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ABSTRACT

Effective uncertainty evaluation is a critical step toward real-time and taiession-making for com-
plex systems in uncertain environments. A Multivariate Probabilistic Collocatiethttl (M-PCM) was
developed to effectively evaluate system uncertainty. The method smaadbses a limited number of
simulations to produce a low-order mapping, which precisely predicts the ougjaut of the original system
mapping up to certain degrees. While the M-PCM significantly reduces theatushBimulations, it does
not scale with the number of uncertain parameters, making it difficult to uskarfge-scale applications
that typically involve a large number of uncertain parameters. In this pagetievelop a method to break
the curse of dimensionality. The method integrates M-PCM and Orthogoaelidmal Factorial Designs
(OFFDs) to maximally reduce the number of simulations frafh @ 2/1°%2(M11 for a system mapping of
m parameters. The integrated M-PCM-OFFD predicts the correct mean ofitfieal system mapping,
and is the most robust to numerical errors among all possible designs sdirtie number of simulations.
The analysis also provides new insightful formal interpretations on the djiinod OFFDs.

1 INTRODUCTION

Modern large-scale complex systems typically involve a large number ofrtanrtgparameters, which
modulate the systems’ dynamics, and which pose significant challengesfdime system evaluation and
decision-support. For instance, the management of complex informatitensy/sequires methodologies
to achieve high throughput and low latency under demand uncertainties. 8inskaategic air traffic
flow management is concerned with designing management initiatives thaibargt to a wide range of
weather uncertainties at a long look-ahead time. As a step toward real-timeyenaeat, it is critical
to develop a systematic procedure to evaluate statistical system performaheepresence of uncertain
parameters. This problem can be formulated as the predictiopuipiut statistics subject to a set of
uncertaininput parameters. The problem has been typically addressed using the Matuesi@aulation
method §okolowski and Banks 20)0which simulates aery largeset of randomly selected simulation
points, and then calculates the output statistics using the simulated outputgiehsdate complex system
applications, each simulation consumes considerable computational time; astie @arlo simulation
method requires a vegrge number of simulations toonvergeto meaningful performance estimates, the
method does not meet the requirement for real-time management. The ungertailuation procedure
needs to be efficient in time and also scalable with the number of uncertainga@rmeters.
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The Multivariate Probabilistic Collocation Method (M-PCM) was developedftecavely evaluate
the output statistics of a system subject to multiple uncertain input parametsrs) may or may not
be correlated Zhou et al. 2011 Compared to the Monte Carlo method, the M-PCM permits using a
significantly reduced number of simulations to predict to a desired preciseidiiect mean of the
original system output. Specifically, the method suggests a procedgraarly select a few values for
each uncertain input parameter as simulation points. Simulations evaluatedeaptiiets can identify a
reduced-order mapping between input parameters and the output, frichnthve output statistics are readily
obtained. The selection procedure is based on statistical knowledgeceiftain input parameters, such
as joint probabilistic distribution functions (pdfs), historical data setssa@imple as low-order moments,
e.g., the mean and the variance. The resulting accurate predictions of otpahas well as several other
important statistics suggest that the reduced-order polynomial mappingxapgtes the original mapping
well over likely ranges of parameter values. The reduced-order mgyppéan facilitates further studies,
including parameter sensitivity analysis, optimal decision-support unu=artainties, and the application
to strategic air traffic managemerthou et al. 2012Zhou et al. 2013Ma et al. 2012

Although the M-PCM significantly reduces the number of simulations requirguigdict the correct
mean output, it is not scalable to large-scale system applications which tygioadlye a large number
of uncertain input parameters. In particular, the number of simulationsaseseexponentially with the
increase of the number of uncertain input parameters, and thus leademiglccomputational load issues
for real-time applications. In this paper, we study further reducing the rumbsimulations from the
M-PCM designs.

Conceptually, this further reduction is possible, as the M-PCM assumexiternee of all cross-
multiplication terms in system mappings. As many of these cross-terms do nahexialistic applications,
the number of mapping coefficients can be significantly reduced and tqugee a lower number of
simulations to estimate. In this paper, we investigate the selection of a subseP@Mvpoints to predict
the correct mean output. In addition, we note a practical numerical issubeoauccess of M-PCM.
In particular, many system simulations have constraints omdbelutionsof input parameters, and thus
require numerical truncation of selected points for simulation. Such trumcat&y unfortunately fail the
mean output prediction. As such, we also require the selected subsetdiusé to such numerical errors.

