectance. With the proper coatings, a
detection efficiency of 95% [4] was reported, and the use of
a fiber coupling with index-matched resin led to a 98% [5]
efficiency. The ability of a TES to resolve up to 23 photons
[6] and 29 photons [7] has been reported. With such efficiency
and number resolution, it is clear why this detector is of in-
terest to the metrology community. There is interest in extend-
ing its operation to as large a dynamic range as possible [8,9].

An important step in this effort is to determine the uncer-
tainty with which the output response of a TES can be turned
into a measurement of the number of photons. It is particu-
larly challenging to estimate this uncertainty in the regime
between where photon numbers are easily distinguished
(the few-photon regime) and the regimewhere the uncertainty
in the detector response dominates over the shot noise of the

input light pulses (the high-photon-number regime). At inter-
mediate light levels, the photon number may be determined to
better than the shot noise of the source, but the uncertainty is
larger than that of a single photon.

Our group’s original work along these lines resulted in an
upper bound on the uncertainty of the photon-number deter-
mination [8]. Yet there are applications where more definite
knowledge of such an uncertainty would be desirable. Meas-
uring the photon-number uncertainty of a squeezed light state
or source are such applications. The metrological applications
of squeezed light include Michelson [10] and Fabry–Perot [11]
interferometers. Other applications measure femtowatt power
levels [9,12,13]. The regime is also near the sensitivity for
human vision. An early experiment measured the threshold
for sensitivity of human vision using pulses of several tens
to over 100 quanta of blue–green light incident on the cornea
[14]. In the present work, we go beyond the previous determi-
nation of an uncertainty bound [8] and provide a definite
estimate of the uncertainty.

2. PHOTON-NUMBER UNCERTAINTIES FOR
A TRANSITION EDGE SENSOR DETECTOR
Gerrits et al. [8] reported the acquisition of sets of 20,480 out-
put waveforms from a TES detector with laser pulses with 45
average values of pulse energy, for a total of 921,600 pulses.
The pulse energies range from a mean hni of 2.0 photons per
pulse to 6.4 million photons per pulse at a wavelength of
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1550 nm. The large data set allowed for the estimation of
uncertainties throughout most of the range. In this paper,
we explore more fully the estimation of the photon-number
uncertainty of the detector when that value is below the shot
noise of the source.

A. Uncertainties in the Photon-Counting Regime
Previously, the Poisson-influenced K -means algorithm (PIKA)
[6] was introduced and applied to the TES data of Gerrits et al.
[8]. The motivation was to extract the ideal response of the
detector in a model-free way. A differential geometry ap-
proach has been applied to TES data with similar goals [15].
The two major assumptions behind PIKA are that more pho-
tons yield a larger response, which allows the photon re-
sponses to be ordered, and that the source obeys a Poisson
distribution, which allowed the ordered responses to be
clustered using a variant of the K -means clustering algorithm
[16,17] governed by Poisson statistics.

PIKA assigned effective photon numbers to each detected
waveform generated from laser pulses with the same average
number of photons. Histograms of these effective photon
numbers showed peaks at integers, extending the visibility
of the peaks from 19 photons using a matched-filter method
to 23 photons. (See Figs. 3 and 4 of [6].) The results for PIKA
from two different mean photon numbers are shown in Fig. 1.
The figure shows that as the number of photons in a pulse
increases, so does the uncertainty in the number of photons
detected. Here, the uncertainty is determined from the stan-
dard deviation of the peaks in the histogram that are fit to
Gaussians. A consequence of the uncertainty increasing above
0.4 photons is the disappearance in the histogram peak visibil-
ity. We illustrated this effect in Fig. 2, in which we model a
histogram by summing a set of Gaussians with a given
standard deviation and unit spacing. The figure shows the
modulation decreases as the standard deviation increases.
For example, the Rayleigh criterion (typically used to see if
optical point sources are barely resolved) of a trough-to-peak
ratio of 8∕π2 is achieved for σ � 0.39. To estimate the uncer-
tainty for a larger number of photons per pulse, a different
method is required.

