
Spatial Computations over Terabyte-Sized Images on Hadoop Platforms

Peter Bajcsy, Phuong Nguyen, Antoine Vandecreme, Mary Brady
Software and Systems Division, Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD

e-mail: {peter.bajcsy, phuong.nguyen, antoine.vandecreme, mary.brady}@nist.gov

Abstract—Our objective is to lower the barrier of executing
spatial image computations in a computer cluster/cloud
environment instead of in a desktop/laptop computing
environment. We research two related problems encountered
during an execution of spatial computations over terabyte-sized
images using Apache Hadoop running on distributed computing
resources. The two problems address (a) detection of spatial
computations and their parameter estimation from a library of
image processing functions, and (b) partitioning of image data
for spatial image computations on Hadoop cluster/cloud
computing platforms in order to minimize network data
transfer. The first problem is solved by designing an iterative
estimation methodology. The second problem is formulated as
an optimization over three partitioning schemas (physical,
logical without overlap and logical with overlap), and evaluated
over several system configuration parameters. Our
experimental results for the two problems demonstrate 100%
accuracy in detecting spatial computations in the Java
Advanced Imaging and ImageJ libraries, a speed-up of 5.36
between the default Hadoop physical partitioning and
developed logical image partitioning with overlap, and 3.14
times faster execution of logical partitioning with overlap than
the one without overlap. The novelty of our work is in designing
an extension to Apache Hadoop to run a class of spatial image
processing operations efficiently on a distributed computing
resource.

Keywords: Spatial image operations; Hadoop; Image
partition; Distributed computing

I. INTRODUCTION

Our overarching goal is to automate transitions of image
processing computations from a single desktop computer to a
cloud/cluster computational resource. Among all possible
image processing operations, we identified a class of spatial
image computations that are suitable for such a transition.
The spatial image computations operate on a set of
contiguous image regions that can be performed in parallel.
The regions in a set might vary in size and shape, and might
spatially overlap. The sub-division of spatial image
computations is summarized in Table 1. The rows and
columns of Table 1 represent characteristics in terms of
image region size, presence of overlapping image regions to
compute the resulting values, desired image partitions to co-
locate image data with the computation on a cluster node, and
the inputs for performing desired image partitions. The term
“logical” refers to a partition based on an image pixel location
while “physical” denotes a partition based on a file storage

location. If a spatial computation and image values are not
co-located then overall computational time increases due to
network transfers of data to each computational node. In this
paper, one of our technical goals is to design an image sub-
area distribution schema that minimizes the network transfer
for spatial computations.

TABLE 1: SUB-DIVISION OF SPATIAL IMAGE COMPUTATIONS AND ITS

RELEVANCE TO IMAGE PARTITION.

Types of spatial
computations:

examples

Input
Image
Region

Overlap
type

Desired
Image

Partition

Input to
Logical
Partition

Pixel‐based:
Thresholding

Fixed
size

No
overlap

Physical
or logical
without
overlap

None

Kernel‐based:
Convolution

Fixed
size

With
overlap

Logical
with

overlap

Kernel area
size

Segment‐based:
Feature
extraction

Variable
size

No
overlap

Logical
without
overlap

Mask

Bounding box‐
based:

Background
correction

Variable
size

With
overlap

Logical
with

overlap

Bounding
boxes

 The motivation for our work comes from the fact
that implementations of image spatial computations are
ubiquitous in image software packages, embedded in many
image processing methods, designed to run on desktops, and
applied by a large number of users in imaging and image
processing communities. However, the current desktop
implementations do not perform successfully on terabyte-
sized images (i.e., reporting out-of-memory error or their
computational time is prohibitive), and do not parallelize
computations efficiently in cluster/cloud computing
environments. Based on Table 1, execution time of spatial
computations on a computer cluster can be minimized by
using image partitioning schemas and design patterns for
parallel software [1] that consider image regions (logical
partitions) rather than file arrays on a disk (physical
partitions). Once image regions are distributed to multiple
computational nodes, processing can be launched in parallel
without additional network transfers of image data. One of
the popular open source middleware platforms for parallel

execution is Apache Hadoop [2], [3]. It manages the physical
data partitioning, distribution across cluster nodes, job
management and result aggregation. Although Hadoop has
been widely used by researchers and industries for parallel
execution on distributed computational resources, and it is
known for its relative programming simplicity [3]–[5], it
lacks support for image processing. Specifically, Hadoop
does not take advantage of logical partitions of images and
therefore does not deliver the possible execution speed-up for
spatial image computations.