In this paper, we explore the use of an experimental design method, cadl€tttmhogonal Fractional
Factorial Design (OFFD)J Prinz 2013 Dey 1985 Box et al. 2005 Robert 2009 to further reduce the
number of simulations from the M-PCM. Main contributions of this paper amensarized in the following.

e An integrated design to enhance the scalability and applicability of the M-PCMirfioertainty
evaluation By integrating M-PCM with OFFDs, the number of simulations is significantly furthe
reduced. We focus on the case that each parameter in the original systeping has a degree
of up to 3. We show that for am-parameter system, the integration of M-PCM and OFFDs is
able to reduce the number of simulations froff' 20 the range of 2/10%(™D1 2m-1] 'where[x]
denotes the nearest integer above the numrb®e prove that the integrated M-PCM and OFFDs
(M-PCM-OFFD) predicts the correct mean of the original system mapjing,is the most robust
to numerical errors among all designs of the same number of simulations. THisethances
M-PCM for practical uncertainty evaluation for large-scale systems.

e A novel statistical measure and the optimality study of OFFR& explore the performance of
OFFDs in terms of the robustness to numerical errors for output statisgecscpon, which has
never been studied in the literature per knowledge of the authors. Weadapntitative robustness
metric in the matrix theoryahleh et al. 2004 and show that the subset of simulations selected
by OFFDs is optimal under this metric. This study provides new quantitativehitssigto the
attributes of OFFDs, and broadens their application domains.

A related study inIsukapalli 1999 suggested a heuristic method, called efficient collocation method
(ECM), to further reduce the number of simulations. However, this methed dot have a quantitative
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performance analysis. We here conduct a thorough analysis on the ligtiofighe integrated M-PCM
and OFFDs.

The remainder of this paper is organized as follows. In Se@jdiandamentals of the M-PCM and
OFFDs are introduced. In Secti@) the algorithm of the integrated M-PCM-OFFD is presented, and the
main results on its performance are presented from two aspects: mean ugiction and robustness
to numerical errors. Sectio# includes simulation studies on an illustrative example. Finally, a brief
conclusion and a discussion of future works are included in Seé&tion

2 Preliminaries

We first review fundamentals of the M-PCM and motivate our approachrtbeureduce the number of
simulations. We then review basics of the OFFDs and discuss the feasibilitygfating the two methods.

2.1 M-PCM

The M-PCM was developed to effectively evaluate uncertainty for systgthsnultiple uncertain input pa-
rameters. In this paper, we consider the case when these input pasanetiedependent; however we note
that the correlated M-PCM was developed4ihéu et al. 2011 As Theorem 1 inZhou et al. 2014gener-
ally shows, for a system mapping (called response surface in the expedesign literature) aihuncertain
input parameters with the degrkeof each parameteg up to 2y — 1, a total number of 2["; n; simula—

tions are needed to uniquely determine its mapgP@ Xz, ... Xm) = S &0 S oo o T o™ o Wi,k [T X
whereWy, k., € Rare the coefficients. The M-PCM suggests a procedure to chnpeseulatlon points for
each parameter, and produces a reduced magpixg, X2, ...,Xm) = ¥ 1:02 znm 1lew7km |-|i”;1xl!q

with the degree of each parameter upite- 1, whereQy, . i, € Rare the coefﬁuents The reduced-order
mapping predicts theorrect mean outpudf the original mapping.

2.1.1 Design Procedures

The three major steps of the M-PCM method are briefly summarized belowefPéasto Zhou et al. 2014
for the detalls.

Step 1: Choose simulation point§or each input parameter,i = 1,2,---,m, find its orthonormal
polynomial " (x;) of degreen; based on the statistics &, such as the pdf hlstorlcal data, or low-order
moments. The roots df(x;) are then; M-PCM simulation points for;, denoted asi(1); -+ Xi(ny)-

Step 2: Run simulations at selected simulation poiRts. each simulation point identified in Step 1,
run simulation and find the associated output.

