
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.163.53.155

This content was downloaded on 27/11/2015 at 20:16

Please note that terms and conditions apply.

Graph-based analysis of nonreciprocity in coupled-mode systems

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 023024

(http://iopscience.iop.org/1367-2630/17/2/023024)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/2
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 023024 doi:10.1088/1367-2630/17/2/023024

PAPER

Graph-based analysis of nonreciprocity in coupled-mode systems

LeonardoRanzani and JoséAumentado1

National Institute of Standards andTechnology, Boulder, CO80305,USA
1 Author towhomany correspondence should be addressed.

E-mail: leonardo.ranzani@colorado.edu and jose.aumentado@nist.gov

Keywords:microwave devices, Josephson devices, optical devices, nonreciprocity

Abstract
In this workwe derive the general conditions for obtaining nonreciprocity inmulti-mode para-
metrically-coupled systems. The results can be applied to a broad variety of optical,microwave, and
hybrid systems including recent electro- and opto-mechanical devices. In deriving these results, we
use a graph-basedmethodology to derive the scatteringmatrix. This approach naturally expresses the
terms in the scattering coefficients as separate graphs corresponding to distinct coupling paths
betweenmodes such that it is evident that nonreciprocity arises as a consequence ofmulti-path inter-
ference and dissipation in key ancillarymodes. These concepts facilitate the construction of newdevi-
ces inwhich several other characteristicsmight also be simultaneously optimized. As an example, we
synthesize a novel three-mode unilateral amplifier design by use of graphs. Finally, we analyze the
isolation generated in a commonparametricmulti-mode system, the dc-SQUID.

1. Introduction

Reciprocity is the symmetry of a physical systemwith respect to the exchange of a source and detector. For
example, in systemswhich demonstrate nonreciprocal behavior the transmission loss and/or phase delay
depends on the direction of propagation [1]. In general, reciprocal symmetry can be violated inmulti-mode
devices and themost well-known examples are ferrite-based circulators and isolators [2, 3]. Such devices are
useful in several practical contexts: circulators for instance are commonly employed in both optical [4] and
cryogenicmicrowave systems [5–7] to reduce reflections and,more importantly, to protect from amplifier
backaction on the device-under-test. Likewise, in superconducting quantum information, circulators are often
used to direct the amplified reflected signal from lumped-element superconducting parametric amplifiers.

Since themost common schemes for producing nonreciprocity involve the use of highmagnetic fields, they
are often incompatible with the goal of integrating severalmeasurement circuits into smaller and smaller
physical volumeswhile also limiting themagnetic flux near sensitive superconducting circuits [7]. In the
superconducting quantum information andmicrowave engineering fields, this hasmotivated a push to
understand hownonreciprocity can be generated using alternativemethods [7–11] and this general pursuit has
been paralleled by similar efforts in optics [12–17]. Although these different ideas are embodied in different
physical implementations, they all share a commonmathematical description based in coupled-mode theory
[18]. In this paper, we develop a scheme for determining the scatteringmatrix of an arbitrary coupled-mode
system in terms of directed graphs. In doing so, we show that nonreciprocity is a consequence of asymmetric
interference between different connecting paths in a graph, aswell as judiciously-placed dissipation in ancillary
modes.We emphasize thatwhile a direct solution of the coupled-mode equations can always be found bymeans
of standardmathematical techniques, the reverse problemof synthesizing amulti-mode systemwith desired
properties (gain, impedancematch, directionality) can bemuchmore difficult.With the approachwe describe
in this work, the synthesis of amulti-mode device is translated into the process of building a directed
graphwhose edges are subject to specific conditions. Since this approach is agnostic to physical implementation,
itmay benefit similar efforts based on optical, mechanical, and hybrid systems. Asmany of these systems are
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parametrically coupled systems, we frame this work in the context of frequency conversion and amplification
processes.

This paper is organized as follows—in section 2we introduce normalization andmatrix conventions for
extending the coupled-mode equations ofmotion to severalmodes. This facilitates the definition of reciprocity
in parametrically coupled systemswith three ormoremodes. In section 3we visualize thematrix representation
of the equations ofmotion using directed graphs and showhow the scatteringmatrix can be computed by use of
subgraphswhich connect the input/outputmodes.We then use this picture to discuss themechanism for
nonreciprocity in general parametrically-coupled systems. In sections 4 and 5we showhowdirected graphs can
be used as both a synthesis and analysis tool. As examples, we synthesize a novel three-mode parametric
amplifier inwhich gain, directionality, and impedancematch are present (section 4). Finally, we analyze the
isolation properties of a complicated system, the dc-SQUID, by casting it as a ten-mode scattering problem
(section 5) based on earlier work byKamal et al [19].We conclude the paperwith a discussion of how this
graphical approachmight be effectively applied in future work.

2. Reciprocity in coupled-mode systems

Resonant and parametrically coupledmodes are typically described by the Langevin equations ofmotion [20].
Since in this workwe are primarily focused on the topology of the coupling in a given system,we utilize a
normalizedmatrix formof these equations and build a graph representation ofmultimode coupling dynamics.
This approach has an additional advantage in that it allows one to deal with systemswith severalmodes in
different physical oscillator incarnations as onemay encounter in hybrid electro- and opto-mechanical systems.
While the transition from the time-domain equations ofmotion to theirmatrix representation is given in
appendix A, in this sectionwe present only thematrix variables that are necessary for building the graphs.