Fig. 1. Execution options for scientists to run spatial image
computations on desktop/laptop or cluster/cloud computing

platforms. HDFS denotes the Hadoop Distribution File System.

 To address the aforementioned deficiencies of
executing spatial image computations on Hadoop-managed
distributed computational resources, we investigated two
problems: (1) detection of spatial image computations in a
library of image processing methods, and parameter
estimation of detected spatial computations, and (2)
distribution of image regions according to logical partitions
to be processed by a single cluster node. The two problems
are illustrated in Fig. 1 from the perspective of a bench
scientist who is in a transition from a desktop to cluster
platforms. In order to handle terabyte-sized images on
cluster/cloud platforms, new software has to be designed to
decide whether physical or logical image partitioning is
needed, estimate parameters of logical partitions and then
distribute images accordingly to take a full advantage of
distributed cluster/cloud platforms.

The design of algorithms to detect and estimate
spatial overlap is approached by a spatial transformation test.
The spatial transformation test is performed by comparing the
outcomes of two image processing sequences (image crop
software functionality) and (software functionality image
crop). The design of a logical image partitioning schema is
an extension to Hadoop middleware with MapReduce
implementations of image processing functionalities. The
image regions (logical partitions) are packaged into physical
blocks and distributed to the Hadoop Distribution File

System (HDFS) such that each cluster node would have all
input image pixels needed to derive output image values.
 The impact of our work is in providing scientists
with a methodology for detecting and distributing spatial
image computations using logical image partitions. The
novelty of our work is in designing the detection
methodology for spatial image computations and evaluating
experimentally multiple physical and logical partitioning
schemas on a Hadoop computer cluster. We have evaluated
the developed solutions using Java Advanced Imaging [6]
and ImageJ [7] libraries.

This paper is organized as follows. Section II
outlines related work. In Section III, we present the
theoretical underpinnings of the approaches to (a) the spatial
image computation detection and parameter estimation
problem and (b) the design of image partitioning schemas for
spatial image computations. Section IV describes the
experimental results including hardware and test data sets,
and Section V provides the summary of the work.

II. RELATED WORK

Spatial computations include convolution operations [8], [9],
down-sampling, morphological, enhancement and denoising
filtering [10], [11], gradient-based edge detection, and
template-based correlation [12]. These computations are
frequently embedded in more complex algorithms developed
for image segmentation, image restoration, or object
recognition and image scene understanding. They can be
found in many closed- or open-source image processing
packages such as Adobe Photoshop® or ImageJ [7].
However, one does not know what image processing
operations are using kernel-based computations in an
unknown library. According to our knowledge, the problem
of detecting spatial image operations in black-box software
has not been addressed yet.
 The problem of efficient execution of spatial image
operations has been tackled by analyzing mathematical
models and by benchmarking implementations on various
hardware platforms in a few published papers. For example,
the authors in [9] focus on mathematical models of
convolution and their efficient implementations. This study
includes superscalar and parallel processing units (CPU,
DSP, and GPU), programmable architectures (e.g. FPGA),
and distributed systems (such as computer grids). It is well
stated in [8] that “Basically, the convolution is a memory-
bound problem, i.e. the ratio between the arithmetic
operations and memory accesses is low.” which is utilized in
our work as well. However, the past study does not include
computer cluster/cloud platforms or the MapReduce
paradigm in Hadoop. Our work is also considering a broader
category of spatial image computations than convolutions.
 The problem of image data distribution using
Hadoop has been investigated in [13] for bilateral image
smoothing. The work focuses only on bilateral image
smoothing as an example of local and non-iterative
computation because computations from the other three

categories of algorithms are more difficult to implement
efficiently using Hadoop. Our work differs by building an
extension to Apache Hadoop that will automatically perform
logical partition of images according to the estimated
parameters in the detection step. Our approach goes beyond
bilateral image smoothing and should be directly usable for
other local and non-iterative computations as an extension to
Hadoop.
 Finally, our approach of logical image partitioning
is directly related to the parallel design concepts (i.e., ghost
cell pattern [14] and structured grid computational pattern
[15]) that are applicable to computational grid applications
by using MapReduce and geometric decomposition
algorithm strategy [1]. The past work in [14] reports the same
concept as ours using Message Passing Interface (MPI) while
our work provides Hadoop implementation with quantitative
benchmarks. Other previous studies on data locality
investigated the minimum number and optimal placement of
replicas [16] or opted to transfer the responsibility for optimal
data locality to a job scheduler working with a uniform data
replication policy in a distributed file system [17], [18].