Step 3: Produce the low-order mappin@alculate the coefficient@y,

g*(XLXZ, 7Xm) by

k, IN the low-order mapping

77777

where
X1(ng) s -+ Xen(ne
On 11 a( 1(ny) m(n ))
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andx,-iq (Xi(j)) represents thg-th power ofx; evaluated at the simulation poirg;,.

Despite the significant computational load reduction enabled by the M-P@\hdithod does not scale
with the number of uncertain input parametetsin particular,[]", n; runs are still needed to predict the
correct mean output. We note that if all coefficients in the low-order magging, X2, ..., Xm) are nonzero,
the full set of M-PCM points is required to uniquely determine the mappingjratgn the mean output.

In realistic applications, however, many cross-terms in the mapping do btoghave negligible effects

on the outputBox et al. 200%. Under such assumptions, only a subset of the M-PCM points is required
In this paper, we study using only a subset of [{f&; n; simulations to predict the mean output. Next, we
review the OFFDs, which we will use to achieve this further reduction.

2.2 OFFDs

Orthogonal fractional factorial designs (OFFDs) provide an amtrda select a subset (from the full
factorial design, that is, from the design consisting of all possible cortibisof levels of all factors)
of experimental combinations that best estimate the main effects of singlesfqotoparameters) and
low-order interaction effects of multiple factors on the output. Please tefgl. Prinz 2013Dey 1985
Box et al. 2005Robert 2009Mills et al. 2011 Filliben and Simiu 201pfor the details of OFFDs.

2.2.1 Design Procedures

Consider amm-factor experiment, with each factor evaluate®&tvels (or values). The full factorial design
would consist ofP™ runs. Such a design is statistically effective, but is also very expensspecially
when the number of parameters is large. A specific OFFD is describéﬁ‘ﬁﬂz This design examines
parameters, but does so in a statistically balanced/optimal fashion using"®iyuns. Thefractionation
constant, y, wherey is a positive integer, indicates that a fractiBfi " of runs is selected from the full
set of P™ runs Gunst and Mason 2009. Prinz 2013 vy is in the range of K y < m- [logp(m+ 1)]
(Box et al. 200%, with the upper bound determined by the minimum number of runs to estimatain
effects and the meary also determines the minimum number generators, which decide the effects
(main effects or interactions) that are confounded togetBengt and Mason 2009. Prinz 2018 The
length of the shortest generator is defined asréselution R, which is usually represented by Roman
numerical subscriptJ¢ Prinz 2013 The procedures to generate tP@fV OFFD are summarized in the
following. We note that in statistical experiment design, the selectiong arid R need to balance the
degree of tolerable confounding and OFFD sample sizes.

Step 1. Generate the"PY full factorial design for m- y factors. List all P™Y combinations fom—y
factors.

Step 2: Specify generators.The selection of generators is somewhat flexible. In principle, gien
and m, the highest resolutioR is usually adopted to achieve the minimal aliasing for effect estimation
(Box et al. 200%. We can also refer to standard desighsTfutna et al. 201Bto select generators.

Step 3: Determine the levels of all othgfactors for each experimental ruiThe generators selected
in Step 2 are used to generate the levels for all other factors.

If we view all PCM points selected from the M-PCM as a full factorial desitne OFFDs provide
systematic procedures to select a subset of simulation points that breaksr$lbeof dimensionality. In
the next section, we present the integrated algorithm, and show that iqa®a low-order mapping that
predicts the correct mean output of the original mapping, and is the masitrtdonumerical errors.

3 Integrated M-PCM and OFFDs

In this section, we investigate the integrated M-PCM-OFFD that togethek breaurse of dimensionality
for effective mean output prediction. For most of the analyses herasaame that each input parameter in
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the original system mappirgXy, X2, ..., Xm) iS up to the degree of 3, i.e.n2-1< 3, foralli € {1,2,...,m}.
This assumption is placed to facilitate the use of 2-level OFFDs, which haveemdésign procedures
(and in particular the formulation of generators). In addition, we assumeutitrtain input parameters
are independent. We note that the correlation among parameters, if koawre exploited to further
reduce the number of simulatiorise| et al. 2008. We leave these generalizations to the future work. We
first present the integrated algorithm, and then analyze its optimality using twasnety mean output
estimation, and 2) robustness to numerical errors. We note that the s@¥€Kd to choose is dependent
on the knowledge that cross-terms have up to a certain number of paremeter