We begin by considering a set ofNr coupled resonators, described by a set ofNm internalmode amplitudes.
In general, we allow the number ofmodes to exceed the number of resonators ⩾N Nm r such that severalmodes
may reside within a single resonator. This system can be a set of parametrically or resonantly coupled oscillators,
butwe are not going to assume a particular physical implementation for now, in order to derive results that are as
general as possible.Wewill callω j and γj the natural oscillation frequency and total dissipation rate for the

resonator inwhichmode j resides. The complex coupling rate betweenmodes j and kwill be denoted by gjk. In
order to describe bothmode frequency conversion and amplification, we divide themodes into two subsets of p
internalmode amplitudesb p1 ... and = −q N pm internalmode amplitudes +bp N1 ...

†
m
in the frequency basis, with

each set ofmodes corresponding to the driven response at frequenciesω p
s

1 ... and ω− +p N
s

1: m
.We assume that

=g gjk kj
* in the case of frequency conversion betweenmodes j and k (for ⩽ ⩽j k p1 , or + ⩽ ⩽p j k N1 , m) and

= −g gjk kj
* in the case of parametric amplification (for ⩽ ⩽j p1 and + ⩽ ⩽p k N1 m, or ⩽ ⩽k p1 and

+ ⩽ ⩽p j N1 m). For example, the couplingmatrix for a two-mode frequency converter or resonantly coupled
oscillator system corresponds to the case = =p q2, 0, while a conventional parametric amplifier couples two
modes, one at a positive frequency (p=1) and the other at a negative frequency (q=1) [21].With this general
prescription for defining ourmode basis, we can perform an input/output analysis of any systemof coupled
resonators and calculate the corresponding scatteringmatrix connecting the vector of input fields bin to the
vector of outputfields bout (see appendix A). The scatteringmatrix can in general be expressed as

γ
= −− S KM Ki

1
, (1)

M

1

whereM is a ×N Nm m matrix given by
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β
γ

=
g

2
, (4)jk

jk

M

wherewe have defined an overall normalization prefactor

∏γ γ=
ℓ

ℓ
=

, (5)M

N

1

m

Nm

and environmental couplingmatrix

γ

γ
= ⋱K

0

0

. (6)

N

1
ext

ext
m
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⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
In general γ γ⩾j j

ext, with the equal sign if the internal dissipation rate ofmode j is zero. The diagonal

elements ofM are complex normalized detunings between the driven response frequencies and the natural
resonator frequencies and include themode dissipation rates, while the off-diagonal elements are normalized
coupling coefficients. In principal, the normalizations above are unnecessary, but they allow one to cast the
Langevin equations ofmotion (see appendix A) in a simplematrix form (asM, the ‘Langevinmatrix’),
emphasizing the underlying structure of the connections betweenmodes.We showbelow that this structure, as
revealed in the graph representation ofM, allows one to draw immediate conclusions about the (non)reciprocity
inmultimode coupled systems.

2.1. A formal definition of reciprocity
In order to proceed, wemust formally define reciprocity within the context of severalmodes, possibly oscillating
at different frequencies (as found in parametrically coupled systems). The scatteringmatrix (equation (1))
describes a fully reciprocal system (transmission between any twomodes is reciprocal) if it obeys, in a suitable
mode basis, the general constraint [22, 23]

= ϕ ϕS U SU . (7)T †

Here thematrix ϕU corresponds to a set of phaseshifts in themode basis

= ⋱ϕ

ϕ

ϕ
U

e 0

0 e

, (8)

i

i Nm

1⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

wherewe can assumewithout loss of generality that ϕ∑ =ℓ ℓ= 0N
1 . Thematrix ϕU therefore corresponds to an

arbitrary redefinition of themode phases. This is similar to the concept of a commonmode phaseshift, but
generalized to severalmodes.

A system that violates condition (7) is nonreciprocal and is characterized by an asymmetric phase and/or
amplitude transmission coefficient between at least one pair ofmodes.We note that equation (7) differs from
the definition commonly found in textbooks [3], =S ST . In fact, equation (7) is valid formore general
multimode parametric systems inwhich themode frequencies can differ. As such, it is a gauge-invariant
definition of nonreciprocity2 [22, 23]. Since the environmental couplingmatrixK in equation (6) is diagonal, it
follows from equation (1) that reciprocity is guaranteed if and only if the Langevinmatrix,M, obeys the same
similarity transformation as in equation (7)

= ϕ ϕM U MU , (9)T †

for some set of phaseshifts ϕℓ{ }. Above, we noted that all resonant and parametric systems considered here are

constrained to couplings which are related by pairwise (anti)-conjugation, i.e., β β= ±jk kj
* . Placing this

constraint in equation (9)we obtain

ϕ ϕ β π− = − ∠ + n2 , (10)j k jk jk

where β∠ jk is the phase of the coupling coefficient β jk betweenmodes j and k and njk is an integer. The systemof

equation (10) has atmost a set of −N N( 1) 2m m independent relations (if all off-diagonal elements ofM are

2
Equation (7) could, in fact, be generalized for an arbitrarymode basis by including amore general class of unitary transformations (see

[22]).However themode basis forwhich ϕU is in the form (8) allows one to express themain results of this workmore easily and to
experimentally test (non-)reciprocity by comparing the scattering parameters Sjk and Skj between ports k and j directly up to a phaseshift of
themodes.