III. SPATIAL COMPUTATIONS OVER TERABYTE-SIZED

IMAGES ON HADOOP PLATFORMS

This section describes two problems: A. The problem of
detecting spatial computation and parameter estimation from
a library of image processing functions. B. The problem of an
optimal image partitioning schema for spatial image
computations on Hadoop cluster/cloud computing platforms
with respect to minimum network data transfer.

A. Detection and Estimation of Spatial Computations in
Image Libraries

Let us assume that there exists a function F in a black-box
image processing library that creates an output image from
an input image by deriving each output value at location ∈
	 (2,3, …) from a set of input image values that include
the location . Fig. 2 shows an example of such an image
library function that is denoted as a spatial image
computation. For simplicity, we will proceed with 2.

Fig. 2: An image library function is labeled as a spatial

computation without or with overlap if it will compute one red
pixel in output image from one or many pixels around the same

location in input image.

The problems of detecting spatial computation among image
library functions and estimating its spatial extent are
approached by (a) forming an objective function in
equation (1) and (b) evaluating to find subsets of input
pixels for which 0.

, , ∑ |		∈

	 | (1)

where is an input image modeled as a mapping : ∈
	 → ∈ ; :	 → is a function in an
image processing library, and CROP is an image sub-setting
operation 	 :	 ∈ 	 → ∈ 	⊂ .
For a given input image and a function with pre-set
parameters, the objective function depends only on the
parameters of . The parameters of (i.e., input
image region in TABLE 1) might vary or be constant with
image location as would be the case of a fixed size spatial
kernel (.

Fig. 3. Overview of the algorithm for detecting spatial overlap and

estimating spatial kernel.

 Fig. 3 and the algorithmic pseudo-code below
illustrate the computation of an objective function and the
iterative nature of the search for parameters of .
Algorithm for detecting spatial overlap and estimating
spatial rectangular kernel:
Create a set of image areas of 1 1 size (area of one

pixel).
Compute , , for all image areas in a set.
if All values of , , are zero then
 the computation is spatially local without spatial
 overlap and hence use logical partitioning without
 overlap
else Create a set of point-centered rectangular areas
 around the image center pixel with varying
 dimensions and .
 Compute ∈ , , for all image areas
 if There exists ∗ ∈ , , 0 then
 the computation is spatially global with spatial
 overlap and its rectangular kernel is ∗, thus, use
 logical partitioning with overlap.
 else The computation is not spatial and hence physical
 partitioning can be directly applied.

B. Image Partitioning Schema for Spatial Computations on
Hadoop Platforms

The information about spatial image computations can be
utilized to address the problem of an optimal image
partitioning schema on Hadoop cluster/cloud computing
platforms with respect to minimum network data transfer.
Image partitioning for parallel execution can be performed
based on logical image regions rather than physical chunks of
an image file. We illustrate the advantage of logical image
partitioning in Fig. 4 where there is no need to exchange data
between nodes during runtime. The goal is to co-localize an
input image sub-region with the computation of the
corresponding output value on each cluster node.

Fig. 4: Examples of image partitioning for a spatial computation of

an average of 3x3 image pixels with overlapping four image
regions. The computation is illustrated for N=1 (middle), 2 (left)

and 4 (right) distributed computational nodes with no exchange of
pixels between nodes during runtime.

1) Mathematical Framework
In order to evaluate the runtime benefits achieved by using
logical partitions for spatial image computations as illustrated
in Fig. 4, we focus on the speed-up of going from single
processor desktop to a computer cluster with P processors. In
general, the speed-up is defined as a ratio of the time using
one processor and P processors according to equation (2). It
can be viewed as a function of the number of processors or
the problem/data size (strong versus weak scalability
following Amdahl’s and Gustafson’s laws [19]).

 (2)
For computer clusters and cloud computing resources, the
speed-up has dependencies on the number of nodes , the
node parameters , such as the number of
processors and the RAM size , the data parameters such
as the total size of data and data partitioning

[type={physical, logical}, size= | |] packaged into
blocks of size for distribution across cluster nodes, and
the data transfer parameters of the network
connecting the cluster nodes and the storage array with data.