3.1 Algorithm Description

Consider an original system mappingrafinput parameters, each with a degree up to 3. Mathematically,

3 3 3 m
9(X1, X2, ... Xm) = z z Z qulw,,ka]x!“, (2)

ki=0ko=0 kn=0

where the coefficient®y, . € R. Assume that the random parametersxy, ..., Xm follow independent
distributionsfx, (x1), fx,(X2), ... , andfx,(xm) respectively. In addition, assume that cross-terms involve at
most T parameters, whereis an integer in the range ofd v <m. In other wordsW¥,, ., = 0 if more
thant of ky, ..., km are non-zero.

The following integrated algorithm constructs a low-order mapping

1 1

1 m
0 (a0 X = S Y ...an Qk17---7km_|_lX!q7 3)
0 =0 i=

Ki=0ko=

where the coefficient®y, k, = 0 if more thant of kq, ..., kyn are non-zero.

77777

Algorithm:

Step 1: Choos2™ M-PCM simulation pointsFollow Step 1 of the M-PCM algorithm in Secti@l.1
to select 2' PCM points. Herey; = 2 for all i. Check ifm> 2 and 1< 1 <[] -1 (Lemma2). If yes,
move to Step 2; otherwise go to Step 4 as no simulations can be further reaucdeFDs.

Step 2: Calculatg/max to save2™ — 2™ ¥nax simulations Selectymax= m— [logx(3 " ¢( )] (Lemma
2) to save the maximum number of simulations. Hetey ™ (1) is the number of coefficients in Equation
3.

Step 3: Select simulation subsets using the ORF@low the three steps of th&"2¥max OFFD algorithm
in Section2.2.1to selectlyfg = 2™ Ymax simulation points from the full set of"2simulations obtained in
Step 1. These points constitute the M-PCM-OFFD simulation set.

Step 4: Run simulationgkun simulation at each selected simulation point.

Step 5: Produce the low-order mappinfithe number of coefficients$, equals the number of simulation
points selected using the OFFRs¢q, find the coefficients in Equatiod similar to Step 3 of the M-PCM
algorithm, but with a reduced-sizematrix, denoted as theput matrix L' € R which excludes those
entries with rows representing points not selected in the reduced M-PERBGimulation set, and those
columns with more tham of ky, ko, ...km being nonzero. If < lotsq, the input matrixL’ € Rofte<! js not
a square matrix. In this case, the coefficients can be instead found lagirgp'~* with (L'TL")~1L'T,
according to the least square estimatibtfofitgomery et al. 1997

We note that the ordering of entries in thematrix does not need to strictly follow that in Equation
1. They only need to match with the orderings of simulation points and the simulatedt®u
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3.2 Performance of Algorithm on the Estimation of Mean Output

In this section, we show that the reduced M-PCM-OFFD simulation set in 8&:ti@stimates the correct
mean output of the original system mapping with the degree of each parampete3. We first present three
lemmas. In Lemmd, we show that the reduced-order mapping does not introduce additi@ss-terms.

Lemma 1 Consider an original system mappiggxi, X, ...,Xm) that contains cross-terms of at mast
parameters (Equatid). The low-order mapping*(xi, Xz, ..., Xm) estimated using the M-PCM also contains
cross-terms of at mogt parameters.

Proof: According to the proofs for Theorems 1 and 2 ihfu et al. 201} the M-PCM recursively
reduces the degree of each input parameter to produce a low-ordpmaay the same mean output. As
this procedure does not introduce new parameters to each cross-termyrttbers of parameters in all
cross-terms in the low-order mapping do not increase.