3

New J. Phys. 17 (2015) 023024 LRanzani and J Aumentado



nonzero) in −N 1m unknownphases ϕℓ{ }. The system is therefore overdetermined and the reciprocity
condition (equation (7)) is, for parametrically coupled systems, satisfied only for specific choices of coupling
phases.

3.Graph representation of the Langevinmatrix

The conditions for equation (10) to have a unique solution, and therefore for the system to be reciprocal, can be
visualized by drawing a directed graph representing thematrixM (see figure 1). The graph hasNm vertices andwe
associate a weighted directed branch (‘edge’) between vertices j and k to every element β jk in thematrixM. The

diagonal elements Δj and Δ− k
* ofM are theweights of self-loops in the graph. In otherwords, all of the coupling

terms inM are shown as directed branches, and allmode detuning and dissipation is represented by self-loops in
the graph.

Within this representation, the conditions for a unique solution for the entire system can be obtained by
summing equation (10) along every closed loop L, yielding a simple result

∑ β π∠ =
β ∈

k , (11)
L

jk L

jk

where kL is an integer. Equation (11), reminiscent of Kirchoff’s first law in electrical circuits, is analogous to the
reciprocity condition in Jaynes–Cummings lattices described in [11, 24].We stress, however that equation (11)
is applicable to any linear coupled-mode systembearing arbitrarily complex connections and is not confined to
the nearest-neighbor, planar graph couplings shown here.Moreover, in the case of parametrically coupled
devices in particular, the vertices of our graphs representmodes thatmay physically correspond to energy that is
differentiated by both space and frequency. As such, the graphs are a very general representation of a coupled
mode system and can describe coupling of energy at several different frequencies aswell as physical ports.

In order for a system to be nonreciprocal, the condition (11)must be violated. This, however, only expresses a
minimal requirement for phase nonreciprocity.Wemust further define a condition forwhich a systemwill also
demonstrate amplitude nonreciprocity. Specifically, wemay askwhich conditions allow the amplitude isolation
ratio∣ ∣S Sjk kj to be different than 1. From (1) it follows that the scattering coefficient Sjk scales with the

corresponding element of the inverse Langevinmatrix, −Mjk
1. The problemof calculating the scattering

coefficients is therefore reduced to the problemof inverting the Langevinmatrix which, as we show below, can
also be conveniently cast in terms of directed graphs.

Figure 1. (a)Graph representation of a four-mode LangevinmatrixM in (2).M is the adjacencymatrix of this graph, i.e., every
elementMjk inM is theweight of an oriented edge fromvertex k to vertex j in the graph. (b) Calculation of the determinant ∣ ∣M and
(c) the cofactorCjk by use of permutation subdigraphs. The cofactorCjk is proportional to the scattering coefficient Skj (see text).

4
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The inverse Langevinmatrix can be expressed in terms of the transpose of its cofactormatrix [25]

=−M
C

M
. (12)

T
1

The scattering coefficient is then given by

γ γ

γ
δ= −S

C

M
i , (13)jk

j k

M

kj
jk

ext ext

whereδ jk is the Kronecker delta function. The elements of the cofactormatrixCkj are equal to the determinant of
thematrix obtained fromM after removing the kth row and the jth column (i.e., the kjminor),multiplied by
− +( 1) j k [25].

The determinant ofM and the cofactorCkj can be easily calculated from the graph infigure 1(a) by the
following procedure (see [26, 27]). Given a graph, we call a subgraphG a ‘permutation subdigraph’ if every
vertex inG has one and only one outgoing edge and one and only one incoming edge [27]. The total weightw(G)
of a subgraphG is the product of theweights of all of its edges times − +( 1)c Nm, where c is the number of cycles inG
(by cycle wemean a sequence of distinct connected vertices, where thefirst and last vertex coincide). The
determinant of thematrixM is the sumofweights of every possible permutation subdigraph of the
graph associated toM [26, 27], as shown infigure 1(b).

The cofactormatrixCkj is the coefficient of theMkj element of thematrixM in the Laplace expansion of the
determinant∣ ∣M . Therefore, in order to calculateCkj, we need to compute only the permutation subdigraphs in
the expansion of∣ ∣M that contain the kj edge, with the kj edge removed. In otherwords, for every path p from
vertex k to vertex j, we consider the collection of all the permutation subdigraphsGp

r of the graph ofM containing
p, with the kj edge removed as infigure 1(c). The cofactorCkj is then given by

∑= − ( )C w G , (14)kj

p r

r
p

,

where p varies over all the paths connecting vertex j to vertex k and r varies over all the subdigraphs containing
the path p. Theminus sign is due to the fact that, by removing the kj edge, we reduced the number of cycles in the
subdigraph by 1. An example of this procedure is outlined infigure 1(b). The graphs G{ }r

p in the expression for
the cofactor elements have a simple physical interpretation: they represent the possible scatteringmechanisms
that connectmodes j and k.

Since, from (13), the ratio between the scattering coefficientsS Sjk kj is equal to the ratio between the
corresponding cofactorsC Ckj jk, the problemof analyzing isolation in a givenmulti-mode system can be
reduced to evaluating the differences between the specific graphs that connect j to k and vice versa.