The parameter extension in equation (2) to more complex
ones for a computer cluster is presented in equation (3).

→ , , , , , , ;
 ∑ (3)

For a specific case of a computer cluster running Apache
Hadoop middleware to manage computations using
MapReduce, one can expand equation (3) and the speed-up
dependencies can then be expressed as shown in equation (4).

1, 1, 	 , 	 	 ,
, , , , , , , / 	

	/

,

 (4)

where in addition to the variables introduced in equation (3),

 is the number of distributed image replicas, and is the
number of jobs per image to complete. The numerator in
equation (4) includes the time needed for an execution on a
single node. It consists of the network transfer time to
read and write the data between a user disk and his/her
computational node, to load one input image and save the
results, and the time to perform one of computations
operating on an input image sub-area . The denominator
adds the times needed (a) to upload the input data to Hadoop
Data File System (HDFS), replicate the data blocks across N
cluster nodes and retrieve the results: 	 , (b) to perform
Map tasks: , and (c) to shuffle values and reduce outputs
to form a final result during Reduce phase: . For
illustration purposes, the parameters in equations (3) and (4)
for the examples shown in Fig. 4 would be: =1, 2 or 4,

1, , 4 4 pixels, 	 = [logical,
size = 4x4, 3x4 or 3x3 pixels], |	 |, 4, =1,
and are not specified.
 Our logical partitioning schema focuses primarily
on reducing the time for Map tasks that can be expressed in
equation (5).

,

 (5)
where is the time to read and write data to and from
RAM, 	 is the time to transfer the pixels that are not
available at a compute node to complete a computation, and

 is the time to perform computation. Our objective is to
maximize the speed-up over physical and logical data
partitions with and without overlapping pixels (denoted
as ghost cells in [14]) by minimizing the communication time
pertinent to input data transfers to HDFS (), and
between the nodes to retrieve necessary data during the Map
phase (). Both objectives are presented in the equations
below.

max 	 , , , , , , , /

	 (6)

 Min , 	 , (7)

Note: The minimization problem can also be interpreted as
an evaluation of input image partitioning schemas. The
execution time on a single node assumes that the input image
of width/height dimensions and the output image of
size can be handled by its RAM (loading entire
input image or image regions followed by processing).

2) Image Partitioning Schema
Given the objective functions in equations (6) or (7), we
devised an image partitioning schema for logical partitions
without or with overlapping pixels into a block size | | to
be distributed across computer cluster nodes. For logical
partitioning with additional inputs (see Fig. 1) including a
mask or a set of bounding boxes, we package pixels defined
by a mask label or enclosed by a bounding box into one
logical set . This turns into a bin packing problem [20]
where logical sets of pixels of different cardinality | |
must be packed into a finite number of physical blocks in
a way that minimizes the number of blocks used. In general,
an optimal number of blocks would be equal to the number
of processors P.
 Logical image partitioning for spatial kernel-based
computations is designed with or without considerations of a
kernel (sub-area) overlap for adjacent pixels (see Fig. 5). In
order to obtain image regions containing a union of
kernels for neighboring pixels: 	∪

, 1 , … , we cut each image to the desired
number of regions by and cuts along each input
image dimension 	 1 1 . The blocks are
either distributed directly to cluster nodes for logical
partitions without overlap or are extended by the overlapping
pixels for logical partitions with overlap as illustrated in Fig.
5. The extension is performed by adding to each block
number of input image columns and number of rows
where these two numbers correspond to the additional input
pixels in each dimension that are needed to compute output
values using the spatial kernel .

IV. EXPERIMENTAL RESULTS

Experimental results follow the organization of Section III
describing the two problems (detection/estimation of spatial
computations, optimal image partitioning schema) with
additional information about benchmark configurations for
evaluating the image partitioning schema.

Fig. 5: Image partitioning with and without overlap by horizontal
and vertical cuts. This example shows an image partition to four

blocks for a kernel size 3x3 (A(50) in yellow). The values of block
 and are derived from unions of horizontal or vertical

kernels of adjacent pixels.