In Lemma 2, we study the maximum number of simulations that can be further reduced using
OFFDs, given the maximum number of parametersin cross-terms 0§(xa, X2, ..., Xm), Or equivalently
9" (X1,X2, ..., Xm) according to Lemm4.
Lemma 2 Consider the low-order mappingf (x1, X2, ...,Xm) (Equation3) estimated using the M-PCM,
which contains cross-terms of at masparameters. An OFFD design can further reduce the number of
simulations if 1< 1 < {%1 —1, m> 2. The maximum fraction of simulations that can be reduced ¥ga2
using the 2 Ymax OFFD, whereymax=m— [10g2(3o(h))]-

Proof: The M-PCM produces™ simulation points. Let us first prove that an OFFD design can further
reduce the number of simulations iKlt < [%1 —1, m> 2. As OFFDs reduce the number of simulations

at least by half, the number of non-zero parameg%;g(ﬁn) in g* (X1, X, ..., Xm) Must be less than or equal
m=1

to 2™ to produce the same low-order mappigigxs, Xz, ...,Xm). Note that 2= =5, % (1) whenm s

odd andy 25" (}i) < 2™t < 52,( 1) whenmis even. The maximum of thus satisfies

m1l i m mod2=1 _m

maxt) = {2 -1 4

2—1 if m mod2=0 (2
As T is an integer greater than or equal to 1, it needs to be in the rangetaf4 [%1 —1, such that an
OFFD can further reduce simulation points without altering the low-order mgmp (X1, X2, ..., Xm)-

Now we prove that the maximum fraction of simulations that can be reducediievad using the
2 Ymax QFFD, whereymax=m— [loga(3F_o(/))]. As the number of simulations must be larger than or
equal to the number of parameters,

T T
brax=max(y | 27> 5 (1)} = m—[10g2(3 (1)1 (5)
1= 1=
O.

In the next lemma, we prove that the mattixs full column rank, i.erank(L’) =1. In this process, we
show the general QR decomposition expressiok’ off his lemma is central to the rest of the development
in this paper, as it establishes the direct relationship between the OFFD daisig (captured by) and
the input matrixL’ which is used for our study of mapping construction and mean output ficedic

Lemma 3 The input matrix.’ € Rotiax! | ¢4 > constructed by the integrated M-PCM and OFFD is full

column rank, and can be represented using the QR decompoditiitkinéon et al. 1965 asL’ = QU,
whereQ € Refex! s an orthogonal matrix (i.eQ"Q = 1) of the form:

1
Q=[o; a; g3 - CH:M[Vl Vo Vg o-ee v (6)
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Hereq; € Roffe1 is the orthogonal basis Witqiqu =0ifi# jand||q|/2 =1, wherei,j € {1,2,--- I }.
Assume thakz) > X1y WLOG. vi = /lot1qQ; contains entries of-1, and is obtained by replacing each
entry xq) in thei-th column ofL’ with —1 andx, with 1, wherek is the index of input parameters.
Alternatively, it is obtained by replacing ‘- and ‘+’ in the OFFD design tabye'-1’ and ‘+1’ respectively,
and adding an all ‘1’ vector to the left) € R*! is an upper triangular matrix, with thieth diagonal entry

U;; expressed as
/lottd if i=1
Ui = { florta o (7)
s Mkes O if 171

whereAxq = X2) —%1), S € {1,2,---,m} includes all the indices of input parameters in itth column
of L, and¢; is the size ofS.

Proof: The QR decomposition follows the recursive Gram-Schmidt procedlikkifison et al. 1965
It is omitted due to the limited space. It is clear from the expressiond afdR thatL’ is full column
rank, asQ is invertible Q! = Q') and the determinant & is []; Ui # 0. O

Lemmasl-3 and Theorems 1-2 irZhou et al. 2011 directly lead to the theorem on the performance
of the M-PCM-OFFD in terms of the correctness of predicting the mean oofghe original mapping.

Theorem 1 The low-order mapping*(x1, Xz, ..., Xm) (Equation3) using the integrated M-PCM and2¥max
OFFD predicts the correct mean output of the original mapping, i.e.,

E[9(x1,X2, ..., Xm)] = E[g" (X1, X2, ..., Xm)]. (8)

The number of simulations reduces froff'20 2™ Ymax, whereymax=m— [log2(3{_o(h))]. The maximum
reduction is 2™ — 2[10%(™1)] "and is achieved when= 1.

