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Abstract—Our objective is to lower the barrier of executing 
spatial image computations in a computer cluster/cloud 
environment instead of in a desktop/laptop computing 
environment. We research two related problems encountered 
during an execution of spatial computations over terabyte-sized 
images using Apache Hadoop running on distributed computing 
resources. The two problems address (a) detection of spatial 
computations and their parameter estimation from a library of 
image processing functions, and (b) partitioning of image data 
for spatial image computations on Hadoop cluster/cloud 
computing platforms in order to minimize network data 
transfer. The first problem is solved by designing an iterative 
estimation methodology. The second problem is formulated as 
an optimization over three partitioning schemas (physical, 
logical without overlap and logical with overlap), and evaluated 
over several system configuration parameters. Our 
experimental results for the two problems demonstrate 100% 
accuracy in detecting spatial computations in the Java 
Advanced Imaging and ImageJ  libraries, a speed-up of 5.36 
between the default Hadoop physical partitioning and 
developed logical image partitioning with overlap, and 3.14 
times faster execution of logical partitioning with overlap than 
the one without overlap. The novelty of our work is in designing 
an extension to Apache Hadoop to run a class of spatial image 
processing operations efficiently on a distributed computing 
resource. 

Keywords: Spatial image operations; Hadoop; Image 
partition; Distributed computing  

I.  INTRODUCTION 

Our overarching goal is to automate transitions of image 
processing computations from a single desktop computer to a 
cloud/cluster computational resource. Among all possible 
image processing operations, we identified a class of spatial 
image computations that are suitable for such a transition. 
The spatial image computations operate on a set of 
contiguous image regions that can be performed in parallel. 
The regions in a set might vary in size and shape, and might 
spatially overlap. The sub-division of spatial image 
computations is summarized in Table 1.  The rows and 
columns of Table 1 represent characteristics in terms of 
image region size, presence of overlapping image regions to 
compute the resulting values, desired image partitions to co-
locate image data with the computation on a cluster node, and 
the inputs for performing desired image partitions. The term 
“logical” refers to a partition based on an image pixel location 
while “physical” denotes a partition based on a file storage 

location. If a spatial computation and image values are not 
co-located then overall computational time increases due to 
network transfers of data to each computational node. In this 
paper, one of our technical goals is to design an image sub-
area distribution schema that minimizes the network transfer 
for spatial computations.  
 
TABLE 1: SUB-DIVISION OF SPATIAL IMAGE COMPUTATIONS AND ITS 

RELEVANCE TO IMAGE PARTITION.  

Types of spatial 
computations: 

examples 

Input 
Image 
Region 

Overlap 
type 

Desired 
Image 

Partition 

Input to 
Logical 
Partition 

Pixel‐based:
Thresholding 

Fixed 
size 

No 
overlap 

Physical
or logical 
without 
overlap 

None

Kernel‐based:
Convolution 

Fixed 
size 

With 
overlap 

Logical 
with 

overlap 

Kernel area 
size 

Segment‐based:
Feature 
extraction 

Variable 
size 

No 
overlap 

Logical
without 
overlap 

Mask

Bounding box‐
based: 

Background 
correction 

Variable 
size 

With 
overlap 

Logical
with 

overlap 

Bounding 
boxes 

  
 The motivation for our work comes from the fact 
that implementations of image spatial computations are 
ubiquitous in image software packages, embedded in many 
image processing methods, designed to run on desktops, and 
applied by a large number of users in imaging and image 
processing communities. However, the current desktop 
implementations do not perform successfully on terabyte-
sized images (i.e., reporting out-of-memory error or their 
computational time is prohibitive), and do not parallelize 
computations efficiently in cluster/cloud computing 
environments. Based on Table 1, execution time of spatial 
computations on a computer cluster can be minimized by 
using image partitioning schemas and design patterns for 
parallel software [1] that consider image regions (logical 
partitions) rather than file arrays on a disk (physical 
partitions). Once image regions are distributed to multiple 
computational nodes, processing can be launched in parallel 
without additional network transfers of image data. One of 
the popular open source middleware platforms for parallel 