A. Benchmark Configurations

1) Terabyte-sized Image Dataset
We experimented with 161 images of the dimensions (width
∈[22 881, 22 980]) x (height ∈[20 937, 21 123]), and 16 bits
per pixel (about 1 GB per image). These images have been
stitched from 127 512 files that represent 18 x 22 = 396 fields
of view (FOVs), 161 time points and 2 imaging channels.
One FOV is about 2.8 MB. Each stitched image covers
approximately 180 mm2 of a stem cell colony dish, over five
days under both phase contrast and green fluorescence
channels, with images acquired every 15 minutes. The
images are stored in a TIFF file format (143 GB). Each frame
has approximately 475 million pixels with 2 bytes per pixel.
For benchmarking and stress testing, we used 161 images
from one channel.

2) Hardware Platform
We have executed all Hadoop cluster benchmarks on the
NIST Raritan cluster with specifications provided in TABLE

2. The cluster nodes had four processors (mostly Intel Xeon
and Dual Core AMD) and 16 GB of RAM. We used the
default Apache Hadoop configurations with 6 GB per Java
process, the number of replicas R equal to two, and the block
size B set to the 64 MB default size.

TABLE 2: SPECIFICATIONS OF NIST RARITAN COMPUTER CLUSTER

 Specs Cluster

Hardware Cluster
Nodes

800 computer nodes having from 2 to 16
logical cores with 4 to 32GB of RAM

Networking 1Gbit/second
Software Java

Virtual
Machine

Java version "1.7.0_17"
Java(TM) SE Runtime Environment (build

1.7.0_17-b02)
Java HotSpot(TM) 64-Bit Server VM

(build 23.7-b01, mixed mode)

Hadoop hadoop-1.0.3.16
Operating

System
CentOS 5.9

Linux 2.6.18-274.3.1.el5 x86_64
File System Lustre parallel distributed file system for

/home and ext3 for the root used by HDFS

B. Results From Detecting and Estimating Computations
with Spatial Overlap

We tested a set of image operations from Java Advanced
Imaging (JAI) [6] and ImageJ [7] using synthetic images
shown in Fig. 6. These synthetic images represent a wide
variety of statistical spatial intensity arrangements for
detecting local versus global properties.

Fig. 6: Example synthetic images that represent randomness in

intensity values (left), spatial gradient changes of intensity
(middle), and checkerboard pattern of intensities (right).

The set of image operations was selected from the following
categories.
-Unary and binary pixel operations that require only a single
input pixel to compute one output pixel. Examples: addition,
multiplication, absolute, and threshold.
-Neighbor operations that require several pixels around a
pixel in the input image to compute one output pixel.
Examples: convolution, median filter, and morphological
filters.
-Other operations that do not fall into a class of spatial
computations. Examples: rotation or image flipping along
any axis.
The test results are summarized in TABLE 3. All results
matched the ground truth.

TABLE 3: SUMMARY OF THE DETECTION AND ESTIMATION

EXPERIMENTS

Image operation Software
package

Category of
image

operation

Recommended
Image

Partitioning

Multiply by
constant

JAI, ImageJ unary Logical without
overlap

Gradient
magnitude

JAI neighbor Logical with 3 x 3
overlap

Max Filter with
variable mask

JAI neighbor Logical with
detected overlap

Image
convolution

JAI, ImageJ neighbor Logical with
detected overlap

AutoThreshold ImageJ unary Logical without
overlap

Morphological
erosion

ImageJ neighbor Logical with 3 x 3
overlap

Median filter ImageJ neighbor Logical with 3 x 3
overlap

Flip horizontal ImageJ other Physical

C. Runtime Results Using Image Partitioning Schemas

Equation (7) can be evaluated experimentally over the types
of image partitioning schemas and a range of image regions
and kernels determining the size of [type ={physical,
logical with overlap, logical without overlap}, size= | |].
Table 4 summarizes the parameters we have varied during
experimental benchmarks. We documented the
implementations of image partitioning schemas in C.1) and
reported the experimental comparisons in C.2) using the
configurations specified in Section A.