As amore concrete example, we apply this procedure to a simple three-mode system inwhich allmodes are
coupled via frequency conversion (β β=jk kj

*) and are therefore described by the followingmatrix (see figure 2),

Δ β β

β Δ β

β β Δ

=M , (15)

1 12 13

12
* 2 23

13
*

23
* 3

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
where Δj and β jk are normalized detunings and couplings as before. The isolation between ports 1 and 2 can be

calculated by use of the graphs representing the cofactors (see figures 2(b) and (c)) yielding the expression

Figure 2. (a)Graph representation of a three-mode system and calculation of the scattering coefficients S12 (b) and S21 (c). The
elementC12 of the cofactormatrix is calculated by summing theweights of the permutation subdigraphs containing a path from
vertex 1 to 2, with the edge fromvertex 2 to 1 removed.

5
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β Δ β β

β Δ β β

ω ω γ

ω ω γ
= = =

− +

− +
=

− − + +

− − + +

( )
( )

I
S

S

C

C

g g g
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S

S
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21
* 3 32 13

21 3 32
*

13
*

21
*

3 3 3 32 13

21 3 3 3 32
*

13
*

where, in the last line, we have removed all normalizations.
From (16)we observe that if the total dissipation ofmode ‘3’, γ = 03 , then =S S12 21

* and there is no isolation
betweenmodes 1 and 2. In this casemode 3 serves as an internal losslessmode and the systembehaves as a simple
reciprocal two-mode system.Here, dissipation plays a crucial role in violating reciprocity, as it breaks the
symmetry between scattering elements which are otherwise related by complex conjugation. Assuming finite
dissipation inmode 3, we find the condition formaximum isolation =I 012 ,

ω ω γ= − +
g g

g2
i 2. (17)s13 32

21
*

3 3 3

In other words, to achievemaximum isolation, the sumof the phases of the couplings along the loop
connecting the threemodes,ϕ ϕ ϕ+ +13 21 32, must be equal to the detuning angle, γ ω ω−−tan [ (2( ))]s1

3 3 3 . At
zero detuning inmode 3,ω ω=s

3 3, this loop phasemust beπ 2 for perfect isolation. Equivalently, one can
interpret this isolation condition, equation (17), as interference between the two possible coupling paths
connectingmodes 1 to 2 in the graph (figure 2). Althoughwe focus on the isolation here, condition (17) also
yields unit transmission in the forward direction,∣ ∣ =S 121 , for γ∣ ∣ =g 112 3 . In fact, one can continue to build a
three-mode circulator by finding similar constraints for the 2↔3 and 1↔3 coupling.

4. Three-mode directional amplifiers

Traditional single-stage lumped-element parametric amplifiers, such as the one shown infigure 3(a), operate in
reflection-mode such that a circulator is needed in order to achieve unidirectionality. In [28] a single-stage
amplifierwith two parametric pumps at the same frequencywas introduced, but in addition to forward gain it
also had unity reverse gain. The graphmethodology introduced here allows us to revisit the problemof gain and
isolation from another perspective. In particular, our discussion above identified the importance of introducing
amulti-edge loop to obtain nonreciprocity. Herewe analyze a closed-loop amplifier whichwe term the ‘delta’
amplifier, shown schematically infigure 3(b) both as a device concept and as its corresponding graph. This
amplifier can provide forward gain and zero reverse gain as discussed below.

As drawn, the delta amplifier requires three independent pumps to generate three pairs of coupling edges
β{ }jk . Two of these pairs create amplification (i.e., β β= −23 32

* , β β= −12 21
* ), while the third pair couples through

Figure 3. (a) A traditional Josephson parametric amplifier, unidirectionality is achievedwith an auxiliary circulator. (b) Three-mode
delta amplifier discussed in this work, which consists of one flux-biased dc-SQUID connected to three resonators at frequenciesω1,2,3

and its graph representation. The SQUID is equivalent to a nonlinear inductormodulated by themagneticflux through the SQUID
loop. One pump at frequencyω ω ω= +p1 2 1 is used to obtain parametric amplification betweenmode 1 at frequencyω1 andmode 2
at frequencyω2. The second pump at frequencyω ω ω= −p2 3 1 generates frequency conversion betweenmodes 1 and 3 at frequency
ω3. A third pump at frequencyω ω ω= +p p p3 1 2 closes the loop and generates parametric amplification betweenmodes 2 and 3. In
this configuration non-reciprocal trans-gain can be obtained betweenmodes 1 and 2. (c) and (d) subgraphs used to calculate the
forward and reverse gain betweenmodes 1 and 2.

6
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frequency conversion (β β=31 13
* ). One concept for how thismight be implemented is shown schematically in

figure 3(b) as three resonators that share a common current anti-node inwhich aflux-driven SQUID is operated
as a parametricallymodulated inductor. In principle, onemight drive two of these couplings using the same
pump frequency3 [29], but for clarity we discuss only the case inwhich each of the three couplings is driven
independently, which has the advantage of increased flexibility due to the increased number of degrees of
freedom. Regardless of particular implementation, we can recognize the presence of a closed loop connecting all
threemodes, as well as the integration of amplification as a coupling process. From this bare descriptionwe
recognize that with three independent pumpswe are constrained to optimizing only three of the nine possible
scattering elements. In laboratory use, we can choose to optimize for amplification in the ‘forward’ direction
(∣ ∣ >S 121 ), isolation in the ‘reverse’ direction ( ∼S 012 ), and low input reflection coefficient (inputmatch, i.e.,

∼S 011 ) to prevent unwanted reflections of signals propagating away froma device-under-test.
We begin bywriting down the expressions for the forward and reverse transmission from equation (13),

