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Mathematical modeling plays an enormously important role in understanding the behavior of cells,
tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of
phenomena, exploration of potential theories of damage or success, development of equipment, and
refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been
a considerable amount of work in bio-heat and mass-transport, and these models and theories have been
readily and repeatedly applied to cryobiology with much success. However, there are significant gaps
between experimental and theoretical results that suggest missing links in models. One source for these
potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport
theory: it couples multi-component, moving boundary, multiphase solutions that interact through a
semipermeable elastic membrane with multicomponent solutions in a second time-varying domain,
during a two-hundred Kelvin temperature change with multi-molar concentration gradients and
multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point
to future directions in modeling and experimental research, we present a three part series to build from
first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of
these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be
made about the importance of key assumptions, perhaps pointing to areas of future research or model
development, but importantly, lending weight to standard simplification arguments that are often made
in heat and mass transport. In this first part, we review concentration variable relationships, their impact
on choices for Gibbs energy models, and their impact on chemical potentials.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The mechanical and physical chemical nature of cells cooling to
and warming from cryogenic temperatures has continually pro-
vided a well-understood theoretical mechanism for defining mod-
els that capture, at least, the key elements of the process. Mazur’s
paper deriving a model of the mass transport of water from a cell
during cooling [85] and Mazur, Leibo and Chu’s explanation of
the correlation of cryopreservation success with different cooling
rates [87] suggested that coupling standard physical chemistry
with classical membrane transport physiology could result in a
very useful predictive model [85].

Assuming a constant cooling rate, T 0ðtÞ ¼ B, Mazur used a linear
ideal transport model in conjunction with an ideal model of vapor
pressure of water in an ideal dilute solution to derive the differen-
tial equation

TebðT0�TÞ d2V
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where V is volume, T temperature, A surface area, L latent heat of
fusion, k permeability constant, b a temperature dependence
parameter for permeability, n2 is moles of nonpermeating solutes,
v0

1 is a molar volume of solutes, and subscript 0 indicates a
value at a reference temperature. This model makes several key
tential
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assumptions admitted in the original manuscript, including the
assumption of ideal dilute solutions when in fact solutions cooled
to even �5 �C in the presence of ice are fairly non-ideal and non-
dilute environments.

This assumption aside, it was (and still is) particularly useful as
a theoretical tool, serving as a foundation for the classical ‘‘two fac-
tor hypothesis’’ [87] that corroborated experimental results show-
ing that there was a quasi-equilibrium optimal cooling rate, and
even how to determine it [86]. Briefly, the two factor hypothesis
states that cell death during non-ultrarapid cooling (i.e. cooling
rates too low to avoid significant extracellular crystallization) are
attributed to two competing factors. The first is that cells cooled
too quickly do not have time to sufficiently dehydrate, causing
intracellular ice to form, killing the cell. The second is that cells
cooled too slowly cause injury due to extended exposures to high
solute concentrations. Therefore the ‘‘optimal’’ cooling protocol is
the fastest that avoids intracellular ice formation. With over 100
citations between 2008 and 2013, the two-factor hypothesis is still
the predominant theory of cooling induced cryoinjury,1 though
recent work by Seki et al. on ultrarapid (e.g. 106 K/s) warming of
samples has opened this hypothesis to some questions [110]. In par-
ticular, Seki et al. demonstrate survival to be independent of the
cooling rate. However, the mechanisms to avoid damage from the
two different approaches (quasi-equilibrium cooling or ultrarapid
warming) are different and not mutually exclusive. For likely
different reasons, it has been demonstrated that sperm are relatively
incapable of intracellular ice formation [91,92], suggesting that the
‘‘two-factor’’ hypothesis is not applicable at least in the case of sperm.

The success of this model, and more thermodynamically accu-
rate models to follow (e.g. [71,72,112] and others), defined cryobi-
ology as a science where much could be gained even by relatively
simple models making broadly unrealistic assumptions. In fact as
cryobiology has progressed as a discipline, various researchers
have made use of models to determine optimal cooling and/or
warming profiles [16,51,81,102,103,117,122], optimal pre- and
post- cooling processing protocols [11,12,37,39,69,93,108], intra-
cellular ice formation kinetics [3,45,46,119,125], ice damage in
and optimal cryopreservation of tissues [1,2,23,31,99,111,114,
126,127], among others.

While Mazur’s work laid the foundation for modeling success in
cryobiology, another foundation of cryosuccess is a chemical one:
cryopreservation nearly universally requires the presence of
cryoprotective chemicals, known as cryoprotective agents or CPAs.
The most common CPAs are from a class of solutes that include
many small-molecular polyols such as glycerol, ethylene glycol
(ethane-1,2-diol), and propylene glycol (propane-1,2-diol), in addi-
tion to dimethyl sulfoxide (Me2SO). These CPAs share the common
feature that they are membrane permeable, and their positive
effect on cryosurvival is attributed to several factors, including that
they mostly benignly reduce the relative salt concentration at any
given osmolality and they increase extra- and intra-cellular viscos-
ity encouraging glass formation devoid of potentially deleterious
intracellular ice.

While solute–solvent membrane transport models have been
used for a very long time in physiologic or near-physiologic condi-
tions [42,64,65,83], and while it was understood that CPAs were
critical for cell survival by the early 1950s, CPAs are left unac-
counted in Eq. (1) and many other follow up manuscripts
[45,46,119]. There are reasonable arguments for this omission:
for example, low temperature reductions in already relatively
low CPA membrane permeability suggest that there is little CPA
transport in many cryoprotocols. However, this is not always the
1 Ref. [87] has more than 100 citations between 2008 and 2013 alone. (Web Of
Knowledge Search: Doi: http://dx.doi.org/10.1016/0014-4827(72)90303-5. Refined
by: Publication Years = (2008 OR 2009 OR 2010 OR 2011 OR 2012 OR 2013).
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case, and sub-zero CPA transport has been modeled and utilized
in several novel applications [81,88], though most of the underly-
ing assumptions, including an ideal-dilute transmembrane flux
model with ideal-dilute osmotic pressure models, have usually
been retained.