B. Uncertainties Near the Shot-Noise Limit
For a set of pulses with Poisson-distributed photon numbers
with a known mean hni, the observed variance σ2tot has con-
tributions from detector noise σ2det and the variance of the
source distribution hni (equal to the mean for a Poisson dis-
tribution). Assuming the detector noise is independent of hni
for photon numbers n within a couple of standard deviations
of hni, the variances will sum:

σ2tot � σ2det � hni: (1)

For the data of [8], the mean number is known absolutely by
evaluating hni in the photon-counting regime and noting that
hni increases by a fixed factor as one or more attenuators are
removed from the path of the beam.

Before σ2tot can be found for a given data set, we need to be
able to assign an effective photon number n�eff� (not in general
an integer) to each detected waveform. In [8], this was done
using thermal modeling of the detector with fitting to the
position of the trailing edge of the output waveforms. Here,
we use PIKA to make a scale from the data.

PIKA was run on the 21 data sets with the lowest mean pho-
ton numbers, ranging in steps of a constant factor of very
nearly

���
2

p
from hni � 2.005 to hni � 1950. PIKA groups the

waveforms into clusters with similar responses and assigns
a photon number to each cluster. The means of the waveform
clusters are tentatively taken to be the response for that pho-
ton number. Previously [6], the cluster means were seen to be
independent of hni and dependent only on n, the exact photon
number, in cases examined with a few tens of photons. (In this
paper, we use n to denote both the number of photons
detected in a particular case and also to index the average
detector response when n photons are detected.)

It is not possible to extend this matching across the present
data set, because the spacing increases geometrically with
hni, whereas the standard deviation increases only as hni1∕2.
Hence in many cases, waveforms with an individual photon
number are only measured once. If the uncertainty in photon
number is not negligible in comparison with hni1∕2, we cannot
take the n values derived from PIKA as accurate since the
PIKA-derived clusters (which ideally contain the responses
with exactly n detected photons) will mix detector responses
from several adjacent photon numbers.
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Fig. 1. Standard deviation of the Gaussian fits from PIKA: fit to wave-
forms with a mean photon number of 11.28 (empty blue squares), fit to
waveformswith a mean photon number of 16.00 (filled black squares),
from the global fit to the waveforms as described in the text (filled
green triangles), and from an estimate of the end of the visibility of
the fringes (filled red diamond) (from [6]) and the sum-of-Gaussian
model.
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Fig. 2. Sum of six Gaussians with unit area and standard deviations σ
given by 0.3 (blue), 0.4 (green), 0.5 (red), and 0.6 (black) centered on
the integers 0–5 in the abstract variable x. The sum becomes flatter as
σ is increased.
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However, in the case n ≈ hni, the effect of assignment un-
certainty on the cluster-mean waveforms is small. Some of the
waveforms contributing to the cluster-mean waveform for n
photons have n� 1 (or n� 2 or more) photons, but these will
be almost completely compensated by contributions from
waveforms with n − 1 (or n − 2 or fewer) photons. The mag-
nitude of the averaging effect may be seen in Fig. 3. Here, we
compare the cluster-mean waveform with n ≈ hni photons to
averages of cluster means with photon numbers that average
to hni. The amount of uncertainty introduced by including
pulses from nearby photon numbers in the cluster is seen
to be very small for n � 124 or n � 343. The main effect is
to make the slope of the trailing edge slightly less steep than
it otherwise would be. Interestingly, there is a cross-over point
in the middle of the trailing edge that is nearly independent of
a symmetric misclassification of the photon number.

The cluster-mean waveforms are shown together in Fig. 4.
The means are roughly evenly spaced in the logarithm of the
photon number, with a decrease in spacing for photon num-
bers over a few hundred. The trailing edges for up to a couple
hundred photons are seen to be similar, as reported earlier [6],
although the slope decreases very slightly with a larger photon
number. The purpose of Fig. 4 is to help create a global scale

for the identification of n�eff� over a broad range of photon
numbers.