γ γ

γ γ γ
β Δ β β

=
+

S
M

i , (18)21
1
ext

2
ext

1 2 3

12
* 3 31 23

3

γ γ

γ γ γ
β Δ β β

=
− −

S
M

i , (19)12
1
ext

2
ext

1 2 3

12 3 23
*

31
*

3

where∣ ∣M is the determinant of the couplingmatrix represented in the graph shown infigure 3(b). Assuming
ideal isolation, =S 012 , wefind an expression similar to equation(17),

β β
β

Δ= − , (20)23
*

31
*

12
3

which provides an overall constraint on the coupling amplitudes and phases as a function of the complex
detuning ofmode 3. Under this primary constraint, we then set the input reflection coefficient to zero,

γ
γ γ γ

β Δ Δ
=

−
− =S

M
i 1 0, (21)11

1
ext

1 2 3

23
2

2
* 3

3

giving a constraint on the determinant

γ
γ γ γ

β Δ Δ= −( )M i . (22)1
ext

1 2 3
23

2
2
* 3

3

Taken together, these constraints yield an expression for the forward transmission gain

γ
γ

β Δ

β Δ Δ
= =

−

( )
G S

2 Im
. (23)21

2
ext

1
ext

12 3

23
2

2
* 3

If external coupling dominates, γ γ={ } { }k k
ext , in the limit of small detunings ω ω γ− ≪( )k

s
k k the gain

reduces to

γ
γ

γ

γ γ
≈

−
G

g

g

2
. (24)2

1

12 3

23

2
2 3

Note that this form gives the gain at afixed frequencywhere the inputmatch is perfect (equation (21)). By
substituting equations (18) and (20) in equation (21) at resonancewe can determine the three coupling rates. In
the limit of high gain, γ γ∣ ∣ ≈g jk j k , with the exact value depending on the gainG.

We have calculated the resulting S-parameters for the delta amplifier infigure 4 under various constraints on
the pumpdetunings for the case of uniformdissipation rates γ γ=k . In practice, onemight fix the pump
frequencies, locking the three detunings together, andmeasure the S-parameters shown infigure 4(d). For this
example calculation, we selected values for the pump amplitudes tofix the nominal power gain to∼20 dBwhile
obtaining significant isolation. The device bandwidth is determined according to equation (18) that fixes the
gain-bandwidth product for specific dissipation rates.We note here that the device bandwidth is comparable to
traditional two-mode superconducting lumped parametric amplifiers, while the center frequency could be
tuned by changing the frequencies of the pumps. Finally, wefind that the calculated output S22 shows reflection

3
We recently learned of a similar three-mode coupled systemdrivenwith a ‘biharmonic’ pump, outlined byKamal et al [29].

7
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gain at the output port, and is consistent with the limitations of having only three parameters (the independent
pumps) to optimize three of the four scattering parameters between ports 1 and 2.However, thismight not be a
limitation in practical usewhere one ismore concernedwith the backaction of the amplifier on a quantum
circuit on the input side (port 1).

4.1. Added noise of the three-mode amplifier
Wecomputed the equivalent input added noise n̄add of the delta amplifier to check that the device can approach
the standard quantum limit.We assumed that half a photon of noise is injected into every port and calculated the
total output noise spectral density from the scattering parameters. The contribution fromports 2 and 3, divided
by the device power gainG, constitutes the equivalent added input noise, as outlined in [30]. For a symmetric
device, in the limit of large gain and at zero detuning, the result is:

=
+

≈ ≈ +n
S S

G

S

G G
¯ (0)

(0) (0)

2

(0)

2

1

2
1

1
, (25)add

22
2

23
2

22
2 2⎛

⎝⎜
⎞
⎠⎟

wherewe can neglect∣ ∣S23 as a consequence of the isolation condition. The results of the numerical calculations
for nonzero detuning are shown infigure 4. The fact that the delta amplifier is quantum-limitedmay be

Figure 4. (a) Simulated input return loss, forward and reverse gain of the delta amplifier infigure 3 as a function of normalizedmodes
1 and 3 detunings forG=20 dB and same dissipation rate for the threemodes γ γ=k k

ext. The couplings were set according to
equations (20), (22) and (24). In (b) and (c) the scattering parameters are plotted as a function ofmodes 1 and 3 detunings
respectively. (d) is obtained if the pump frequencies are kept constant and only the input signal frequency is swept. (e) and (f)
Amplifier added noise appearing at port 2, referred to port 1. (f) is an equal-detuning line-cut (similar to (d)) showing added noise
(red curve) reaching the standard quantum limit (SQL, blue dashed line) for this gain.
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surprising atfirst, as onemight expect the thirdmode to contribute extra noise beyond the quantum limit.
However the thirdmode acts only as an effective dissipative coupling betweenmodes 1 and 2 [30].We note that
the parametric amplification scheme that is the subject of [30] constitutes a threemode device inwhich the
added noise was determined to be at the standard quantum limit. In fact, the delta amplifier is similar to that
device except for the addition of an amplification branchwhich serves to create a closed loop in its
graph description, introducing the necessary interference for directionality.