With the exception of a few individual manuscripts, the omis-
sion of CPA transport is likely due to the difficulty of determining
the parameters for non-ideal solution models, and the Occam’s
razor question of the utility of complicated modeling paradigms
versus the speed and simplicity of simple paradigms, especially
given the success of Mazur’s simple water-transport-only model.
In the governing theory of membrane transport in cells and tissues
it is nearly universal that fluxes are considered proportional to
forces (c.f. [32] for a review and discussion). This is carried out
in both ‘‘standard’’ cellular mass transport models used in
cryobiology, namely the so called ‘‘two parameter’’ [42,52] and
‘‘Kedem–Katchalsky’’ models [54,55] (c.f. [56] for a review and
comparison). In short, both suppose that membrane fluxes are lin-
early dependent on transmembrane chemical potential gradients.
Many non-ideal models of transport exist, however. For example,
Elliott et al. propose using a model derived from Statistical Rate
Theory that essentially accounts for the likelihood that molecules
cross the membrane barrier [28], and the utilization of this trans-
port model with nonideal nondilute models of chemical potential
should yield a fully nonideal nondilute modeling paradigm. In fact,
Benson showed mathematically that the local stability of the equi-
libria, and thus the behavior near equilibrium, of this new system
is equivalent to the stability for the linear Fickian paradigm [10].

Kleinhans’s review of transport models [56] argues against
using the Kedem and Ketchalsky paradigm in favor of the so called
two parameter or 2P model:

dVw

dt
¼ �PwAðpe � piÞ;

dNs

dt
¼ PsAðMe

s �Mi
sÞ;

ð2Þ

where Vw and Ns are the intracellular water volume and moles of
solutes, respectively, Pw and Ps are water and solute permeabilities,
A is the (usually assumed constant) cell surface area, p is the solu-
tion osmolality, and Ms is the molarity of the solute quantified by
Ns. The typical (dilute) assumption addressed by Kleinhans is that
p is approximated by the sum of the ‘‘nonpermeating’’ and ‘‘perme-
ating solute’’ molalities (ms þmn) and, intracellularly, these are
essentially equivalent to mi

s þmi
n ¼ ðNs þ NnÞ=Vw, where the per-

meating solute quantified by Ns is the CPA, and Nn is a lumped term
describing the moles of all nonpermeating solutes (e.g. dNn=dt � 0).
This model, then, assumes that ions are membrane impermeable, or
at least relatively so.

While rigorous treatment of nonideality in transmembrane
water transport in electrolyte solutions for cryobiological applica-
tion was introduced four decades ago by Levin et al. [75], only
fairly recently has this nonideality problem been addressed in
the context of nonelectrolyte solutions and transport by some of
the work of both Kleinhans and Mazur [57] and, on a more
substantial thermodynamic basis, Elliott and collaborators
[30,32,96–98]. They have shown that accurate models for compli-
cated multicomponent non-dilute and non-ideal solutions can be
obtained by using information from standard binary phase dia-
grams. In short, both approaches assume that osmolality
p :¼ pðms;mnÞ is a polynomial in intra- or extracellular molality,
whose coefficients may be determined by the binary phase dia-
grams of the components of the mixture. Essentially, the chemical
potential may be expanded as a Taylor series in constituent mole
fraction or molalities where the Taylor coefficients have a particu-
lar form. In fact, Ross-Rodriguez et al. [104] utilized the new poly-
nomial models to explore the impacts of the idealilty assumption
ng in cryobiology—I: Concentration, Gibbs energy, and chemical potential
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by comparing an ideal and a nonideal cytoplasmic solution model
at equilibrium in subzero temperatures to demonstrate large dif-
ferences in equilibrium volume predictions between ideal solution
models and non-idea solution models in several cell types.

There are non-dilute models for osmolality, and non-dilute
improvements to the solute transport term in system (2) may also
be derived (see e.g. [10,32]). However, these models are still based
on Fickian (linear) constitutive transport models, and may be inac-
curate in the cases of large osmotic or chemical potential gradients.
The implications of these more thermodynamically appropriate
models on cellular state during cryoprotocols have been explored
recently by Weng et al. [121]. They compare ideal-dilute approxi-
mations to non-ideal, non-dilute models of chemical potential
and demonstrate differences in predicted responses to standard
linear cooling (and ostensibly warming) protocols. While they rec-
ognize the potential for error using a dilute transport theory
(essentially Fick’s law), they do not explore this phenomena.
Importantly, it has not been conclusively shown that the utilization
of these more accurate and appropriate models of osmolality offers
improved prediction of cryosurvival.

Curiously in the cryobiological literature, little modeling atten-
tion is paid to ionic transport, which is nearly universally assumed
to be non-existent or to have minimal if any impact on the cellular
state as pertains to ice formation. In fact, while Prickett et al.
address osmolality in the presence of electrolytes [98], they pres-
ent a model assuming impermeability of ionic solutes as an alter-
native definition of the Boyle Van’t Hoff equation, or to be more
precise, they present it as a model that behaves as the Boyle Van’t
Hoff equation does in non-ideal, non-dilute solutions [96]. Levin
et al. have a series of papers addressing solute polarization in the
presence of electrolytes, but assume no transmembrane ionic flux
[77]. There is a vast body of literature on ionic transport in a wide
variety of settings (though to our knowledge not in the cryopreser-
vation setting—see Mori et al. [89,90] for an elegant treatment of
ionic and nonionic solute and solvent transport) but transport of
ions in molar quantities that affect intracellular ice formation
(e.g. that change the intracellular state enough to affect optimal
cooling and warming rates) seem to occur on the timescale of
hours at room temperature (see, e.g. [63]). Because the vast major-
ity of superzero cryoprotocols occur on the order of minutes, and
even slow cooling protocols occur on timescales of about an hour,
ionic transport seems to have been largely neglected in the cryobi-
ology literature. In fact, Levin et al. present an argument suggesting
that the ratio of membrane permeabilities of salt and of water,
Psalt=Pw, is on the order of 10�8 [77]. These comments aside, this
may be an area worth exploring for potential sources of cryopres-
ervation related damage.

An assumption addressed only occasionally in cryobiological
modeling is that of perfect extracellular stirring. Mazur’s model
above and modern nonideal models such as the one proposed and
examined by Weng et al. [121], for example, assume that there is
no solute polarization or other chemical potential gradient gener-
ated by the sequestration of water into the incoming ice front. Mod-
els addressing concentration gradients generated by ice fronts have
been proposed (see for example [15]), but these are the exception
rather than the rule. At the cell–media interface, there is a large body
of literature on so-called unstirred layers in the physiology literature
(see, e.g. [7] for review), but with the exception of some of the work
by Levin et al. [70,72–74,76,77,101] these are not usually accounted
for in the cryobiological literature. This may be due to the fact these
unstirred layers do not dramatically affect the nature of the trans-
port model, as the usual treatment is to consider the layers to be
fixed in width, and thus modeled as membranes in series which cor-
respond to model (2) with Ps and Pw replaced with phenomenolog-
ical permeability coefficients accounting for the layers (see, e.g.
Levin et al. [74] or Barry and Diamond [7]). This may also be due to
Please cite this article in press as: D.M. Anderson et al., Foundations of modeli
relationships, Cryobiology (2014), http://dx.doi.org/10.1016/j.cryobiol.2014.09
the relative kinetics of transmembrane vs intracellular vs extracellu-
lar transport, a fact addressed by Levin et al. [77], who found that at
cooling rates below 100 K/min, there was negligible concentration
polarization. This rate is higher than the great majority of quasi-
equilibrium cooling rates used in modern cryobiological practice.
Note, additionally, that Levin et al. treat solutions with only water
and nonpermeating salts.