Proof: Theorems 1-2 inZhou et al. 2014 suggest that the reduced-order mapp@igxi, X2, ..., Xm)
produced by the M-PCM predicts the correct mean outpg{®f, X2, ..., Xm). Lemmasl, 2 and3 guarantee
that the reduced M-PCM-OFFD simulation set produces the same magigigxy, ..., Xm). The result is
then straightforwardt

3.3 Performance of the Algorithm on the Robustness to Numerical Errors

In this section, we study the robustness of the integrated design to nunmerioed. We first introduce
the robustness metric and formulate the problem in Se@i8rl We then show the optimality of the
integrated design using this metric in Secti®3.2

3.3.1 Metric and Problem Formulation

Recall that the integrated algorithm involves the calculatiob’ot or (L'TL’)~1L'T. This inversion is only
feasible wherl’ is full column rank. In Lemma, we have shown that an OFFD guarantees ltha full
column rank. In this section, we further explore the computational feasibyitgdiicing that parameter
resolutions of simulation softwar&liou et al. 201%and computational limitations of computing devices
(Kato 1995 Ipsen and Chandrasekaran 19®day unfortunatelyfail this calculation. In particular, when
L" is close to losing column rank, a small disturbance introduced by the afotiemes numerical errors
may easily push.’ to lose rank. In addition, even if sut under a disturbance does not directly lose rank,
the correctness df'~! becomes sensitive to small perturbatioBinmel 1987. In order to facilitate the
inversion and minimize the impact of numerical errdrsneeds to have krge margin to rank loss
Multiple metrics exist in the literature to measure the margin to invertibility, including tdelwused
condition numbe(the ratio between the largest eigenvalue to the smallest eigenvBioyd €t al. 199
Here we use a metric based on the perturbation thekiato(1995 Ipsen and Chandrasekaran 1991
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Specially, thefull-column-rank margin for the matrixL’ to rank lossD(L’), is measured by the norm of
the smallest perturbation matrix to makeose rank. Here we use the Frobenius norfh|(¢”), calculated

by summing the squares of all its elements, and then taking a square rootsafnth@nupp 1999:

D(L") = min{||e||r | rank(L' +e) < I} 9)

wheree € Rotiax! s a perturbation matrix.

Lemma2 suggests that all simulation subsets of siZ&®a can predict the correct mean output,
provided that the input matrix of the desidd, is full column rank. We show in the next section that when
T =1, thel’ matrix of the OFFD design, denoted B, thereafter, has the largest margin to rank loss
among all designs of the siz&" 2 The results can be extended to the general casel() through a
more complicated analysis and hence is ignored here for clarity.

3.3.2 Optimal Robustness of the Integrated M-PCM-OFFD

In this section, we study the robustness of the integrated M-PCM-OFFDn@mcal errors for system
mappings ofm uncertain input parameters amé= 1. Lemma4 calculates the full-column-rank margin of
the integrated M-PCM-OFFD. Theorers shows that the OFFD produces the largest margin among all
subsets of the same size.

Lemma 4 Consider an original system mappiggxy, Xz, ...xm) (Equation2) with 7 = 1. The integrated
M-PCM and 2" Ymax OFFD, with ymax= m— [log2(3q(},))], has the following full-column-rank margin:

VNoftd
2

D(Lota) = MIin{Axy, AX, - -, AXm} (10)

Pr oof:

According to Lemma3, Li;;, is full column rank and can be expressed as a multiplication of an
orthogonal matrixQ and an upper triangular matrbt. Now we find the minimuni|e||r to makel’ +e
lose rank, according to the definition of full-column-rank margin in EquaSiol/e usee, ; to represent
the perturbation tog ;) and Xj) = () + €y to represent the corrupted parameter value. Similar to
Li¢qr Liseq+€ can also perform a QR decomposition. In particuldy,y +e= QU, andQ is an

orthogonal matrix of full column rank, and is an upper triangular matrix with the determinant of
detU) = \/Ioft\d ﬂ}zz(—vi"ﬁ”d Mjes &%), whereAR; = X5 —Xj1). Clearly, the rank ol is solely
determined byJ. Thereforel;,+ e loses rank if and only if at least one A = 0,i € {1,2,---,m}.