execution is Apache Hadoop [2], [3]. It manages the physical 
data partitioning, distribution across cluster nodes, job 
management and result aggregation. Although Hadoop has 
been widely used by researchers and industries for parallel 
execution on distributed computational resources, and it is 
known for its relative programming simplicity [3]–[5], it 
lacks support for image processing. Specifically, Hadoop 
does not take advantage of logical partitions of images and 
therefore does not deliver the possible execution speed-up for 
spatial image computations.  

 
Fig. 1. Execution options for scientists to run spatial image 
computations on desktop/laptop or cluster/cloud computing 

platforms. HDFS denotes the Hadoop Distribution File System.  

 To address the aforementioned deficiencies of 
executing spatial image computations on Hadoop-managed 
distributed computational resources, we investigated two 
problems: (1) detection of spatial image computations in a 
library of image processing methods, and parameter 
estimation of detected spatial computations, and (2) 
distribution of image regions according to logical partitions 
to be processed by a single cluster node. The two problems 
are illustrated in Fig. 1 from the perspective of a bench 
scientist who is in a transition from a desktop to cluster 
platforms. In order to handle terabyte-sized images on 
cluster/cloud platforms, new software has to be designed to 
decide whether physical or logical image partitioning is 
needed, estimate parameters of logical partitions and then 
distribute images accordingly to take a full advantage of 
distributed cluster/cloud platforms.  

The design of algorithms to detect and estimate 
spatial overlap is approached by a spatial transformation test. 
The spatial transformation test is performed by comparing the 
outcomes of two image processing sequences (image crop  
software functionality) and (software functionality  image 
crop). The design of a logical image partitioning schema is 
an extension to Hadoop middleware with MapReduce 
implementations of image processing functionalities. The 
image regions (logical partitions) are packaged into physical 
blocks and distributed to the Hadoop Distribution File 

System (HDFS) such that each cluster node would have all 
input image pixels needed to derive output image values. 
 The impact of our work is in providing scientists 
with a methodology for detecting and distributing spatial 
image computations using logical image partitions. The 
novelty of our work is in designing the detection 
methodology for spatial image computations and evaluating 
experimentally multiple physical and logical partitioning 
schemas on a Hadoop computer cluster. We have evaluated 
the developed solutions using Java Advanced Imaging [6] 
and ImageJ [7] libraries. 

This paper is organized as follows. Section II 
outlines related work. In Section III, we present the 
theoretical underpinnings of the approaches to (a) the spatial 
image computation detection and parameter estimation 
problem and (b) the design of image partitioning schemas for 
spatial image computations. Section IV describes the 
experimental results including hardware and test data sets, 
and Section V provides the summary of the work. 

II. RELATED WORK 

Spatial computations include convolution operations [8], [9], 
down-sampling, morphological, enhancement and denoising 
filtering [10], [11],  gradient-based edge detection, and 
template-based correlation [12]. These computations are 
frequently embedded in more complex algorithms developed 
for image segmentation, image restoration, or object 
recognition and image scene understanding. They can be 
found in many closed- or open-source image processing 
packages such as Adobe Photoshop® or ImageJ [7]. 
However, one does not know what image processing 
operations are using kernel-based computations in an 
unknown library. According to our knowledge, the problem 
of detecting spatial image operations in black-box software 
has not been addressed yet. 
 The problem of efficient execution of spatial image 
operations has been tackled by analyzing mathematical 
models and by benchmarking implementations on various 
hardware platforms in a few published papers. For example, 
the authors in [9] focus on mathematical models of 
convolution and their efficient implementations. This study 
includes superscalar and parallel processing units (CPU, 
DSP, and GPU), programmable architectures (e.g. FPGA), 
and distributed systems (such as computer grids). It is well 
stated in [8] that “Basically, the convolution is a memory-
bound problem, i.e. the ratio between the arithmetic 
operations and memory accesses is low.” which is utilized in 
our work as well. However, the past study does not include 
computer cluster/cloud platforms or the MapReduce 
paradigm in Hadoop. Our work is also considering a broader 
category of spatial image computations than convolutions. 
 The problem of image data distribution using 
Hadoop has been investigated in [13] for bilateral image 
smoothing. The work focuses only on bilateral image 
smoothing as an example of local and non-iterative 
computation because computations from the other three 