5.Directionality of dc-SQUID amplifiers

While the previous discussion focused on using a graphical approach to synthesize a novel amplifier, it can also
be used to identify aspects of other systemswhich enable both gain and directionality. In this sectionwe use
graphs to analyze a complicatedmulti-mode system, the dc-SQUID amplifier. dc-SQUIDs are a type of
superconducting amplifier with noise temperatures approaching the standard quantum limit [31–33]. Since dc-
SQUIDs also have inherently low power dissipation (in addition to high gain and directionality [34]), they have
been the subject of several applied superconductivity efforts to produce reliable amplifiers formicrowave
quantum informationmeasurements. In [19], Kamal et al showed that the directionality of the SQUID is a
consequence ofmultiple parametric amplification and frequency conversion processes due to frequencymixing
between the inputmicrowave signal and internally-generated parametric pumps atmultiples of the Josephson
frequency. This approach casts the dc-SQUID as amulti-mode coupling problem and, as such, is also amenable
to a graph description.Herewe describe the parametric coupling in the SQUID following the description in [19]
by use of graphs tomap the connections betweenmodes. In particular, wewill direct our attention to the
interference and dissipation thatmust be present to generate nonreciprocity in the presence of gain.

A dc-SQUID consists of a pair of Josephson junctions inside a superconducting loop as infigure 5. Each
junction is characterized by a phase differenceϕ1,2 across its terminals, but it ismore convenient to recast the

dynamics of the dc-SQUID in terms of the common and differential phase differenceϕ ϕ ϕ= ±C D, 1 2, where the

subscriptC (D) indicate common (differential)mode quantities respectively. The scattering parameters of the
dc-SQUID can then be obtained by a suitable rotation of themode basis as described in detail in [19].ϕC D, can be

expressed as the sumof fast oscillating terms atmultiples of the Josephson frequencyω π Φ= V2J dc 0, whereΦ0

is themagnetic flux quantum, and slow oscillating terms at the signal frequencyω. The fast oscillating terms act
as parametric pumps causingmode conversion betweenω and themixing product frequenciesω ω± k J . The
lowest-dimensionalmodel that can capture nonreciprocity involves two parametric pumps and a total of ten
modes atfive frequenciesω ω ω ω ω± ±2 , ,J J . Eachmode is doubly-degenerate, because for each frequency
there are a common and a differentialmode excitation. Some scattering subgraphs to describe the SQUID are
shown infigure 6, where, for example, βω ω ω−,

c.c.
J
indicates the coupling rate between the commonmodes at

frequencyω andω ω− J . The input and outputmodes are shown at the very bottom and top respectively.
Calculation of themode coupling rates as a function of the internally generated pump amplitudes is detailed in
appendix B.

The number of subgraphs to describe the SQUID is too large for analytical calculations. However if the
SQUIDbias current is high enough, we can look for an approximate expression for the SQUID isolation for
small values of the bias parameter ϵ = I Ic b, where Ic is the critical current of the junctions and Ib is the bias
current. The pump amplitudes and the coupling coefficients can then be calculated for small ϵ andwe can
simplify our calculations by considering only the subgraphs of leading order in ϵ. These subgraphs are shown in
figure 6. The order of the graph is given by the product of its edges and therefore depends on the length of the
path connecting the input to the outputmodes aswell as the order of the edgeweights (coupling rates). The
order of the coupling rates increases with the difference between themode drive frequencies (for example
β ϵ∼ω ω ω−k

k
,

c.c.
J

).Moreover a small ( ϵ∼ 3) direct coupling exists betweenmodes at the same frequency, as

explained in appendix B.

Figure 5. Schematic of a dc-SQUID amplifier. The SQUID can bemodeled as a parametric coupled-mode system. Themodes at
frequenciesω ω± n J are coupled through internally generated pump signals atmultiples of the Josephson frequencyωJ . At each
frequency there are two doubly degeneratemodes, corresponding to the common and differential excitation of the junction phases.
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The dissipation rates for the common and differentialmodes when the SQUID is terminated into ideal
infinite transmission lines, are given by

γ
ω
β

= =
RC

1
, (26)C

c

c

γ
ω

πβ
= =R

L

2 2
, (27)D

c

L

with β Φ= LI(2 )L c 0, β π Φ= I R C2c c
2

0,ω π Φ= I R2c c 0, L is the inductance of the SQUID loop, andR andC
are the junction shunt resistance and capacitance. Since the SQUID is a nonresonant system, themode
frequenciesωi in equation (3) are zero.We can approximately compute the SQUID isolation by use of the
lowest-order subgraphs shown infigure 6. Thefirst conclusionwe can draw, based on our previous discussion, is
that non-zero dissipation rates in (26) are essential to obtain nonreciprocity in the SQUID. A change in the
impedance terminations at the variousmode frequenciesω ω± k J will change the amount of nonreciprocity,
viz.,modes that are terminated in a short or an open circuit (corresponding to zero dissipation rates) will not
contribute to the SQUID isolation.Moreover, it is important that γ γ≠C D. In fact, by taking into account the
symmetries between themode couplings, theweight of the second order subgraphs infigure 6 is given by