In the case ofA%; = 0, we haveAX; = Ryp) — Xy1) = (Xy2) + ) — (Xa(1) + exm)) =0 and therefore
81 = B TX1(2) — X1 (1) = 8, +OX1. As @ consequence,

loftd lottd lofd lottd loftd loftd
lelr = \/< 5 S T o S T ey T o G ) T T (8 TS &) (1)

loftd lotfd loftd V0ottd
\/( 2 e>2<1(1)+ 2 e>2<1(2)>: 2 [(65(1(2)+AX1)2+8>2<1(2)]2 2 Axl

v

The equality holds whemy,, = 3Ax1, €, = —30%, ande,, = ey, =0 for all j # 1. Similarly, we
obtain||e||g > 7V|2°ffdAx2,--- ,Lg”dAxm. As suchD(L.¢q) = 7V|2°ffdmin{Ax1,Ax2,~-- ,AXm}, and the min-

imum Y——Ax; is achieved whehx; < Ax; for all j #1, & = ETAY & = —50%;, andexj(l) =€, =0

forall j#i. O
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Theorem 2 Consider an original system mappimgxs, Xz, ...xm) (Equation2) with 7 =1. From the
2™ M-PCM simulation points, the simulation subset selected by the M-PCM-OFFDRheaksrgest full-
column-rank margin among all subsets 8F % simulations points, whergax=m-— [loga(3 (1)1
Mathematically,

maxD(L’)) = D(Lyytq)- (12)

Proof:

We first construct the input matrix,, from any subset of 2 ¥max simulation points selected from the
2™ M-PCM simulation points, and then show that the input matrix of the OREJp;,, has the largest
full-column-rank margin.

Through simple row operations, thé matrix constructed using any"2¥mx M-PCM points can be
transformed to an upper triangular matrix, where the first diagonal enfryasd the(k+ 1)-th diagonal
entry is a multiple ofAx, i.€., A1) (k1% WhereA € Zandk € {1,2,---,m}. AsAx, # 0, anyAyk =0
will lead to D(L') = 0.

Now let us find the minimunf|e||r to makeL’ + e lose rank. The case thhtis not full rank is trivial,
ase is the null matrix and (L") = 0. WhenL’ is full rank, the same procedures to calculBig ;) in
the proof of Lemmat leads to

D(L’) — mln{\/ C1€>2( + (loffd— + -+ Cme>2(m(1 + (loffd— cm)e§m<2)]} (13)
c G
~ min{ (loffd—C1) Gllorra=C1) \y . (loffd— mA Yo}
loftd loftd

whereg; is the number o;(y) in the (i+ 1)-th column ofL’. The minimum at,/WAxi is achieved,

— (loffd—Gi)Ax X NI Ci(loffd—Ci) po,.
wheney, = iy %o = T and for all j #1i,j € {1,2,---,m}, we have g A <

MAXJ-, andey, = ey, =0.

loffd

: Ci(loffd—Ci) . C |offd
Slnce\/ \/ Tffd )2+

lottd
tion 13 can then be further S|mpI|f|ed to

lorie < Vot e have, /5o 8y < Vilday, Equa-

Wi
D(L) < %min{Axl,sz, A¥m} = D(L, g (14)
The equality is achieved by an OFFD.

The robustness optimality of the integrated algorithm is brought by the batarterthogonality of
OFFDs. The orthogonality (i.e., the symbolic multiplication of each pair of columnbldndesign table
sums up to 0) guarantees the fuII rank@fas shown in in Equatiof) and thus the invertability dff ;.
Moreover, the balance property (i.e., each level is evaluated the samesnomtimes for each factor)
guarantees the maximal perturbation to spoil the invertability/¢f, (as shown in Equatiofi4).

4 lllustrative Examples

In this section, we first use a 3-parameter example to illustrate the prosexthd@roperties of the integrated
design, and then briefly discuss a large 20-parameter example to shofedtsvehess.

In the first example consider an original system mapping of the fxn, X2, X3) = X5 + X3 + Xq +
x2 + x2 + Xo + x3 + x3 +x3+ 1, wherex; follows an exponential distribution ofx, (x1) = 2e~ 24 X,
follows a uniform distribution offy,(xz) = 15,5 < Xy < 20, andxz also follows a uniform distribu-

tion of fx,(x3s) = 5,5 < x3 <10. The original output mean that we aim to predicEig)(x1,X2,X3)] =
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Figure 1: a) 3,1 OFFD design table. b)j2' OFFD with each point represented at the vertex of a 3-D
cuboid. c) Comparison of the number of simulations needed to predict thectoutput mean.