categories of algorithms are more difficult to implement 
efficiently using Hadoop. Our work differs by building an 
extension to Apache Hadoop that will automatically perform 
logical partition of images according to the estimated 
parameters in the detection step. Our approach goes beyond 
bilateral image smoothing and should be directly usable for 
other local and non-iterative computations as an extension to 
Hadoop. 
 Finally, our approach of logical image partitioning 
is directly related to the parallel design concepts (i.e., ghost 
cell pattern [14] and structured grid computational pattern 
[15]) that are applicable to computational grid applications 
by using MapReduce and geometric decomposition 
algorithm strategy [1]. The past work in [14] reports the same 
concept as ours using Message Passing Interface (MPI) while 
our work provides Hadoop implementation with quantitative 
benchmarks. Other previous studies on data locality 
investigated the minimum number and optimal placement of 
replicas [16] or opted to transfer the responsibility for optimal 
data locality to a job scheduler working with a uniform data 
replication policy in a distributed file system [17], [18].  

III. SPATIAL COMPUTATIONS OVER TERABYTE-SIZED 

IMAGES ON HADOOP PLATFORMS 

This section describes two problems: A. The problem of 
detecting spatial computation and parameter estimation from 
a library of image processing functions. B. The problem of an 
optimal image partitioning schema for spatial image 
computations on Hadoop cluster/cloud computing platforms 
with respect to minimum network data transfer.  

A. Detection and Estimation of Spatial Computations in 
Image Libraries 

Let us assume that there exists a function F in a black-box 
image processing library that creates an output image from 
an input image by deriving each output value at location ∈
	  ( 2,3, …) from a set of input image values that include 
the location . Fig. 2 shows an example of such an image 
library function that is denoted as a spatial image 
computation.  For simplicity, we will proceed with 2. 

 
Fig. 2: An image library function is labeled as a spatial 

computation without or with overlap if it will compute one red 
pixel in output image from one or many pixels around the same 

location in input image. 

The problems of detecting spatial computation among image 
library functions and estimating its spatial extent are 
approached by (a) forming an objective function  in 
equation (1) and (b) evaluating  to find subsets of input 
pixels  for which 0. 

, , ∑ |		∈

	 |     (1) 

where  is an input image modeled as a mapping : ∈
	 → ∈ ; :	 →   is a function in an 
image processing library, and CROP is an image sub-setting 
operation 	 :	 ∈ 	 → ∈ 	⊂ . 
For a given input image  and a function  with pre-set 
parameters, the objective function  depends only on the 
parameters of . The parameters of  (i.e., input 
image region in TABLE 1) might vary or be constant with 
image location  as would be the case of a fixed size spatial 
kernel ( .  
  

 
Fig. 3. Overview of the algorithm for detecting spatial overlap and 

estimating spatial kernel. 

 Fig. 3 and the algorithmic pseudo-code below 
illustrate the computation of an objective function and the 
iterative nature of the search for parameters of . 
Algorithm for detecting spatial overlap and estimating 
spatial rectangular kernel:  
Create a set of image areas of 1 1 size (area of one 

pixel). 
Compute , ,  for all image areas in a set.  
if All values of , ,  are zero then  
     the computation is spatially local without spatial     
      overlap and hence use logical partitioning without    
      overlap 
else Create a set of point-centered rectangular areas         
        around the image center pixel with varying  
       dimensions  and .   
       Compute  ∈ , ,  for all image areas  
       if There exists ∗ ∈ , , 0 then 
           the computation is spatially global with spatial  
           overlap and its rectangular kernel is ∗, thus, use  
           logical partitioning with overlap.   
      else The computation is not spatial and hence physical  
           partitioning can be directly applied. 