TABLE 4: SUMMARY OF PARAMETERS VARIED DURING EXPERIMENTAL

BENCHMARKS

Parameters Values

Number of cluster
nodes N

20,40,60,80,100,120

Partitioning schema Physical (PB), Logical without (LB) and with
overlap (LBO)

Image region size 1 MB, 10 MB, 30 MB, 61 MB

Number of Map tasks 1, 2, 6

Kernel size ∗

3x3, 25x25, 51x51, 75x75, 101x101

Data size 40, 161 images (1 GB per image)

1) Parallel Distributed Implementations

We implemented the logical partitioning with and without
overlap as an extension to the existing physical partitioning
schema in Apache Hadoop following Section III.B. During
the push of an image into HDFS from a file storage system,
the image is subdivided into regions with or without
overlapping pixels. An image region is converted into an
image record which is defined as a key/value pair. The key is
generated from the file name of the whole image. The value
holds intensities of an image region with or without
overlapping pixels, and the region position in the coordinate
system of the input image. Multiple image records are stored
using Hadoop Sequential File Format (i.e., SequenceFile
objects) to avoid problem of many small files in Hadoop
HDFS.
 During the Hadoop Map phase, a spatial image
computation is applied to every image record to generate an
intermediate image record represented by a new key/value
pair. During the Hadoop Reduce phase, values in
intermediate records with the same key are shuffled and
sorted among the worker nodes. The Reduce function
retrieves computed output image pixels/regions from the
same input image and produces the final output image using
the information associated with image records.
Table 5 provides details of Hadoop MapReduce
implementations for the three image partitioning schemas
including physical, logical without overlap, and logical with
overlap.

TABLE 5: SUMMARY OF HADOOP IMPLEMENTATIONS FOR THREE

IMAGE PARTITIONING SCHEMAS INCLUDING PHYSICAL, LOGICAL

WITHOUT OVERLAP, AND LOGICAL WITH OVERLAP

Hadoop
Implementatio

n

 Map Reduce

logical image
partitioning
WITH overlap

Input Image records
(key/value pairs)
and location of
all image regions

Key and list of
values for each
input image

Output Image records
(key/value pairs)

One output image
per input image

Functio
n

image
computation on
image records

Stitch all computed
image records with

the same key.
Write output as a
single image to

HDFS

logical image
partitioning
WITHOUT
overlap

Input Image records
(key/value pairs)
and location of
all image regions

Key and list of
values for each
input image

Output Image records
(key/value pairs)

One output image
per input image

Functio
n

for each image
record:

‐Retrieve image
region position

‐Load all
neighboring
regions of the
image record
from HDFS
‐Form image
regions with
overlapping

pixels along its
borders

‐Execute image
computation on a

region and
extract computed
region without
overlap as an
output image

record

Stitch all computed
image records with

the same key.
Write output as a
single image to

HDFS

physical
partitioning of
NON SPLIT
images

Input Key: image
number

Value: entire
image loaded
from HDFS

None

Output Key: write
computed entire
image directly to

HDFS
Value: computed

region

None

Functio
n

image
computation on
entire image

None

2) Experimental Comparisons of Logical and Physical
Image Partitioning Schemas

All experimental benchmarks are obtained using
morphological dilation operation applied to the stem cell
images described in Section A.1). Each compute node came
with 4 processors and 16 GB RAM according to the cluster
specifications in Section A.2). The physical partitioning
schema used 64 MB block size for pushing the data to
Hadoop HDFS. The block size for the two logical partitioning
schemas varied according to Table 4.

a) Strong and weak scaling
We have varied the input image size and the number of nodes
to benchmark the scaling performance according to weak and
strong scaling assumptions [19]. Fig. 7 and Fig. 8 show
runtime dependency for morphological dilation with a kernel
size A=101x101 on the number of cluster nodes for 40 and
161 images and multiple partitioning configurations. The
number of file replication R is two.

Fig. 7: Runtime as a function of the number cluster nodes. The

logical partitioning with overlap (LBO) into 10MB image regions
outperforms the physical partitioning (PB) for 161 images.

Fig. 7 illustrates close to linear scaling for Hadoop logical
partitioning with overlap (LBO) for up to 120 cluster nodes
with the total of 480 processors. The average relative speed-
up of 5.36 is computed as the ratio of time averages over the
collected data points using physical (PB) and logical
partitioning with overlap (LBO) and 10 MB image regions.
The difference in the runtimes is due to not only the logical
partitioning but also the ability to run up to 6 Map tasks
concurrently. In addition, the RAM requirement to
computations using PB is 8 GB in comparison to less than 1
GB using LBO.
 Fig. 8 shows that the Hadoop physical partitioning
(PB) configuration does not scale for the number of cluster
nodes larger than 60. There are idle nodes and the cluster is
unbalanced. The lack of scaling could also be due to the
executions of duplicated tasks on big images for failed tasks
and waiting for the execution of the last task. The scalability
of the computation clearly benefits from splitting the big
images into image regions in a distributed computer cluster
environment.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

