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Gas-phase chemical inhibitor effectiveness varies dramatically.

* From Linteris, G.T., Rumminger, M.D., Babushok, V.I. “Catalytic Inhibition of Laminar Flames by Metal Compounds,” Progress in 
Energy and Combustion Science, 34:288 – 329, 2008.
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Premixed flame
Diffusion flame 

(Couterflow)

Diffusion flame (Coflow)

Fe(CO)5 :   540                        100                          0
DMMP    :   141                          17                          2
CF3Br     :       8                            5                          7

Effectiveness relative to CO2 :

Why?

Gas-phase chemical inhibitor effectiveness varies dramatically.



Pool Fire (from: http://www.me.uwaterloo.ca/~eweckman/fire/firehome.htm

How do we study flame inhibitors?

Too difficult to extract 
fundamental information:
=>  can’t include detailed       
chemistry
=>  grid resolution is coarse
=>  turbulence too complex



Premixed Flames Diffusion Flames

flame

oxidizer

Counter-flow

fuel
Chimney

Air + 
Inhibitor

Fuel

Co-flow

1-D
Steady
Easy to model, well developed theory
Typically used by researchers
Provide fundamental reaction rate data 

2-D
Unsteady
Harder to model, active area of 
research
Widely used in codes and stds.
Has many features like real fires

Two basic types of flames :

Fuel 
+ air
+ inhibitor

Nozzle Burner



1. Experiments: 
- all three fundamental flames, 
- over wide range of controlling parameters.  

2. Detailed numerical simulation
- with detailed kinetic mechanisms. 

3. At NIST, we 
- build gas-phase kinetic models,
- use other people’s flame codes 

Goals: 
1. Understand interaction of inhibitors with flame structure.

2. Eventually model:
- standard tests,  
- full-scale fires.  

Approach



Iron is super-effective relative to CF3Br in some flames, 
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Use detailed modeling of the cup-burner flame  to find out why.

but in others, it’s relatively ineffective.  Why?

* From Linteris, G.T., Rumminger, M.D., Babushok, V.I. “Catalytic Inhibition of Laminar Flames by Metal Compounds,” Progress in 
Energy and Combustion Science, 34:288 – 329, 2008.



Direct Numerical Simulations for Cup-Burner Flames

• Time-dependent 2D governing equations
 mass, momentum, species, energy conservation, & state equations, 

including a body-force term
 optically thin-media radiative heat losses from CO2, H2O, CH4,and CO

• Variable thermochemical/transport properties 
 hi from polynomial curve-fits 
 , , and D from molecular dynamics and mixture rules

• Detailed reaction mechanism (GRI-Mech v1.2)
 31 species/346 reactions for CH4-O2 combustion + inert (He, Ar)
 82 species/1520 reactions for CH4-O2 – F system



Calculated temperature contours for one oscillation cycle



Adding slightly more agent causes flame to liftoff

a.) b.)

CH4-air flame,  
Xi < Xi|critical Xi > Xi|critical



Can predict critical volume fraction of agent for blow-off well. 
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Review:  Radical reactions dominate combustion 

- radical attack dominates fuel decomposition

- radical chain branching creates the radicals

- CO consumption:

H    H H

H – C – C – C – H 

H    H H

H    H H

H – C – C – C – H

H    H
• H +     H – H

•

H + O2 OH + O
•                 •    •

CO + OH        CO2 + H
•                    •

- because of chain branching, often have super-equilibrium of radicals



How does iron inhibit flames? 

FeO    + H2O = Fe(OH)2
Fe(OH)2 + H = FeOH
FeOH     + H = FeO
------------------------------------------------
Net:    H  +  H =  H2

Fe(OH)2

FeO

FeOH

+H

+H

+H2O

Fe(CO)5

Fe

FeO2

+O

+O2+M

Catalytic cycle

=> Gas-phase iron species recombine radicals. 
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Predicted and measured inhibition don’t agree.  
=> This was a surprise.  It was expected to work.

From: Linteris, G.T., Katta, V.R., and Takahashi, F., “Experimental and Numerical Evaluation of Metallic Compounds for Suppressing 
Cup-Burner Flames,” Combustion and Flame, 138:78-96, 2004.



Iron species vapor pressures are strong f(T).
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From: Linteris, G.T., Katta, V.R., and Takahashi, F., “Experimental and Numerical Evaluation of Metallic Compounds for Suppressing 
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Use model to determine flame structure.  Check for super-
saturation of Fe compounds:

=> Particles: 
sink for active Fe
species

=> [FeO]/[FeO]sat = 103 to 105 => 
condensation is likely

=> Temperature at reaction kernel is low. 
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Check for particles with laser scattering system
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From: Linteris, G.T., Katta, V.R., and Takahashi, F., “Experimental and Numerical Evaluation of Metallic Compounds for Suppressing 
Cup-Burner Flames,” Combustion and Flame, 138:78-96, 2004.