B. Image Partitioning Schema for Spatial Computations on 
Hadoop Platforms 

The information about spatial image computations can be 
utilized to address the problem of an optimal image 
partitioning schema on Hadoop cluster/cloud computing 
platforms with respect to minimum network data transfer. 
Image partitioning for parallel execution can be performed 
based on logical image regions rather than physical chunks of 
an image file. We illustrate the advantage of logical image 
partitioning in Fig. 4 where there is no need to exchange data 
between nodes during runtime. The goal is to co-localize an 
input image sub-region with the computation of the 
corresponding output value on each cluster node. 

 
Fig. 4: Examples of image partitioning for a spatial computation of 

an average of 3x3 image pixels with overlapping four image 
regions. The computation is illustrated for N=1 (middle), 2 (left) 

and 4 (right) distributed computational nodes with no exchange of 
pixels between nodes during runtime. 

1) Mathematical Framework 
In order to evaluate the runtime benefits achieved by using 
logical partitions for spatial image computations as illustrated 
in Fig. 4, we focus on the speed-up of going from single 
processor desktop to a computer cluster with P processors. In 
general, the speed-up is defined as a ratio of the time using 
one processor and P processors according to equation (2). It 
can be viewed as a function of the number of processors or 
the problem/data size (strong versus weak scalability 
following Amdahl’s and Gustafson’s laws [19]).  

                                                              (2) 
For computer clusters and cloud computing resources, the 
speed-up has dependencies on the number of nodes , the 
node parameters ,  such as the number of 
processors  and the RAM size , the data parameters such 
as the total size of data  and data partitioning  

[type={physical, logical}, size= | |] packaged into 
blocks of size  for distribution across  cluster nodes, and 
the data transfer parameters  of the network 
connecting the cluster nodes and the storage array with data. 

The parameter extension in equation (2) to more complex 
ones for a computer cluster is presented in equation (3). 
 

→ , , , , , , ; 
                              ∑                             (3) 

 
For a specific case of a computer cluster running Apache 
Hadoop middleware to manage computations using 
MapReduce, one can expand equation (3) and the speed-up 
dependencies can then be expressed as shown in equation (4). 
 

1, 1, 	 , 	 	 ,
, , , , , , , / 	

 

 
	/ 

                          
,

                        (4) 

 
where in addition to the variables introduced in equation (3),  

  is the number of distributed image replicas, and   is the 
number of jobs per image to complete. The numerator in 
equation (4) includes the time needed for an execution on a 
single node. It consists of the network transfer time  to 
read and write the data between a user disk and his/her 
computational node,   to load one input image and save the 
results, and the time  to perform one of  computations 
operating on an input image sub-area . The denominator 
adds the times needed (a) to upload the input data to Hadoop 
Data File System (HDFS), replicate the data blocks across N 
cluster nodes and retrieve the results: 	 , (b) to perform 
Map tasks: , and (c) to shuffle values and reduce outputs 
to form a final result during Reduce phase: . For 
illustration purposes, the parameters in equations (3) and (4) 
for the examples shown in Fig. 4 would be: =1, 2 or 4, 

1, , 4 4  pixels, 	  = [logical, 
size = 4x4, 3x4 or 3x3 pixels], |	 |, 4,  =1, 
and   are not specified. 
 Our logical partitioning schema focuses primarily 
on reducing the time for Map tasks that can be expressed in 
equation (5). 
 