R
u
n
ti
m
e
 [
s]

Number Of Nodes

Morphological Dilation: 161 Images

PB, 1 Map LBO, 10MB, 6 Maps

Fig. 8: Runtime as a function of the number cluster nodes. The

logical partitioning with overlap (LBO) outperforms the physical
partitioning (PB) for 40 images regardless of the image region size.

b) Logical partitioning schemas
We evaluated the runtime difference between logical
partition with and without overlap as a function of the number
of cluster nodes in Fig. 9. The benchmarks are collected for
morphological dilation with a kernel size A=101x101 on
varying number of cluster nodes. The logical partitioning size
of an image region was fixed to 10 MB and six Map tasks
were executed on each node. One can compute a runtime
speed-up as a ratio of logical partitioning with overlap over
without overlap from the data shown in Fig. 9. The average
speed-up over varying number of cluster nodes is 3.14
(minimum=2.2 and maximum=5.4). We have also analyzed
percentages of data local tasks for the 40 processed images
based on log files. The difference in percentages ranges
between 15 and 65 (LBO, 1 MB versus PB) and corresponds
to the extra time spent on node to node data transfer .

Fig. 9: Comparison of runtimes using logical partitioning with and

without overlap.

In addition, we explored the dependency of runtime on the
kernel size of an image morphological dilation. Fig. 10
shows the benchmarks for a configuration processing 40
image files on 40 cluster nodes and a fixed image region size
of 10 MB and 2 Map tasks per node. We concluded that LBO

always has lower runtime. The runtime difference is almost
constant with the kernel size due to the transfer time needed
by LB to bring a whole data block containing the missing
pixels to the compute node.

Fig. 10: Runtime dependency on the size of a morphological

dilation kernel for the two logical partitioning schemas with and
without overlap. The benchmarks are collected using 40 cluster

nodes, 10 MB image regions and 2 Map tasks.

V. SUMMARY

We have analyzed a class of spatial image computations
applied to terabyte-sized images and executed on a Hadoop
computer cluster platform. We addressed two problems that
would lower the barrier for bench scientists to process large
size images by (a) detecting spatial image computations in a
library of image processing functions, and (b) partitioning
image data for spatial image computations on Hadoop
cluster/cloud computing platforms in order to minimize
network data transfer. Our theoretical framework focused on
formulating both problems as estimation problems, and
evaluating various image partitioning configurations. The
experimental part documented accuracy and runtime
performance of multiple image partitioning schemas for
morphological dilation used as an example of a spatial image
processing operation. The results for the detection problem
demonstrated 100% accuracy in detecting spatial
computations. The results with various image partitioning
schemas yielded a significant speed-up (5.36 and 3.14) of the
computations on Hadoop clusters when comparing physical
or logical partitioning without overlap and logical
partitioning with overlap.
 In the near future, we plan to benchmark other
image processing computations and disseminate the Hadoop
extension to the image processing community. Overall, there
are still unanswered questions about the distribution of image
data access (uniform or skewed), temporal locality in data
access, and how much of multi-dimensional image data is
collocated when being accessed. In order to understand the
relationship between data parallelism and computational
efficiency, one has to examine specific degrees of

0

500

1000

1500

2000

2500

3000

0 50 100

R
u
n
ti
m
e
 [
s]

Number Of Nodes

Morphological Dilation: 40 Images

PB, 1 Map

LBO, 1MB, 6 Maps

LBO, 10MB, 6 Maps

LBO, 30MB, 6 Maps

LBO, 61MB, 6 Maps

PB, 6 Maps

0

500

1000

1500

0 20 40 60 80 100

R
u
n
ti
m
e
 [
s]

Number Of Nodes

Logical Partitioning With and Without
Overlap

LB, 10MB, 6 Maps LBO, 10MB, 6 Maps

0

100

200

300

400

500

600

700

800

3x3 25x25 51x51 75x75 101x101

R
u

n
ti

m
e

[s
]

Kernel size

Morphological Dilation: Kernel Size

LBO, 10MB, 2 Maps LB, 10MB, 2 Maps

dependency among data points and data access patterns for
each class of image processing computations.