To apply transport models towards protocol development, how-
ever, the problem with this assumption even in the absence of
other extracellular gradients generated, say, by ice fronts or chang-
ing CPA concentrations, is that cells are often cryopreserved in
quite different environments than those where their permeability
measurements are made. To wit, the Coulter counter has become
a workhorse for permeability estimation (see [4,9,34,35,38,79,80,
82,124,129]) and these measurements are made after cells are rap-
idly injected into a well stirred environment where cells are drawn
through a small aperture. This is in contrast with the cryopreserva-
tion of cells in straws or tubes where, unless a flow is generated
from temperature gradients, concentration gradients and/or ice
fronts, the fluid is motionless. There is a considerable literature
on the effects of stirring velocity on solute polarization at semiper-
meable membranes (see [1,2,7,62,111]). Therefore, care should
probably be taken in applying results from one experimental
regime to another.

Related to this is that the movement and geometries of the free
boundaries of the solution/ice and intra/extracellular interfaces are
affected by local concentrations. If solutes are excluded from ice,
then at the local solution/ice interface, the melting point is
depressed further than in the bulk media. This has the effect of
slowing the ice-front, making the impingement of ice towards
the cell dependent on extracellular solute transport, governed by
the advection–diffusion equation examined both experimentally
and theoretically in general systems [21,33,53,59–61,94], and the-
oretically [43] and experimentally [40] in the case of the cellular
response to an advancing ice front. These quantities will also be
affected by local temperature effects such as the heat of fusion at
the solution/ice interface, generating extracellular thermal gradi-
ents that are rarely accounted for, at least in Mazur’s model and
other models consisting of only ordinary differential equations
(such as [107,121]). These quantities will be affected by the local
pressure generated by impinging ice fronts in solidifying domains,
effects that have been occasionally explored (see, e.g. [18,27]), but
not coupled with other potential sources of deviation from the
‘‘standard’’ models. Moreover, these pressure effects may point to
sources of ‘‘solution damage’’ , one of the ‘‘factors’’ of the ‘‘two
factor hypothesis’’ discussed above, as high pressure has been
shown to be damaging to cells [130], but can be a tool to suppress
ice formation and increase survival [95,105,106,115].

Up to now we have found many areas of potential discrepancies
in the ‘‘standard’’ model used in cryobiological modeling, and even
have pointed out several effects that are rarely accounted for in the
cryobiological literature. However, the use of models in cryobiol-
ogy is to assist researchers and clinicians in developing optimal
cryoprotocols. Therefore, the need for complicated models involv-
ing complicated nonideal/nondilute transport equations, electro-
chemical differential equations accounting for ionic fluxes, solute
polarization due to impinging ice fronts, free cellular boundaries
and the like is reflected in their ability to predict ‘‘more optimal’’
protocols than the standard models. For example, though we have
discussed complicated nonideal nondilute models of mass trans-
port, their use in ideal-dilute situations is not needed, and, as
pointed out in Kleinhans’s review [56], add extra parameters that
cloud the key issues, and may in fact add unneeded uncertainty
to conclusions. Therefore, the overarching question is: what effects
are important to cryobiologists? When is it sufficient to use
ideal-dilute models? When is it okay to deal with the considerably
ng in cryobiology—I: Concentration, Gibbs energy, and chemical potential
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easier equations generated by the assumption of perfect extracel-
lular stirring? When must we account for solute polarization?
How should we even approach putting these models together?

Therefore, in this three part series, we propose to build a model
from fairly fundamental thermodynamic principles to account for a
very wide range of phenomena. Namely, we present the double
free-boundary problem of a cell in a multisolute solution (of which
the ‘‘standard’’ cryo-system of nonpermeating solute–permeating
solute–water such as salt–CPA–water is a member) undergoing
cooling where an ice front is approaching. We account for the tem-
perature, concentration, and pressure of the system as a function of
space and time, deriving the system in generality, and then pro-
gressively restricting to simpler and simpler cases, discussing the
effects of these simplifications. We end with a numerical explora-
tion of a one-dimensional (radially symmetric) system with many
simplifications that still point to differential cell responses com-
pared to standard perfect stirred models.

This approach is similar to the one used by Batycky et al. who
present a cryobiological model beginning with concentrations and
a transport theorem, and derive an equation for transport in a spher-
ical cell with moving boundary that includes spatial variation within
the cell [8]. Their treatment does not address extracellular spatial
gradients in concentration, is isothermal with no external solidifica-
tion, and does not account for solidification induced pressure gradi-
ents. Their treatment also does not start with the fundamental
quantities of Gibbs energy or deal with non-ideal solutions.

This is not to say that the thermodynamic energy quantity is
ignored in the cryobiological literature. A few (non-exhaustive)
examples include the recent work of Elliott et al. [30,32], who begin
with choices of a Gibbs energy. Angell and Senapati [6] and Rasmus-
sen and MacKenzie [100] use free energy to describe the phase
behavior of solutions under various assumptions. Turov et al. use
free energy to quantify bound intracellular water [120]. Devireddy
provides a detailed and careful thermodynamic treatment of mem-
branes in the context of transport through bilayers and pores [22].

A more comprehensive review of all physical, mechanical, and
chemical effects can be found in Zhmakin [128]. In Zhmakin’s
excellent and thorough review, he briefly addresses key consider-
ations that we do not, including vitrification, viscosity, nucleation,
variation in osmotically active intracellular regions, thermal
expansion, and elastic effects of the cell and membrane. While vit-
rification plays a critical role in cryopreservation, the purpose of
our model is to understand the non-vitrification regime of cryo-
preservation akin to Mazur’s model above and its well established
inverted ‘‘U’’ survival curves. These other effects may be incorpo-
rated into our models with some effort, and present a challenge
primarily in the determination of key descriptive parameters of
temperature, concentration, pressure, and other dependence. Here
we assume the absence of intracellular ice, though our models
should facilitate the improved prediction of the probability of
intracellular ice formation based on the models of Toner [119] or
Karlsson et al. [47]. Another critical concept addressed by Zhmakin
is the entrapment versus rejection of cells by an incoming ice front
that supports theories of directional solidification. While this is of
considerable interest (see, e.g. Hubel et al. [41], Elliott and Peppin
[29], or Sobolev [113]), cells will be either ‘‘vitrified’’ or entrapped
by ice at some stage of the process, therefore, we choose to start
with the cells entrapped.