,                        

     (5) 
where  is the time to read and write data to and from 
RAM, 	  is the time to transfer the pixels that are not 
available at a compute node to complete a computation, and 

 is the time to perform computation. Our objective is to 
maximize the speed-up  over physical and logical data 
partitions  with and without overlapping pixels (denoted 
as ghost cells in [14]) by minimizing the communication time 
pertinent to input data transfers to HDFS ( ), and 
between the nodes to retrieve necessary data during the Map 
phase ( ). Both objectives are presented in the equations 
below. 
 



max 	 , , , , , , , /

	                                                   (6) 
 

          Min , 	 ,                    (7) 

 
Note: The minimization problem can also be interpreted as 
an evaluation of input image partitioning schemas. The 
execution time on a single node assumes that the input image 
of width/height dimensions  and the output image of 
size  can be handled by its RAM (loading entire 
input image or image regions followed by processing).  
 

2) Image Partitioning Schema 
Given the objective functions in equations (6) or (7), we 
devised an image partitioning schema for logical partitions 
without or with overlapping pixels into a block size | | to 
be distributed across computer cluster nodes.  For logical 
partitioning with additional inputs (see Fig. 1) including a 
mask or a set of bounding boxes, we package pixels defined 
by a mask label or enclosed by a bounding box into one 
logical set .  This turns into a bin packing problem [20] 
where logical sets of pixels of different cardinality | | 
must be packed into a finite number of physical blocks  in 
a way that minimizes the number of blocks used. In general, 
an optimal number of blocks would be equal to the number 
of processors P.   
 Logical image partitioning for spatial kernel-based 
computations is designed with or without considerations of a 
kernel (sub-area) overlap for adjacent pixels (see Fig. 5). In 
order to obtain image regions  containing a union of 
kernels for neighboring pixels: 	∪

, 1 , … , we cut each image to the desired 
number of regions   by  and  cuts along each input 
image dimension 	 1 1 . The blocks are 
either distributed directly to cluster nodes for logical 
partitions without overlap or are extended by the overlapping 
pixels for logical partitions with overlap as illustrated in Fig. 
5.  The extension is performed by adding to each block    
number of input image columns and  number of rows 
where these two numbers correspond to the additional input 
pixels in each dimension that are needed to compute output 
values using the spatial kernel .  

IV. EXPERIMENTAL RESULTS  

Experimental results follow the organization of Section III 
describing the two problems (detection/estimation of spatial 
computations, optimal image partitioning schema) with 
additional information about benchmark configurations for 
evaluating the image partitioning schema. 

 
Fig. 5: Image partitioning with and without overlap by horizontal 
and vertical cuts. This example shows an image partition to four 

blocks for a kernel size 3x3 (A(50) in yellow). The values of block  
 and  are derived from unions of horizontal or vertical 

kernels of adjacent pixels. 

A. Benchmark Configurations  

1) Terabyte-sized Image Dataset  
We experimented with 161 images of the dimensions (width 
∈[22 881, 22 980]) x (height ∈[20 937, 21 123]), and 16 bits 
per pixel (about 1 GB per image). These images have been 
stitched from 127 512 files that represent 18 x 22 = 396 fields 
of view (FOVs), 161 time points and 2 imaging channels. 
One FOV is about 2.8 MB. Each stitched image covers 
approximately 180 mm2 of a stem cell colony dish, over five 
days under both phase contrast and green fluorescence 
channels, with images acquired every 15 minutes. The 
images are stored in a TIFF file format (143 GB). Each frame 
has approximately 475 million pixels with 2 bytes per pixel. 
For benchmarking and stress testing, we used 161 images 
from one channel.  

2) Hardware Platform  
We have executed all Hadoop cluster benchmarks on the 
NIST Raritan cluster with specifications provided in TABLE 

2. The cluster nodes had four processors (mostly Intel Xeon 
and Dual Core AMD) and 16 GB of RAM. We used the 
default Apache Hadoop configurations with 6 GB per Java 
process, the number of replicas R equal to two, and the block 
size B set to the 64 MB default size. 