To determine the σtot, we need to assign an individual
effective photon number to each waveform Vi�t�, where V
is the detector voltage, t is the time from the start of the pulse,
and i indexes the laser pulses. We choose to do so with the
following procedure. First, we determine the peak of the
waveform and discard the leading edge. Next, we determine
where the waveform falls below a given value V low � �31 mV
relative to the voltage output of the quiescent detector and
truncate the curve at that point. We do this so that the pho-
ton-number assignment will be independent of noise late in
the waveform, which occasionally comes above threshold.
Since the cluster-mean waveforms are very close together
for large voltages V ≥ Vhi � 153 mV, these parts of the volt-
age waveforms are ignored as well. In addition, four out of
430,080 waveforms did not fall as low as V low within 30 μs
and were dropped from the analysis.

Each of the remaining points �t; V� in each waveform is
considered to be an independent estimate of the number of
photons incident in the pulse, obtained by interpolating the
functions shown in Fig. 4. The interpolation is done in the
dependent variable ln nscale drawn from the cases n ≈ hni.
Because the middle of the region is best known, we form a
weighted average with each point assigned a weight
w�V� � jV − Vmidj, where Vmid � �Vhi � V low�∕2. The func-
tion used to determine the measured photon number for a
waveform i is

n�eff�
i � exp

�P
tw�Vi�t�� ln nscale�t; Vi�t��P

t w�Vi�t��

�
; (2)

where the discrete sum is over the times in the trailing edge, as
described above.

The global scale may be compared to local scales derived
by PIKA on measurements at a single mean photon number.
Results are shown for the case of an average photon number
of 343 in Fig. 5. The scales are seen to be in agreement to
about one photon for all clusters whose photon numbers
are within two standard deviations of the mean. The near-
identity function suggests that the bias of our scale is small.
Similar plots for lower average photon numbers show tighter

20 25 30 35 40 45
0

50

100

150

Time s

D
et

ec
to

r
V

o
lt

ag
e

m
V

124 24

124
343 36

343, 343 18

124 12

Fig. 3. Mean response waveforms of the detector for the data from
the clusters with n � 124 and hni � 124.7 and n � 343 and hni �
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agreement. For higher average photon numbers, the agree-
ment deteriorates to 5 photons for the average photon number
of 975.

The results for the photon-number uncertainty σdet are
shown in Fig. 6. For photon numbers just beyond where
the fringe visibility disappears [6], the uncertainty values
are sometimes imaginary (i.e., the calculated excess variance
is negative). We attribute such out-of-range values to our in-
ability to estimate σ2tot with sufficient accuracy. Since there is
no physical justification for negative variance, we interpret
the first six circles as representing a bound on the excess
noise of approximately 1 photon. However, for the remaining
seven clusters, the σdet is an increasing function of the photon
number of the pulse. As the shot-noise limit is approached, the
method of subtracting the shot noise to obtain the excess vari-
ance is increasingly reliable because the process moves from
the subtraction of two nearly equal numbers to the subtraction
of two numbers that differ by a factor of two. The detector
noise is approximately equal to the shot noise for 1000 pho-
tons, as reported previously [8].

C. Uncertainties of a Half to a Few Photons
How can we estimate the photon-number uncertainty when it
is too large for fringes to be visible in the histogram of effec-
tive photon numbers, yet too small for the excess variance
method of Eq. (1) to work reliably? Our strategy is the follow-
ing: (1) we fit the global scale of Fig. 4 with functions that
allow us to interpolate to a fine-grained global scale; (2) we
use the fine-grained global scale to estimate residuals for each
waveform over several photon numbers n near the best fit;
(3) we correlate a parameter from the fit to the standard de-
viations of the Gaussians used to fit effective photon numbers
at low photon numbers with clear peaks; and finally (4) we
extrapolate correlation for photon numbers past the visibility
limit.