To start we must define several key quantities:

1. The governing equation for the energy of our system. In this
case we define the Gibbs energy and explore the effects of the
choice of variables on this energy.

2. Transport equations for both energy (defining heat as a function
of time and space) and mass (defining concentration as a func-
tion of time and space).
Please cite this article in press as: D.M. Anderson et al., Foundations of modeli
relationships, Cryobiology (2014), http://dx.doi.org/10.1016/j.cryobiol.2014.09
3. Boundary conditions for these governing equations at the solu-
tion/ice and cellular membrane interfaces.

We note that each of these quantities has a different natural form
depending on geometry and quantities modeled. To wit, it is very
natural to work experimentally in terms of molality, yet chemically
and thermodynamically, mole-fraction or molarity are more ame-
nable to analysis, as we will see below. Finally—notation is always
a challenge when combining multiple modeling paradigms (e.g.
heat, pressure, concentrations, phase transformation, etc.) and we
have done our best to follow the best practices recommended by
the International Union of Pure and Applied Chemistry (IUPAC) [17].

2. Preliminary definitions and composition variables

For cryobiological applications and for other multicomponent
diffusion processes, the relative quantities or composition of the
chemical constituents involved must be described and/or
expressed quantitatively by some appropriate measure (e.g. mole
fraction, mass fraction, molarity, molality, etc.). The choice of
which compositional measure to use is often dictated by the par-
ticular context; a quantity that is convenient for use in a theoreti-
cal context, for example, may not be suitable for use in
experimental context where actual chemicals are being measured
and mixed into solution. As a result, the comparison of different
papers, experiments and/or computations often requires the
conversion from one measure to another (for example, see the dis-
cussion in Appendix A of Kleinhans and Mazur [57]). With this in
mind, we find it useful to begin with a review of some of these
composition variables and the relationships between them. Note
that we have been careful to avoid the term concentration which
for us has a specific definition, and have chosen to initially use
the term composition to describe the relative quantities of compo-
nents. Our discussion draws from related ones that can be found in
Bird, Stewart and Lightfoot [13], Andersson and Ågren [5], Dantzig
et al. [19] and Sekerka [109]. The first part of this discussion, in
particular, follows closely the work of Dantzig et al. with the
addition here of thermal effects.

Consider a mixture of n components occupying a volume V at
temperature T and pressure P. Define Nk to be the number of
moles2 of substance k in the volume, where k ¼ 1; . . . ;n. The first
composition variable3 we define is the mole fraction xk of sub-
stance k

xk :¼ NkPn
i¼1Ni

: ð3Þ

In general V depends on T; P and Nk. This leads to the differential
relationship4

dV ¼ @V
@T

� �
P;Nk

dT þ @V
@P

� �
T;Nk

dP þ
Xn

k¼1

@V
@Nk

� �
P;T;Nj–k

dNk; ð4Þ

¼aVdT � bVdP þ
Xn

k¼1

VkdNk; ð5Þ
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where we define a to be the isobaric thermal expansion coefficient,
b the isothermal compressibility and Vk the partial molar volume of
component k given by

a ¼ 1
V

@V
@T

� �
P;Nk

; b ¼ � 1
V

@V
@P

� �
T;Nk

; Vk ¼
@V
@Nk

� �
P;T;Nj–k

; ð6Þ

where, in general, these quantities are functions of T; P and Nk. It is
also true that the volume, an extensive quantity, can be expressed
as

V ¼
Xn

k¼1

VkNk: ð7Þ

This is the so-called Euler equation.5

As pointed out by Dantzig et al. [19] this result, along with Eq.
(4) leads to the condition

0 ¼ aVdT � bVdP �
Xn

k¼1

NkdVk: ð10Þ

This result implies that there are certain thermodynamic conse-
quences regarding assumptions of constant temperature, pressure
and/or partial molar volumes. One further definition at this point
is the molar volume of a phase (the volume occupied by one mole
of the substance)

VM :¼ VPn
i¼1Ni

¼
Pn

k¼1VkNkPn
i¼1Ni

¼
Xn

k¼1

xkVk: ð11Þ

A second concentration variable (moles of substance k per unit vol-
ume of mixture), referred to by Dantzig et al. as the concentration
but also known as molarity, or molar concentration, is defined by

ck :¼ Nk

V
¼ xk

VM
: ð12Þ

A concentration of one ‘molar’ (also sometimes denoted 1 M) is one
mol per liter. These definitions imply that

Xn

k¼1

xk ¼ 1;
Xn

k¼1

ck ¼
1

VM
;
Xn

k¼1

ckVk ¼ 1: ð13Þ

One further thermodynamic relationship follows from dividing Eq.
(10) by V and differentiating the last equation in display (13) to
get

Pn
k¼1ðck dVk þ Vk dckÞ ¼ 0, yielding

0 ¼ adT � bdP þ
Xn

k¼1

Vkdck: ð14Þ

A third composition variable is the molality of solute k, denoted
by mk. The molality of solute k is the number of moles of solute k
divided by the mass (in kilograms) of solvent. Note that in contrast
to molarity, which is in general temperature and pressure depen-
dent since it is a volume-based quantity, the molality, being
mass-based, is independent of temperature and pressure. One
‘molal’ (also sometimes denoted 1 m) is one mol per kilogram. If
we denote N1 to be the number of moles of the solvent (e.g. water)
5 Volume is a homogeneous function of degree one of the extensive variables Nk.
That is,

VðT; P; kN1; kN2; . . . ; kNnÞ ¼ kVðT; P;N1;N2; . . . ;NnÞ; ð8Þ

where k is an arbitrary constant. Differentiating this expression with respect to k
while holding temperature and pressure fixed, and then setting k ¼ 1 gives the Euler
equation [14,19,109]