 
TABLE 2: SPECIFICATIONS OF NIST RARITAN COMPUTER CLUSTER  

 Specs Cluster 

Hardware Cluster 
Nodes 

800 computer nodes having from 2 to 16 
logical cores with 4 to 32GB of RAM 

Networking 1Gbit/second  
Software Java 

Virtual 
Machine 

Java version "1.7.0_17" 
Java(TM) SE Runtime Environment (build 

1.7.0_17-b02) 
Java HotSpot(TM) 64-Bit Server VM 

(build 23.7-b01, mixed mode) 



Hadoop hadoop-1.0.3.16 
Operating 

System 
CentOS 5.9 

Linux 2.6.18-274.3.1.el5 x86_64 
File System Lustre parallel distributed file system for 

/home and ext3 for the root used by HDFS 

B. Results From Detecting and Estimating Computations 
with Spatial Overlap 

We tested a set of image operations from Java Advanced 
Imaging (JAI) [6] and ImageJ [7] using synthetic images 
shown in Fig. 6. These synthetic images represent a wide 
variety of statistical spatial intensity arrangements for 
detecting local versus global properties. 

   
Fig. 6: Example synthetic images that represent randomness in 

intensity values (left), spatial gradient changes of intensity 
(middle), and checkerboard pattern of intensities (right). 

 
The set of image operations was selected from the following 
categories. 
-Unary and binary pixel operations that require only a single 
input pixel to compute one output pixel. Examples: addition, 
multiplication, absolute, and threshold. 
-Neighbor operations that require several pixels around a 
pixel in the input image to compute one output pixel. 
Examples: convolution, median filter, and morphological 
filters. 
-Other operations that do not fall into a class of spatial 
computations. Examples: rotation or image flipping along 
any axis. 
The test results are summarized in TABLE 3. All results 
matched the ground truth.  
 
TABLE 3: SUMMARY OF THE DETECTION AND ESTIMATION 

EXPERIMENTS  

Image operation  Software 
package 

Category of 
image 

operation 

Recommended 
Image 

Partitioning  

Multiply by 
constant  

JAI, ImageJ  unary   Logical without 
overlap 

Gradient 
magnitude  

JAI  neighbor  Logical with 3 x 3 
overlap 

Max Filter with 
variable mask 

JAI  neighbor  Logical with 
detected overlap 

Image 
convolution  

JAI, ImageJ  neighbor  Logical with 
detected overlap 

AutoThreshold   ImageJ  unary   Logical without 
overlap 

Morphological 
erosion  

ImageJ  neighbor   Logical with 3 x 3 
overlap 

Median filter  ImageJ  neighbor  Logical with 3 x 3 
overlap 

Flip horizontal  ImageJ  other  Physical

C. Runtime Results Using Image Partitioning Schemas 

Equation (7) can be evaluated experimentally over the types 
of image partitioning schemas and a range of image regions 
and kernels determining the size of [type ={physical, 
logical with overlap, logical without overlap}, size= | |]. 
Table 4 summarizes the parameters we have varied during 
experimental benchmarks. We documented the 
implementations of image partitioning schemas in C.1) and 
reported the experimental comparisons in C.2) using the 
configurations specified in Section A. 
 
TABLE 4: SUMMARY OF PARAMETERS VARIED DURING EXPERIMENTAL 

BENCHMARKS 

Parameters Values 

Number of cluster 
nodes N 

20,40,60,80,100,120

Partitioning schema Physical (PB), Logical without (LB) and with 
overlap (LBO) 

Image region size  1 MB, 10 MB, 30 MB, 61 MB

Number of Map tasks 1, 2, 6 

Kernel size ∗
 

3x3, 25x25, 51x51, 75x75, 101x101

Data size 40, 161 images (1 GB per image)