JIT 9(x1,%2,X3) fx, (X1) fx, (X2) fxs (X3)dXx dXedxg = 3381 1. To precisely identify all coefficients g(x1, X2, X3),
at least 4 = 64 simulations are required.

Now let us choose only 4 simulations to approximate the system mapping anidt giresl out-
put mean, using the integrated M-PCM-OFFD. According to the proceddescribed in Section 3.1,
we first choose 8 M-PCM points based upon the pdf of each parametee 8Tsimulation points
are p1 = (Xy(1), X2(1),X3(1))s P2 = (X1(2): X2(1),X3(1))s P3 = (Xu(1),X2(2),X3(1)), Pa = (X12),X2(2): X3(1))s Ps =
(X1(2), X2(1), X3(2))» P6 = (X1(2): X2(1), X3(2))s P7 = (X1(2): X2(2), X3(2) ), ANAPg = (X1(2), X2(2): X3(2) ), Wherexy(y) =
0.2929,X1(2) = 1.7071,X2(1) = 8.1699,X2(2) = 168301,X3(1) = 6.0566, and)(g(z) = 8.9434. We then use
Zﬁl‘l OFFD (as the design table and 3-D cube show in Fidare) to select 4 M-PCM points, which are
{p2, P3, Ps, P} or {p1, P4, Ps, P7}. Here we choose to run simulations{ak, ps, ps, ps} and obtain the es-
timated low-order mapping* (Xq, X, x3) = —44422+ 6.5x; + 5135x%, + 186.8%3. For illustration purpose,

1 Xl(l) X2(1) X3(2) 1 -1 -1 1 2 * * *
1 x X X 1 1 -1 -1| (0 14142 * *

/ _ 1(2) 2(1) 3(1) | _ _1

ortd = 11w v ew| 2 2|1 -1 1 -1 |0 0 86602 Note
1 X1(2) X2(2) X3(2) 1 1 1 1 0 0 0 28868

that Q can be directly obtained from the OFFD design table.

The output mean @f (X1, X2, X3) ISE[g" (X1, X2, X3)] = [[] " (X1, %2, X3) i (X1) Fx, (X2) x5 (Xa) dXq XX =
33811, precisely the same as the original output mean. For comparison, wesalshal Monte Carlo
simulation to find the mean output. The number of simulations and associated ntpah using these
three methods are compared and shown in Fidare

To check the robustness of the integrated design to numerical errocslouate the full-column-rank
margin of the input matri’ € R*4, and compare it with those of other designs. According to Lemma
we find D(L;4) = Min{Axy, Axo, Axz} = 1.4142, wherelx; = 1.4142,Ax, = 8.6602 andAxz = 2.8868.

For all simulation subsets of the same size, the maRyit’) takes one of the following three values
{0,0.86601.4142. Therefore, the OFFD design is the most robust to numerical errors.

Next, we briefly summarize a large-scale example in the limited space. Assunmee 20gparameter
process involves 10 subprocesses, each with 2 uncertain input gararmétwo PCM points are chosen
for each parameter,?2 simulations are needed to calculate the mean of the process’s output. Due to the
nature of the process, each cross-term in the mapping between inpaigiars and the output has at most
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2 parameters. Witlt = 2, a 2°-12 OFFD can be used to further reduce the number of simulations from
2?0 t0 256, saving a large amount of computations.

5 Concluding Remarks and Future Work

We developed an effective uncertainty evaluation method for large-soahplex systems with a large
number of uncertain input parameters. The integrated M-PCM and ORgliEeantly reduces the number
of simulations, while maintaining the statistical prediction performance of the M:P&pecially, for an
original system mapping ah parameters with each parameter up to the degree of 3, the reduced-order
mapping produced using the integrated method precisely predicts the meai afutpe original system
mapping, and reduces the number of simulations fréft@ 2/1°%(m+1)] We also showed that the integrated
design is the most robust to numerical errors, making it of practical ussrfmulations with constraints on
parameter resolutions. The development in this paper also provided neprété&tions of the optimality
of OFFDs, and gave rise to broad new usage of OFFDs for system ngapgiimation and uncertainty
evaluation. In the future work, we will generalize the degree of uncentgint parameters by exploring
multi-level OFFDs and also exploit parameter dependency to further egtiecnumber of simulations.
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