Xn

k¼1

@V
@Nk

� �
T;P;Nj–k

Nk ¼ V : ð9Þ
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and M1 to be the molecular mass (mass of one mole) of the solvent
then the product N1M1 is the total mass of the solvent. Therefore,
the molality mk is defined by

mk :¼ Nk

M1N1
; for k ¼ 2; . . . ;n: ð15Þ

Also, the molality can be expressed relative to the mole fraction by

mk ¼
xk

M1x1
; for k ¼ 2; . . . ;n; ð16Þ

from which we find that

Xn

i¼2

mi ¼
1

M1x1
1� x1ð Þ: ð17Þ

It follows that

x1 ¼ 1þM1

Xn

i¼2

mi

 !�1

; ð18Þ

and

xk ¼
M1mk

1þM1
Pn

i¼2mi
; for k ¼ 2; . . . ;n: ð19Þ

Also note that the molality can be expressed relative to the molarity
by

mk ¼
ck

M1c1
; for k ¼ 2; . . . ;n: ð20Þ

The quantity M1c1 is the mass concentration of the solvent. The
molarity can be obtained from the molality using the expressions

c1 ¼ V�1
M 1þM1

Xn

i¼2

mi

 !�1

; ð21Þ

and

ck ¼
M1mk

VM 1þM1
Pn

i¼2mi
� � ; for k ¼ 2; . . . ;n: ð22Þ

The mass concentration of species k is the mass of species k (Nk

times the molecular mass Mk) per unit volume of solution:

qk :¼ NkMk

V
¼ ckMk ¼

xkMk

VM
: ð23Þ

The mass fraction of species k, defined as the mass of species k
divided by the mass of the solution, is

xk :¼ NkMkPn
i¼1NiMi

¼ qk

q
; ð24Þ

where

q :¼
Xn

i¼1

qi; ð25Þ

is the mass density of the solution. Note that

Xn

i¼1

xi ¼ 1: ð26Þ

Other composition variables (e.g. weight percent, etc.) can be
defined and we refer the reader to the classic textbook by Bird,
Stewart and Lightfoot [13]. Other discussions prominent in cryobi-
ology can also be found. For example, Elmoazzen et al. [32] discuss
the concentration variables osmolarity [‘‘number of moles of
solute, per liter of solution, of an ideal dilute solute that would
be needed to produce the same osmotic activity as a particular con-
centration of a nondilute solute’’], and osmolality [‘‘the number of
ng in cryobiology—I: Concentration, Gibbs energy, and chemical potential
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moles of an ideal, dilute solute, per kilogram of solvent, which
would be needed to produce the same osmotic activity as a partic-
ular concentration of a nondilute solute’’].

The composition variables xk; ck; mk; qk and xk defined above
can be viewed in the context of a finite collection of particles occu-
pying some volume in space. However, within such a volume these
definitions do not address spatial locations of individual particles.
For example, the determination of Nk in the definition of mole
fraction in Eq. (3) requires knowledge of the number of moles of
substance k within the volume but not the specific location of each
particle within the volume. For the applications of interest here,
spatial variation of composition variables will be of critical impor-
tance. Therefore, we shall interpret the above composition defini-
tions as point-wise definitions in a typical continuum approach
(e.g. see Leal [68]). That is, we associate with each mathematical
point in some macroscale system of interest (e.g. a cell, a tissue,
and/or the surrounding cryo-fluid) a material parcel that is
assumed to contain many particles and for which the composition
variables can be defined. The typical length scale associated with
the macroscale system is much larger than the length scale of
the parcel, whose length scale in turn is much larger than the
molecular scale. In this way, the composition variables and accom-
panying relationships defined above apply point-wise in the mac-
roscale and therefore take on spatial (and temporal) dependence.

We note that this continuum approach takes advantage of the
thermodynamic principal that the behavior of a system may be
approximated by the local average of its constituents’ behavior
due to the huge number of molecules in the system. However, con-
tinuum approaches must be differentiated from approaches where
individual molecules are followed as in the case of molecular
dynamics simulations or the variation in the actions of individual
molecules are allowed as in the case of stochastic diffusion model-
ing. While these methods are extremely powerful in specific
contexts, their usefulness in the very large scale of cells is ques-
tionable. Extremely large molecular dynamics simulations requir-
ing enormous computational resources may follow the actions of
109 individual molecules. The number of molecules in a single cell
of radius 5 lm is on the order of 1013, and the number of molecules
in a single cell plus the surrounding 5 lm is on the order of 1014,
but by the thermodynamic averaging of continuum modeling,
these composition quantities can be calculated accurately with
minimal computational power.
3. The motivation: species transport equations

Because we wish to model transport of mass and energy, we
begin with a fundamental equation of conservation, the transport
equation. Suppose that in an arbitrary time-dependent domain
XðtÞ in space with boundary @XðtÞ we have a quantity of stuff
(energy, moles of solute, etc.) with density w, which is a function
of space and time w ¼ wðx; tÞ. Then, a fundamental physical bal-
ance, assuming no sources/sinks that add or remove stuff (e.g. no
reactions, phase transformation, etc.) within XðtÞ, is

d
dt

Z
XðtÞ

w dV ¼ �
Z
@XðtÞ

J � n̂ dA;

where J is a total flux of stuff (e.g. convective, diffusive, etc.) across
the surface and n̂ is the outward unit normal vector to the surface. It
is important to point out that, owing to the continuum approxima-
tion, the flux J includes both average convective transport
associated with a macroscale velocity u as well as a molecular con-
tribution such as Fickian diffusion or conductive heat transport (e.g.
see Leal [68]). This equation states that in the absence of reactions,
etc. the change in the amount of stuff in XðtÞ is equal to its flux
across the domain boundary @XðtÞ. The Reynolds transport theorem
Please cite this article in press as: D.M. Anderson et al., Foundations of modeli
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(sometimes referred to as an extension of Leibnitz Formula [13,68])
implies thatZ

XðtÞ

@w
@t

dV þ
Z
@XðtÞ

wub � n̂dA ¼ �
Z
@XðtÞ

J � n̂dA;

where ub is the velocity of the boundary @XðtÞ. Note that physical
balances are often expressed in the context of either a ‘material’
surface that moves with the normal velocity of the material parti-
cles at the boundary (so ub � n̂ ¼ u � n̂) or for a domain that is fixed
in time (so ub ¼ 0) and the corresponding flux J must reflect this
choice. Stokes’s (Divergence) theorem yieldsZ

XðtÞ

@w
@t

dV þ
Z

XðtÞ
divðwubÞdV ¼ �

Z
XðtÞ

divJ dV :

Because XðtÞ was arbitrary, this integral identity holds for all
regions, and we have the generic transport equation

@w
@t
þ divðwubÞ ¼ �div J:

To fix ideas and motivate the discussion in the sections that fol-
low we consider the transport of a chemical species (e.g. CPA or
salt in the intra- or extra-cellular region) measured by concentra-
tion ck, for a scenario in which there is no convective flow
(u ¼ 0) and the flux is specified with respect to a domain fixed in
time (so ub ¼ 0). In this case the concentration ck is governed by

@ck

@t
þr � Jk ¼ 0; ð27Þ

where the constitutive law for the flux, in this case the mass flux Jk, is
typically taken to be proportional to the negative chemical potential
gradient�rlk associated with species k. Alternatively, one may sim-
ilarly express the transport equation in terms of a different composi-
tion variable. A suitable characterization of the chemical potential in
terms of composition (and possibly other field variables such as tem-
perature) then completes the transport equation. To describe the
transport of a given chemical system characterized by a specific
Gibbs free energy (for example, those by Elliott et al. [30,32] or Lan-
dau and Lifshitz [66,67] studied in cryobiology) it is necessary to have
expressions for chemical potential gradients in terms of the Gibbs
free energy and the composition variables with which it is expressed.

The following sections begin with a classical thermodynamic
discussion of the Gibbs free energy and its molar form. Keeping
in mind the constitutive law for the transport equation, we next
derive the corresponding forms for the chemical potential gradi-
ents in terms of a general Gibbs free energy function. Finally, we
conclude this part of the series with a specific choice of the consti-
tutive model of Gibbs free energy relevant to applications in cryo-
biology. Parallel forms of Gibbs free energy and chemical potential
gradients are included in Online supplemental information.

4. Gibbs free energy

The Gibbs energy or Gibbs free energy is a form of the system
energy obtained via Legendre transforms to replace entropy S and
volume V with temperature T and pressure P (see for example the
textbook by Callen [14]). We will use this energy as a ‘‘jumping
off point’’ to relate the temperature, pressure, and composition of
the system. If we denote the Gibbs free energy by
G ¼ GðT; P;N1;N2; . . . ;NnÞ, we then can derive the differential
relationship

dG ¼ @G
@T

� �
P;Nk

dT þ @G
@P

� �
T;Nk

dP þ
Xn

k¼1

@G
@Nk

� �
T;P;Nj–k

dNk;

¼ �SdT þ VdP þ
Xn

k¼1

lkdNk;

ð28Þ
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where

S ¼ � @G
@T

� �
P;Nk

; V ¼ @G
@P

� �
T;Nk

; and lk ¼
@G
@Nk

� �
T;P;Nj–k

: ð29Þ

Note that S; V and chemical potential of species k;lk, by defini-
tion also may depend on T; P;N1,. . .,Nn. Since G is an extensive
quantity we have the Euler equation

G ¼
Xn

k¼1

Nk
@G
@Nk

� �
T;P;Nj–k

¼
Xn

k¼1

Nklk: ð30Þ

Compare this result with Eq. (7). The differential of Eq. (30) is

dG ¼
Xn

k¼1

ðNkdlk þ lkdNkÞ: ð31Þ

Subtracting Eq. (28) leads to the Gibbs–Duhem equation

0 ¼ �SdT þ VdP �
Xn

k¼1

Nkdlk: ð32Þ

Since S is an extensive property analogous to Eq. (7) we also have
that

S ¼
Xn

k¼1

SkNk; ð33Þ

where the partial molar entropy of component k is

Sk ¼
@S
@Nk

� �
T;P;Nj–k

: ð34Þ
5. Gibbs free energy: molar free energy

An alternative to the extensive quantity G is the intensive quan-
tity GM representing the molar free energy (e.g. Dantzig et al. [19])

GMðT; P; x2; x3; . . . ; xnÞ :¼ GðT; P;N1;N2; . . . ;NnÞPn
i¼1Ni

; ð35Þ

where the molar free energy depends on mole fractions x2 through
xn as the solvent x1 is eliminated using

Pn
k¼1xk ¼ 1 following the

cryobiological standard. It also follows from Eq. (30) that

GM ¼
Pn

k¼1lkNkPn
i¼1Ni

¼
Xn

k¼1

lkxk: ð36Þ

Differentiating GM with respect to T or P, gives the molar entropy SM

and molar volume VM respectively:
@GM

@T

� �
P;xk

¼ � SPn
i¼1Ni

¼: �SM; ð37Þ

@GM

@P

� �
T;xk

¼ VPn
i¼1Ni

¼: VM: ð38Þ

To identify forms for chemical potentials we differentiate GM with
respect to xk. This is most easily accomplished by differentiating G
in Eq. (35) with respect to Nk and applying the chain rule. In partic-
ular, differentiating G with respect to N1, recognizing that x2; . . . ; xn

all depend on N1, and using (29) leads to the result

l1ðT; P; x2; x3; . . . ; xnÞ ¼ GM �
Xn

i¼2

xi
@GM

@xi

� �
T;P;xj–k

: ð39Þ

Differentiating G with respect to Nk for k – 1 leads to a similar
result with one additional term

lkðT; P; x2; x3; . . . ; xnÞ ¼ l1 þ
@GM

@xk

� �
T;P;xj–k

; for k ¼ 2; . . . ;n: ð40Þ

The expressions for l1 and lk are equivalent to Eqs. (11) in Dantzig
et al. subject to the appropriate re-interpretation of the indices
Please cite this article in press as: D.M. Anderson et al., Foundations of modeli
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(1 ? n and 2;3; . . . ;n ! 1;2; . . . ;n� 1). These results for GM allow
us to write

dGM ¼ @GM
@T

� �
P;xk

dT þ @GM
@P

� �
T;xk

dP þ
Xn

k¼2

@GM
@xk

� �
T;P;xj–k

dxk;

¼ �SMdT þ VMdP þ
Xn

k¼2

lk � l1

� �
dxk:

ð41Þ

The corresponding Gibbs–Duhem equation [compare Eq. (32)] is

0 ¼ �SMdT þ VMdP �
Xn

k¼1

xkdlk: ð42Þ

Note that just as the molar volume VM is related to partial molar
volumes through Eq. (11) and likewise the molar free energy GM is
related to the chemical potentials through Eq. (36) we have that

SM ¼
SPn

i¼1Ni
¼
Pn

k¼1SkNkPn
i¼1Ni

¼
Xn

k¼1

xkSk: ð43Þ

If we now apply to VM and SM [in Eqs. (37) and (38)] the same dif-
ferentiation steps just applied to GM (differentiating with respect to
Nk) we find by analogy that

V1ðT; P; x2; x3; . . . ; xnÞ ¼ VM �
Xn

i¼2

xi
@VM

@xi

� �
T;P;xj–i

; ð44Þ

VkðT; P; x2; x3; . . . ; xnÞ ¼ V1 þ
@VM

@xk

� �
T;P;xj–k

;

for k ¼ 2; . . . ;n; ð45Þ

and

S1ðT; P; x2; x3; . . . ; xnÞ ¼ SM �
Xn

i¼2

xi
@SM

@xi

� �
T;P;xj–i

; ð46Þ

SkðT; P; x2; x3; . . . ; xnÞ ¼ S1 þ
@SM

@xk

� �
T;P;xj–k

; for k ¼ 2; . . . ;n: ð47Þ

A parallel discussion in terms of a molality form for the Gibbs
free energy GmolalðT; P;m2;m3; . . . ;mnÞ is given in the Online supple-
mental material.