 
1) Parallel Distributed Implementations  

We implemented the logical partitioning with and without 
overlap as an extension to the existing physical partitioning 
schema in Apache Hadoop following Section III.B.  During 
the push of an image into HDFS from a file storage system, 
the image is subdivided into regions with or without 
overlapping pixels. An image region is converted into an 
image record which is defined as a key/value pair. The key is 
generated from the file name of the whole image.  The value 
holds intensities of an image region with or without 
overlapping pixels, and the region position in the coordinate 
system of the input image. Multiple image records are stored 
using Hadoop Sequential File Format (i.e., SequenceFile 
objects) to avoid problem of many small files in Hadoop 
HDFS.  
 During the Hadoop Map phase, a spatial image 
computation is applied to every image record to generate an 
intermediate image record represented by a new key/value 
pair. During the Hadoop Reduce phase, values in 
intermediate records with the same key are shuffled and 
sorted among the worker nodes. The Reduce function 
retrieves computed output image pixels/regions from the 
same input image and produces the final output image using 
the information associated with image records.  
Table 5 provides details of Hadoop MapReduce 
implementations for the three image partitioning schemas 
including physical, logical without overlap, and logical with 
overlap.  
 
 



TABLE 5: SUMMARY OF HADOOP IMPLEMENTATIONS FOR THREE 

IMAGE PARTITIONING SCHEMAS INCLUDING PHYSICAL, LOGICAL 

WITHOUT OVERLAP, AND LOGICAL WITH OVERLAP 

Hadoop 
Implementatio

n 

  Map  Reduce

logical image 
partitioning 
WITH overlap 

Input  Image records 
(key/value pairs)  
and location of 
all image regions    

Key and list of 
values for each 
input image          

Output  Image records 
(key/value pairs)    

One output image 
per input image  

Functio
n 

image 
computation on 
image records 

Stitch all computed 
image records with 

the same key. 
Write output as a 
single image to 

HDFS 

logical image 
partitioning 
WITHOUT 
overlap 

Input  Image records 
(key/value pairs) 
and location of 
all image regions 

Key and list of 
values for each 
input image          

Output  Image records 
(key/value pairs)    

One output image 
per input image  

Functio
n 

for each image 
record: 

‐Retrieve image 
region position 

‐Load all 
neighboring 
regions of the 
image record 
from HDFS 
‐Form image 
regions with 
overlapping 

pixels along its 
borders 

‐Execute image 
computation on a 

region and 
extract computed 
region without 
overlap as an 
output image 

record 

Stitch all computed 
image records with 

the same key. 
Write output as a 
single image to 

HDFS 

physical 
partitioning of 
NON SPLIT 
images 

Input  Key: image 
number 

Value: entire 
image loaded 
from HDFS 

None

Output  Key: write 
computed entire 
image directly to 

HDFS        
Value: computed 

region 

None

Functio
n 

image 
computation on 
entire image 

None

2) Experimental Comparisons of Logical and Physical 
Image Partitioning Schemas 

All experimental benchmarks are obtained using 
morphological dilation operation applied to the stem cell 
images described in Section A.1). Each compute node came 
with 4 processors and 16 GB RAM according to the cluster 
specifications in Section A.2). The physical partitioning 
schema used 64 MB block size for pushing the data to 
Hadoop HDFS. The block size for the two logical partitioning 
schemas varied according to Table 4.  

a) Strong and weak scaling 
We have varied the input image size and the number of nodes 
to benchmark the scaling performance according to weak and 
strong scaling assumptions [19]. Fig. 7 and Fig. 8  show 
runtime dependency for morphological dilation with a kernel 
size A=101x101 on the number of cluster nodes for 40 and 
161 images and multiple partitioning configurations. The 
number of file replication R is two.  
 

 
Fig. 7: Runtime as a function of the number cluster nodes.  The 

logical partitioning with overlap (LBO) into 10MB image regions 
outperforms the physical partitioning (PB) for 161 images. 