Although PIKA produces estimates of the ideal waveforms
for every photon number, we were concerned that effective
photon numbers estimated by PIKA could be affected by de-
tector noise. Accordingly, we derived a set of ideal waveforms
by a fit to the central mean waveforms given by PIKA, which

are shown in Fig. 4. The fitting procedure was as follows.
First, we found that the differences between two cluster mean
waveforms (i.e., V̄n�t� − V̄n−1�t� in the notation of [6]) could be
described by a sum of a lognormal distribution at short times
and a Gaussian for the trailing edge. Symbolically,

Dn�t� � A1�n� exp
�
−

�
ln n − μ1�n�
2σ1�n�2

�
2
�

� A2�n� exp
�
−

�
n − μ2�n�
2σ2�n�2

�
2
�

(3)

for the parameters A1, μ1, σ1, A2, μ2, and σ2, which are the
amplitudes, means, and standard deviations. The templates
themselves were found from

Tn�t� � Tn−1�t� � Dn�t�; (4)

with T0�t� � 0. The parameters of the difference templates
varied with photon number n as αj exp�−n∕τj� � βjn� γj ,
where j can refer to any of the six parameters. Of course,
Tn�t� ≈ V̄n�t� for the V̄n�t� in Fig. 4, but the Tn�t� are defined
for all integer photon numbers n between 1 and 1950.

We find the squared residuals si�n� from the templates
associated with a given photon number n. We fit these resid-
uals to a parabola,

si�n� �
ai
2

�
n − n�0�

i

�
2 � ci; (5)

where ai is the curvature, n�0�
i is the effective photon number

at the minimum, and ci is a constant.
If we assume that the noise in the system causes the mean

squared deviation to be independent of the number of pho-
tons, we expect σdet ∝ a−1∕2i . The fact that the trailing edges
of the waveforms shown in Fig. 4 have a shape that is nearly
independent of the photon number for the first couple hun-
dred photon numbers makes such a relation plausible.

Using one fitting parameter for the proportionality constant
between σdet and a−1∕2, we obtain the result shown in Fig. 6.
We do not extend the fit much past 100 photons because of
our reliance on the assumption that the trailing edge is inde-
pendent of the photon number. The curve matches both the
standard deviations from 10 photons and up, as well as the
values obtained from the excess standard deviation method.
The fit is not particularly good below 10 photons, but the
assumption that the trailing edge is independent of photon
number does not hold where the pulse height is growing
toward its saturated level, as seen in Fig. 4.

3. SUMMARY AND CONCLUSIONS
Our goal was to estimate the photon number uncertainty for a
superconducting TES in the regime in which histograms of the
effective photon numbers show no peaks, but the photon-
number uncertainty of the detector is less than the shot noise
of the optical source.

First, we showed from a model and from data that when the
photon-number uncertainty exceeds 0.4, the visibility of pho-
ton-number peaks in a histogram of effective photon numbers
vanishes. The implication is that when the noise of the detec-
tor, parameterized as uncertainty in the number of photons in
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the detected signal, exceeds 0.4 photons, no algorithm can
find peaks in the histogram of effective photon numbers.

When the noise of the detector is a significance fraction of
the shot noise, it is possible to estimate the detector noise by
finding the total standard deviation of photon number and
subtracting the shot noise contribution. [8] To do this, we ap-
plied the PIKA [6] to TES data with mean photon numbers up
to 1950. We established a scale for the response of the detec-
tor between the limit of fringe visibility and the shot-noise-
dominated regime bymaking the approximation that the mean
of the voltage waveforms in a cluster taken from near the
mean photon number of the pulses is accurately given. By ex-
aggerating the effect of photon-number uncertainty on these
mean waveforms, we showed the central waveforms were
likely to have little bias. The scale for the effective photon
number was chosen to have low bias, while still including
enough data from each waveform to allow for a considerable
amount of averaging.

The two methods left a gap in the uncertainty estimate
between 20 photons and 100 photons, although the photon-
number uncertainty was bounded by the excess detection
method to be roughly 1 for this range. We estimate the
photon-number uncertainty in the gap by noting we had em-
pirical and theoretical reasons to believe that the photon-
number uncertainty was determined by the width of a
parabola formed from residuals of a given waveform versus
ideal waveforms for different photon numbers [Eq. (5)].

In the end, we are able to estimate that a one-standard-
deviation photon-number uncertainty of 1 or less can be
achieved with up to 100 detected photons. We agree with
the previous conclusion [8] that the shot noise limit is reached
at 1000 photons.

We are hopeful that the methods developed herein will be
useful to extend the dynamic range of metrologically impor-
tant endeavors such as light source development with
below-shot-noise number uncertainties and experimentation
in regimes with very low light but with fluxes above the
photon counting limit.
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