6. Chemical potential gradients: molar free energy

We now recall our motivation from Section 3: species transport
is dependent on the diffusive flux Jk defined by the standard consti-
tutive law Jk / �rlk. With the Gibbs free energy relationships in
place from Sections 4 and 5, we may now differentiate once more
to arrive at the needed chemical potential gradients. As we have
seen above, the composition variable will determine the form of
this quantity. Here we work in terms of mole fraction xk and give
the equivalent set of results expressed in terms of molality mk

and concentration ck in the Supplemental material.
Before we begin, it is useful to establish the quantities

rGM ¼ @GM
@T

� �
P;xj
rT þ @GM

@P

� �
T;xj
rP þ

Xn

i¼2

@GM
@xj

� �
T;P;xj–i

rxj;

¼ �SMrT þ VMrP þ
Xn

i¼2

@GM
@xj

� �
T;P;xj–i

rxj;

ð48Þ

and

r @GM

@xi

� �
T;P;xj–i

¼ � @SM

@xi

� �
T;P;xj–i

rT þ @VM

@xi

� �
T;P;xj–i

rP

þ
Xn

j¼2

@2GM

@xi@xj

 !
T;P;xk–i;k–j

rxj: ð49Þ
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We first compute the gradient of l1 in Eq. (39). We find that

rl1 ¼ rGM �
Xn

i¼2

rxi
@GM

@xi

� �
T;P;xj–i

�
Xn

i¼2

xir
@GM

@xi

� �
T;P;xj–i

;

¼ �SMrT þ VMrP þ
Xn

j¼2

@GM

@xj

� �
T;P;xj–i

rxj

 !

�
Xn

i¼2

rxi
@GM

@xi

� �
T;P;xj–i

�
Xn

i¼2

xi �
@SM

@xi

� �
T;P;xj–i

rT

 

þ @VM

@xi

� �
T;P;xj–i

rP þ
Xn

j¼2

@2GM

@xi@xj

 !
T;P;xk–i;k–j

rxj

1
A;

¼ �SM þ
Xn

i¼2

xi
@SM

@xi

� �
T;P;xj–i

 !
rT þ VM �

Xn

i¼2

xi
@VM

@xi

� �
T;P;xj–i

 !
rP

�
Xn

i¼2

Xn

j¼2

xi
@2GM

@xi@xj

 !
T;P;xk–i;k–j

rxj;

¼ �S1rT þ V1rP �
Xn

i¼2

Xn

j¼2

xi
@2GM

@xi@xj

 !
T;P;xk–i;k–j

rxj: ð50Þ

For k ¼ 2;3; . . . ; n, we differentiate Eq. (40) to get

rlk ¼rl1þr
@GM

@xk

� �
T;P;xj–k

;

¼�S1rTþV1rP�
Xn

i¼2

Xn

j¼2

xi
@2GM

@xi@xj

 !
T;P;xm–i;k–j

rxj

� @SM

@xk

� �
T;P;xj–k

rTþ @VM

@xk

� �
T;P;xj–k

rPþ
Xn

j¼2

@2GM

@xk@xj

 !
T;P;xm–j;m–k

rxj;

¼ �S1�
@SM

@xk

� �
T;P;xj–k

 !
rTþ V1þ

@VM

@xk

� �
T;P;xj–k

 !
rP

þ
Xn

j¼2

@2GM

@xj@xk

 !
T;P;xi–j;i–k

�
Xn

i¼2

xi
@2GM

@xi@xj

 !
T;P;xm–i;m–k

0
@

1
Arxj;

¼�SkrTþVkrPþ
Xn

j¼2

@2GM

@xj@xk

 !
T;P;xm–j;m–k

�
Xn

i¼2

xi
@2GM

@xi@xj

 !
T;P;xm–i;m–j

0
@

1
Arxj:

ð51Þ

Ternary Case. Cryobiological solutions of interest are frequently
ternary mixtures, containing a salt (e.g. NaCl or KCl), a CPA (e.g.
Me2SO, glycerol, etc), in the solvent water. In part III of this series,
we derive and analyse a specific ternary system, therefore we
present chemical potentials and their gradients here for reference.
In particular, using mole fractions x1; x2 and x3 and
GM ¼ GMðT; P; x2; x3Þ, we have

l1ðT; P; x2; x3Þ ¼ GM � x2
@GM

@x2

� �
T;P;x1 ;x2

� x3
@GM

@x3

� �
T;P;x1 ;x2

; ð52Þ

l2ðT; P; x2; x3Þ ¼ GM þ ð1� x2Þ
@GM

@x2

� �
T;P;x1 ;x3

� x3
@GM

@x3

� �
T;P;x1 ;x2

; ð53Þ

l3ðT;P;x2;x3Þ¼GM�x2
@GM

@x2

� �
T;P;x1 ;x3

þð1�x3Þ
@GM

@x3

� �
T;P;x1 ;x2

: ð54Þ

Further, using the gradient formulas given above we have

rlk ¼ �SkrT þ VkrP þ Dk2rx2 þ Dk3rx3; k ¼ 1;2;3; ð55Þ

where

D12 ¼ �x2
@2GM

@x2
2

 !
T;P;x1 ;x3

� x3
@2GM

@x2@x3

 !
T;P;x1

; ð56Þ
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D13 ¼ �x2
@2GM

@x2@x3

 !
T;P;x1

� x3
@2GM

@x2
3

 !
T;P;x1 ;x2

; ð57Þ

D22 ¼ ð1� x2Þ
@2GM

@x2
2

 !
T;P;x1 ;x3

� x3
@2GM

@x2@x3

 !
T;P;x1

; ð58Þ

D23 ¼ ð1� x2Þ
@2GM

@x2@x3

 !
T;P;x1

� x3
@2GM

@x2
3

 !
T;P;x1 ;x2

; ð59Þ

D32 ¼ ð1� x3Þ
@2GM

@x2@x3

 !
T;P;x1

� x2
@2GM

@x2
2

 !
T;P;x1 ;x3

; ð60Þ

D33 ¼ ð1� x3Þ
@2GM

@x2
3

 !
T;P;x1 ;x2

� x2
@2GM

@x2@x3

 !
T;P;x1

: ð61Þ

The general forms identified here for the chemical potential gra-
dients in terms of temperature, pressure and composition variables
are needed to define the mass flux in transport equations. Once a
particular form for the Gibbs free energy is chosen the coefficients
in these expressions can be determined. In the next section we
present one possible form for the Gibbs free energy appropriate
for use in cryobiological applications.