Fig. 7 illustrates close to linear scaling for Hadoop logical 
partitioning with overlap (LBO) for up to 120 cluster nodes 
with the total of 480 processors. The average relative speed-
up of 5.36 is computed as the ratio of time averages over the 
collected data points using physical (PB) and logical 
partitioning with overlap (LBO) and 10 MB image regions. 
The difference in the runtimes is due to not only the logical 
partitioning but also the ability to run up to 6 Map tasks 
concurrently. In addition, the RAM requirement to 
computations using PB is 8 GB in comparison to less than 1 
GB using LBO.  
 Fig. 8 shows that the Hadoop physical partitioning 
(PB) configuration does not scale for the number of cluster 
nodes larger than 60. There are idle nodes and the cluster is 
unbalanced. The lack of scaling could also be due to the 
executions of duplicated tasks on big images for failed tasks 
and waiting for the execution of the last task. The scalability 
of the computation clearly benefits from splitting the big 
images into image regions in a distributed computer cluster 
environment.  
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Fig. 8: Runtime as a function of the number cluster nodes.  The 

logical partitioning with overlap (LBO) outperforms the physical 
partitioning (PB) for 40 images regardless of the image region size. 

b) Logical partitioning schemas  
We evaluated the runtime difference between logical 
partition with and without overlap as a function of the number 
of cluster nodes in Fig. 9. The benchmarks are collected for 
morphological dilation with a kernel size A=101x101 on 
varying number of cluster nodes. The logical partitioning size 
of an image region was fixed to 10 MB and six Map tasks 
were executed on each node. One can compute a runtime 
speed-up as a ratio of logical partitioning with overlap over 
without overlap from the data shown in Fig. 9. The average 
speed-up over varying number of cluster nodes is 3.14 
(minimum=2.2 and maximum=5.4). We have also analyzed 
percentages of data local tasks for the 40 processed images 
based on log files. The difference in percentages ranges 
between 15 and 65 (LBO, 1 MB versus PB) and corresponds 
to the extra time spent on node to node data transfer .  
  

  
Fig. 9: Comparison of runtimes using logical partitioning with and 

without overlap. 

In addition, we explored the dependency of runtime on the 
kernel size of an image morphological dilation.  Fig. 10 
shows the benchmarks for a configuration processing 40 
image files on 40 cluster nodes and a fixed image region size 
of 10 MB and 2 Map tasks per node. We concluded that LBO 

always has lower runtime. The runtime difference is almost 
constant with the kernel size due to the transfer time needed 
by LB to bring a whole data block containing the missing 
pixels to the compute node.   

 

 
Fig. 10: Runtime dependency on the size of a morphological 

dilation kernel for the two logical partitioning schemas with and 
without overlap. The benchmarks are collected using 40 cluster 

nodes, 10 MB image regions and 2 Map tasks. 

V. SUMMARY 

We have analyzed a class of spatial image computations 
applied to terabyte-sized images and executed on a Hadoop 
computer cluster platform. We addressed two problems that 
would lower the barrier for bench scientists to process large 
size images by (a) detecting spatial image computations in a 
library of image processing functions, and (b) partitioning 
image data for spatial image computations on Hadoop 
cluster/cloud computing platforms in order to minimize 
network data transfer. Our theoretical framework focused on 
formulating both problems as estimation problems, and 
evaluating various image partitioning configurations. The 
experimental part documented accuracy and runtime 
performance of multiple image partitioning schemas for 
morphological dilation used as an example of a spatial image 
processing operation. The results for the detection problem 
demonstrated 100% accuracy in detecting spatial 
computations. The results with various image partitioning 
schemas yielded a significant speed-up (5.36 and 3.14) of the 
computations on Hadoop clusters when comparing physical 
or logical partitioning without overlap and logical 
partitioning with overlap.  
 In the near future, we plan to benchmark other 
image processing computations and disseminate the Hadoop 
extension to the image processing community. Overall, there 
are still unanswered questions about the distribution of image 
data access (uniform or skewed), temporal locality in data 
access, and how much of multi-dimensional image data is 
collocated when being accessed. In order to understand the 
relationship between data parallelism and computational 
efficiency, one has to examine specific degrees of 
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dependency among data points and data access patterns for 
each class of image processing computations.  
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