Scattering from particles is correlated with low effectiveness



Iron as a fire suppressant? 

1. Much less effective than expected. 

2. Gas-phase catalytic reactions => lower the 
radical concentrations. But…

3. Particles are a sink for the active species.

4. Lower temperature in the stabilization region 
leads to more particle formation. 

What about DMMP?

Conclusions (for iron in cup-burner flames):



Cup Burner Extinction with DMMP and CO2 , (methane-air, 70°C)
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DMMP about 4 x better than Br at low conc.

But loses effectiveness at 
higher conc.

%

Scattering measurements here



With DMMP – 11 mm above burner
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Uncertainties discussed in: G.T. Linteris, N. Bouvet, V.I. Babushok, F. Takahashi, V.R. Katta,Experimental and numerical simulations 
of the gas-phase effectiveness of phosphorus compounds, in Fire and Materials 2015, 14th international conference, Interscience
Communications, London, UK, 2 - 4 February, 2015.
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1. DMMP added to cup-burner flames does lose its effectiveness dramatically.

2. Particles do form – but loss of effectiveness
could also be due to the HC component.

3. Further experiments and modeling should determine why.  

Current Status



=> Influence of cup-burner flame properties on  
inhibitor effectiveness.

Part II



Flame is stabilized at the base, where:

- Temperature is lower.

- Mixing is good, so reactants tend to be premixed (due to flame lifting at 
edge, and entrainment).

- Flame oscillates, making the flame easier to extinguish.  



Flame Flicker: makes flame easier to extinguish

2.8 cm

CH484.1% Air + 15.9% CO2



UCH4= 0.92 cm/s, Uox= 10.7 cm/s, XCO2 = 0.14
t = 0 s

Flame flicker: 
1. Makes flame easier to 

extinguish.
2. Without flicker, need 30% 

more agent for 
extinguishment.

3. Some agents enhance 
flicker, some retard it.

4. Changes with agent 
loading.

Flame Structure (Showing Flicker) t=0.00 s



Flame Structure (Showing Flicker) t=0.08 s

UCH4= 0.92 cm/s, Uox= 10.7 cm/s, XCO2 = 0.14
t = 0.08 s

Flame flicker: 
1. Makes flame easier to 

extinguish.
2. Without flicker, need 30% 

more agent for 
extinguishment.

3. Some agents enhance 
flicker, some retard it.

4. Changes with agent 
loading.



Flame lift-off

CH4 - Air + 1.66 % Br2Ch4 – Air + 2.46% CF3Br

 Base is:
- lower temperature (1400 K) as compared to higher up in the flame (1850 K).
- Lifted, more premixed, with 

+ more radical super equilibrium,
+ better inhibition at base, so blows off there first 
+ different chemsitry, due to different reactants:  e.g., better regeneration of HBr
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 Because HBr regeneration steps are higher in base



Other Flame Properties Influencing Inhibitor Effectiveness

(Random thoughts)
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This image cannot currently be displayed.

Flame Temperature Affects Inhibition Efficiency

=> Cooler flames are inhibited more (for either Fe or DMMP).
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Stoichiometry Affects Inhibitor Efficiency

=>lean flame inhibited much more for Br2 than for H3PO4.
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=>can be explained by thermodynamics



1. Characteristics of flame system affect efficiency of chemical inhibition (via 
flicker, heat losses/stand-off, stabilization mechanisms, mixing conditions, etc.), 
BUT

2. Inhibitors can influence the physical properties of the flame itself (where and 
how the flame stabilizes, temperature, flow field, etc.) and hence the inhibition.

3. Most of the physical properties of the flames over polymers which can affect 
chemical inhibition have not been studied (even more so if a condensed-phase 
FR is also working).

Bottom Line:



1. Have excellent tools for understanding gas-phase action of fire retardants.

2. Use detailed modeling to understand:
a. Why DMMP did not work well in cup burner.
b. Why antimony / bromine systems does work well

- Sb?  Br?  Why no condensation?

3. Study flames with polymers with FRs.

4. Use numerical code to model burning cylinder (simulating UL-94)

4. Systems of interest? 

Future Work:



Numerical simulations to understand UL-94

Porous cylinder flames 
 Resemble solid burning (e.g., UL 94)
 Perform time-dependent axisymmetric 

computation with full chemistry/transport 
for:

 DMMP added to fuel
 Br2 added to fuel

CH4 in air        15% CO2

PMMA in air 18% CO2



Questions?