ACKNOWLEDGMENT

This work was sponsored by NIST as a part of the
Computational Science in Biological Metrology project. We
would like to acknowledge all project team members for their
contributions.

DISCLAIMER

Commercial products are identified in this document in order
to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the products
identified are necessarily the best available for the purpose.

REFERENCES

[1] K. Keutzer, L. Berna, G. Timothy, and A. Beverly, “A Design
Pattern Language for Engineering (Parallel) Software :
Merging the PLPP and OPL Projects,” in Proceeding
ParaPLoP ’10 Proceedings of the 2010 Workshop on Parallel
Programming Patterns, 2010, pp. 1–8.

[2] T. White, Hadoop: The Definitive Guide MapReduce for the
Cloud, 3rd ed. O’Reilly Media, 2012, p. 528.

[3] O. O. Malley, “Hadoop Benchmarking,” in Workshop on Big
Data Benchmarking, 2012, no. May, pp. 1–13.

[4] Yahoo!, “Hadoop Tutorial from Yahoo!,” On-Line Tutorial,
2013. [Online]. Available:
http://developer.yahoo.com/hadoop/tutorial/module4.html.
[Accessed: 14-May-2013].

[5] Xyratex, “Using Lustre with Apache Hadoop,” 2010. [Online].
Available:
http://wiki.lustre.org/images/1/1b/Hadoop_wp_v0.4.2.pdf.
[Accessed: 31-May-2013].

[6] JavaSoft, “Programming in Java Advanced Imaging,” Sun
Microsystems, 901 San Antonio Road Palo Alto, CA 94303
USA, 1.01, 1999.

[7] W. Rasband, “ImageJ & Fiji & ImageJA & ImageJ2, Computer
Program,” 2013. [Online]. Available: http://rsbweb.nih.gov/ij/.
[Accessed: 15-May-2013].

[8] D. Svoboda, “Efficient Computation of Convolution of Huge
Images,” in Image Analysis and Processing ICIAP 2011, G.
Maino and G. Foresti, Eds. Lecture Notes in Computer
Science; Springer-Verlag, 2011, pp. 453–462, Vol. 6978.

[9] P. Karas, D. Svoboda, K. Pavel, and S. David, “Algorithms for
Efficient Computation of Convolution Algorithms for Efficient
Computation of Convolution,” in In Design and Architectures
for Digital Signal Processing, 1st ed., Rijeka, Croatia: IN-
TECH, Open Science - Open Mind, 2013, pp. 179–207.

[10] I. N. Bankman, Handbook of Medical Image Processing and
Analysis, 2nd ed. Burlington, MA: Academic Press; Elsevier,
2009, p. 984.

[11] J. C. Russ, The Image Processing Handbook, Sixth. Boca
Raton, FL: CRC Press, Taylor& Francis Group LLC, 2011, p.
839.

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd ed. New York: John Wiley & Sons, 2011, p. 637.

[13] K. Potisepp, “Large-scale Image Processing Using
MapReduce,” Tartu University, 2013.

[14] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern,” in
Proceedings of the 2010 Workshop on Parallel Programming
Patterns - ParaPLoP ’10, 2010, pp. 1–9.

[15] K. Gonina, H. Bayandorian, and E. Strohmaier, “Structured
Grid Computational Pattern,” A Pattern Language for Parallel
Programming ver2.0, 2010. [Online]. Available:
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.
[Accessed: 16-Jun-2014].

[16] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng,
“CDRM: A cost-effective dynamic replication management
scheme for cloud storage cluster,” in IEEE Int’l Conf. Cluster
Computing (CLUSTER), 2010, pp. 188–196.

[17] P. Nguyen, T. A. Simon, M. Halem, D. Chapman, and Quang
Le, “A Hybrid Scheduling Algorithm for Data Intensive
Workloads in a Map Reduce Environment,” in 5th IEEE/ACM
International Conference on Utility and Cloud Computing
(UCC2012), 2012, pp. 161–167.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay Scheduling : A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling,” Eur. Conf. Comput. Syst., pp. 1–14, 2010.

[19] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun.
ACM, vol. 31, no. 5, pp. 532–533, 1988.

[20] B. Xia and Z. Tan, “Tighter bounds of the First Fit algorithm
for the bin-packing problem,” Discret. Appl. Math., vol. 158,
no. 15, pp. 1668–1675, Aug. 2010.