Figure 6. Leading-order subgraphs describingmode coupling in the SQUID. For simplicity we showonly one typical subgraph for
each order in ϵ. The other subgraphs are obtained by simple permutation of the edges shown. The commonmodes are shown in red,
while the differential modes are shown in purple.
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ω β β γ γ β β∝ + −ϵ ω ω ω ω ω ω ω ω ω ω ω ω+ + + +w 4 Re 4( ) Im , (28)cd
C D

cd
,

c.c.
, ,

c.c.
,J J J J

2
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

apart for a common factor equal to the product of the internalmodes normalized detunings. If γ γ γ= =C D , the
second term in equation (28) is zero and the SQUIDbecomes reciprocal atfirst order. The same cancellation
happens in the third-order subgraphs infigure 6 and in the fourth-order subgraphs, with the exception the
subgraphs in the bottom-left corner offigure 6. In a practical device isolation can however be restored for
γ γ=C D if the resonant coupling rate βω ω

cd
, is increased. In a real device we expect such a rate to be higher, due to

the stray capacitive coupling between the input and output aswell as other parasitics [34]. Finally, infigure 7we
show the computed isolation and power gain of the SQUID as a function of the bias points for the exact
numerical solution and for the lowest-order approximations.Wefind that graphs up to fourth order in ϵ are
enough to accurately describe the isolation properties of the SQUID. The exact power gainwas also computed
numerically by extracting the impedancematrix from the scatteringmatrix of the SQUID and then calculating
the gain as discussed in [19]. In principle the power gainmay also be computed from the subgraphs, but the
number of necessary graphs is large, even at lowest order. In this system, graphs help identify the elements of a
complexmultimode parametric scattering problem that contribute to the isolation properties. Finally, we
observe that at high frequency the real part of the detuning ΔC D, increases and therefore we expect the dc-SQUID
isolation to decrease with frequency. This is consistent with the behavior discussed in [19, 34].

6. Conclusion

In this workwe introduced a graph theoretical representation that can be used as a combinatorial accounting
tool to analyze nonreciprocity in coupled-mode systems and used it to derive aminimal unilateral parametric
amplifier and analyze the conditions for nonreciprocity in SQUID amplifiers. An abstract graph associated to the
coupled-mode systemwas used to compute the input/output scattering coefficients betweenmodes and derive
general constraints that need to be satisfied in order for nonreciprocity to occur. In order for amulti-mode
system to be reciprocal the sumof the phases along any loop has to be 0 or π. If this condition is violated, phase
and/or amplitude nonreciprocity is present and this condition can be interpreted as interference between
different permutations of connecting paths.We alsofind that dissipation in the remaining disjoint vertices/
modes is crucial for amplitude nonreciprocity/isolation. Specifically, it breaks the symmetry between forward
and backwardmulti-mode scattering processes such that onemay obtain constructive loop interference in one
direction, and destructive interference in the reverse direction. As a result wewere able to design a novel three-
mode parametric amplifier, characterized by forward gain, inputmatch and reverse isolation that can be
integrated on a superconducting chip.

Although the scatteringmatrix of amulti-mode system can always be computed numerically usingmore
conventional approaches, graphs offer a newperspective that can be useful in the problemof synthesizing new
multi-mode systems and devices. For instance, this can be leveraged as a design tool, allowing one to reduce a set
of desired device characteristics to aminimal description that can be utilized to design new amplifier/converter
concepts such as the delta amplifier. As an approach, it is conceptually similar to the analysis of electric networks
bymeans of circuit representations of the network components, where graphicalmanipulation rules are used to
simplify the circuit analysis.We also showed, with the complex example of the dc-SQUID, that graphs aid in
identifying the critical elements that create isolation in the presence of forward gain. Finally, graphsmay provide

Figure 7. (a) Comparison between the exact calculation of the SQUID isolation ( ∣ ∣S S10 log ( )CD DC10
2 ) based on the linearized

coupled-mode equations and the approximate solutions including subgraphs up to the second, third, and fourth order forϕ π= 4e ,
β = 1l , β = 1c andω ω= 0.01 J . (b) Exact power gain.
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a useful approach to engineering nonreciprocity in recentmulti-mode parametrically coupled hybrid systems
such as the electrical-mechanical-optical (three-mode) transduction bridge [35] and electro-mechanical
amplifiers [30]. In general, problems like these are particularly well-suited to a graph-based approach since
many of the interesting properties one is interested in (gain, isolation, gain-bandwidth product, etc) actually
arise from the structure of the coupling network (the topology of the graph) and not the physical particulars of a
given implementation.
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AppendixA.Derivation of the scatteringmatrix

In this sectionwe formally derive equation (1).We begin by considering a set ofNr coupled resonators described
by:

= ( )A

t
f A A

d

d
, , (A.1)in

whereA is a vector ofNr internal complex normalmode amplitudes andAin describes the set of input signal
drives for each of thesemodes.We assume thatA andAin can be expressed as a sumof periodic functions. In this
case harmonic balance can be used to rewrite equation (A.1) as a systemofNm coupled-mode equations:

= − +B

t
HB KB

d

d
i , (A.2)in

where = … …+B b b b b[ , , , , , ]p p N
in

1
in in

1
in† in†

m
is a vector of = +N p qm input stimuli and

= … …+B b b b b[ , , , , , ]p p N1 1
† †

m
is a vector ofNm internalmodes that can be expressed as:

= ω−b b̃ e , (A.3)j j
ti j

s

= ⩽ ⩽ω−b b for j p˜ e 1 , (A.4)j j
tin in i j

s

and the corresponding conjugate expressions for + ⩽ ⩽p j N1 m. Here, we allow for the number ofmodes to
exceed the number of resonators, ⩾N Nm r and label the drive/response frequencies with an s, while themode
itself is labeledwith a subscript j so that ‘ω j

s’ denotes the drive/response frequency ofmode jwhich can be based

within any of theNr resonators depending on how the coupling is directedwithin the function f a a( , )in . The

diagonalmatrix γ γ= …K diag( , , )N1
ext ext

m
describes coupling to the environment through the external

dissipation rates γ{ }j
ext . The diagonal elements hjj of the ×N Nm m couplingmatrixH can then be expressed in

thismode basis as [36]:

ω γ

ω γ
=

− ⩽ ⩽

− − + ⩽ ⩽
h

j p

p j N

i 2, for 1

i 2, 1 ,
(A.5)jj

j j

j j m

⎪

⎪

⎧
⎨
⎩

and the off-diagonal elements hjk are given by

=

+ ⩽ ⩽
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In equations (A.5) and (A.6)ω j and γj are the natural frequency and total dissipation rate for the resonator in

whichmode j resides, while the ‘*’ indicates complex conjugation, and gjk is the complex coupling coefficient
betweenmodes j and k.We further assume that =g gjk kj

* if ⩽ ⩽j k p1 , or + ⩽ ⩽p j k N1 , m and = −g gjk kj
* for

⩽ ⩽j p1 and + ⩽ ⩽p k N1 m, or for ⩽ ⩽k p1 and + ⩽ ⩽p j N1 m. For example, the couplingmatrix for a

12

New J. Phys. 17 (2015) 023024 LRanzani and J Aumentado



two-mode frequency converter or resonantly coupled oscillator system corresponds to the case = =p q2, 0,
while a conventional parametric amplifier couples twomodes, one at a positive frequency (p=1) and the other
at a negative frequency (q=1) [21].With this general prescription for defining ourmode basis, we can perform
an input/output analysis of the system (equationA.2) and calculate the vector of output (scattered) fields bout by
means of the relation [36]:

γ− =ξb b be . (A.7)j j j
in i out extj

In general, the phase factorξj depends on the nature of the coupling tomode j. For simplicity, we set

= −ξe 1i j , as onewould obtainwith a small series capacitance orweakly reflectingmirror. Other choices of
couplingwill have the effect ofmodifying the identitymatrix on the rhs of equation (1). By substituting
equations (A.3) and (A.4) into equation (A.2) and by use of the input/output boundary conditions
(equation (A.7)), we can obtain the expression for the scatteringmatrix in equation (1).

Appendix B. Coupled-modes analysis of the dc-SQUID

Adc-SQUID consists of a pair of Josephson junctions inside a superconducting loop as infigure 5. Each junction
is characterized by a phase differenceϕ1,2 across its terminals. Defining the common and differential phase
differenceϕ ϕ ϕ= ±C D, 1 2, the dynamical equations describing the system are [19]:

ϕ ω
ω ϕ ϕ= − ( ) ( )

t

d

d 2
sin cos , (B.1)c B

c c d

ϕ
πϕ ϕ ω ϕ ϕ= − −( ) ( ) ( )

t

R

L

d

d

2
cos sin , (B.2)d

e d c c d

whereω π Φ= I R2B b 0, andω π Φ= I R2c c 0. Ic is the junction critical current and Ib is the bias current of the
SQUID, Φ0 is themagnetic flux quantum, L is the loop geometric inductance andR is the equivalent shunt
resistance across the SQUID. The system (B.1) can be linearized around the following bias point:

ϕ ω δ= +t , (B.3)c J c

ϕ ϕ δ= + , (B.4)d e d

whereδ δ,c d are small perturbations. In [19] it was shown that by applying a harmonic balance procedure, the
phasesδc d, can be expressed as

∑δ = + = +ω ω ω

=−

+( )p s p se e , (B.5)c d c d c d

k M

M

k
c d k t

k
c d k t

, , ,
, i , iJ J

where the components pk
c d, are internally generated pumps at frequency ω π Φ=k kV2J dc 0, whereVdc is the

static dc voltage across the SQUID. The pumps cause parametric frequencymixing between the various signal
modes sk

c d, . In [19] the harmonic balance equations were solved for the caseM= 3 to showhownonreciprocity
arises from the interference between the different parametric conversion paths. As shown in themain text, we
can employ the graph representation of a coupled-mode system towrite explicitly the interference conditions
needed tomaximize the amount of amplitude nonreciprocity between twomodes. In theM=3 casewe can
describe the SQUID as a ten-mode system. The tenmodes have frequenciesω ω ω ω ω± ±2 , ,J J and are
doubly degenerate (for each frequency there are a common and a differential excitation). In order to calculate
the scattering parameters, we need tofind the coupling coefficients between themodes as a function of the
internal pump amplitudes. This can be obtained by linearizing equations (B.1) for small signalmode-amplitudes
and equating terms at the same frequency in order to obtain a set of coupledmode equation (A.2). After taking
symmetries into account, the system can be described by the following five coupling coefficients

ϵ ϕ ϕ ϕ= − −ω ω ω− ( )g p pi cos i cos sin , (B.6)e
c

e
d

e,
c.c.

2 2J

ϵ ϕ ϕ ϕ= − −ω ω ω− ( )g p pi i sin sin i cos , (B.7)cd
e

c
e

d
, 2 2J

ϵ ϕ ϕ= −ω ω ω− ( )g p pi i cos sin , (B.8)c
e

d
e, 2

c.c.
1 1J

ϵ ϕ ϕ= −ω ω ω− ( )g p pi i cos sin , (B.9)cd d
e

c
e, 2 1 1J
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ϵ ϕ ϕ= −ω ω ( )( ) ( )g p pi Im cos Re sin , (B.10)cd d
e

c
e, 1 1

where for example ω ω ω−g ,
c.c.

J
corresponds to the coupling between the commonmodes at frequencyω and

ω ω− .J
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