7. Constitutive model for Gibbs free energy

Until now we have worked with the Gibbs free energy as an
abstract quantity. The selection of appropriate Gibbs Energy for
any specific system is a challenge. Here we present a Gibbs energy
model that is well suited to the situations encountered in cryobiol-
ogy. In particular, we outline the energy used by Elliott et al.
[30,32]. In the Supplemental material we present a parallel discus-
sion of a similar free energy described by Landau and Lifshitz
[66,67] and highlight the differences between the two. As with
most constitutive models, there are compromises that must be
made in the name of simplicity and ease of calculation, and in
the context of cryopreservation it remains to be demonstrated
whether there is any advantage of one Gibbs energy model choice
over another.

7.1. Elliott et al. Gibbs free energy

Elliott et al. [30,32] proposed a Gibbs free energy for problems
of interest in cryobiology for ternary systems. In particular, Eqs.
(7)–(9) in Elliott et al. [30], with index 1 representing the solvent
and 2 and 3 the solutes, are expressed here as

GðT; P;N1;N2;N3Þ ¼ N1l�1ðT; PÞ þ N2w2ðT; PÞ þ N3w3ðT; PÞ

þN1RT ln N1
N1þN2þN3

� �
þN2RT ln N2

N1þN2þN3

� �
þN3RT ln N3

N1þN2þN3

� �
þ x12N1N2

N1þN2þN3
þ x13N1N3

N1þN2þN3
þ x23N2N3

N1þN2þN3

ð62Þ

where l�1 is the chemical potential of the pure solvent, wj is a func-
tion of T and P corresponding to the limit of ‘infinite dilution’ of sol-
ute j, R is the universal gas constant and xij are the interchange
energies of species i with species j. One could interpret wj as the
chemical potential of pure solute j although the expression is not
intended to be used in the extremely non-dilute setting.

The above expression can be translated to give the correspond-
ing form for the molar free energy. In particular, using Eqs. (35) and
(62) we find that
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GM ¼ x1l�1ðT; PÞ þ x2w2ðT; PÞ þ x3w3ðT; PÞ
þRT x1 ln x1 þ x2 ln x2 þ x3 ln x3ð Þ
þx12x1x2 þx13x1x3 þx23x2x3:

ð63Þ

Finally, we may differentiate Eq. (63) again to see that the chemical
potentials corresponding to those given in Eqs. (52)–(54) with the
Gibbs energy defined by Elliott et al. [30]:

l1 ¼ l�1 þ RT lnð1� x2 � x3Þ
þx12x2ðx2 þ x3Þ þx13x3ðx2 þ x3Þ �x23x2x3;

ð64Þ

l2 ¼ w2 þ RT ln x2

þx12ð1� x2Þð1� x2 � x3Þ �x13x3ð1� x2 � x3Þ
þx23x3ð1� x2Þ;

ð65Þ

l3 ¼ w3 þ RT ln x3

�x12x2ð1� x2 � x3Þ þx13ð1� x3Þð1� x2 � x3Þ
þx23x2ð1� x3Þ;

ð66Þ

where we have eliminated the variable x1 using x1 þ x2 þ x3 ¼ 1.
The expressions for rl1; rl2 and rl3 are given by Eqs. (55)
where

D12 ¼ �
RT

1� x2 � x3
þ 2x12x2 þ ðx12 þx13 �x23Þx3; ð67Þ

D13 ¼ �
RT

1� x2 � x3
þ 2x13x3 þ ðx12 þx13 �x23Þx2; ð68Þ

D22 ¼
RT
x2
� 2x12ð1� x2Þ þ ðx12 þx13 �x23Þx3; ð69Þ

D23 ¼ 2x13x3 � ðx12 þx13 �x23Þð1� x2Þ; ð70Þ

D32 ¼ 2x12x2 � ðx12 þx13 �x23Þð1� x3Þ; ð71Þ

D33 ¼
RT
x3
þ ðx12 þx13 �x23Þx2 � 2x13ð1� x3Þ; ð72Þ

and using Eqs. (37), (38) along with (44)–(47) we get

S1 ¼ �
@l�1
@T

� �
P;xj

� R lnð1� x2 � x3Þ; V1 ¼
@l�1
@P

� �
T;xj

; ð73Þ

S2 ¼ �
@w2

@T

� �
P;xj

� R ln x2; V2 ¼
@w2

@P

� �
T;xj

; ð74Þ

S3 ¼ �
@w3

@T

� �
P;xj

� R ln x3; V3 ¼
@w3

@P

� �
T;xj

: ð75Þ

Here for simplicity we have assumed that the xij are constants. The
forms for rl1; rl2 and rl3 can also be obtained by directly com-
puting the gradient of the expressions in Eqs. (64)–(66).

8. Discussion

Understanding and predicting biological and physical phenom-
ena at low temperatures requires models that are dominated by
heat and mass transport. The goal of this series of manuscripts is
to lay the foundation of transport modeling in cryobiology. As
our principal motivating example, we note that Mazur’s model
[85] demonstrated that the intracellular state during equilibrium/
quasi-equilibrium cooling is determined by the movement of
water out of the cell and, while not accounted for in Eq. (1) poten-
tially the movement of solutes into the cell. This intracellular state
at any given temperature determines the likelihood of damage,
classically attributed to intracellular ice formation, though recent
Please cite this article in press as: D.M. Anderson et al., Foundations of modeli
relationships, Cryobiology (2014), http://dx.doi.org/10.1016/j.cryobiol.2014.09
work has called some of this into question [110]. A more compli-
cated motivating example, the velocity of the solidification front
away from or inside the cell, is limited by the diffusivity of water,
the latent heat of crystallization, among other quantities (see, e.g.
[59] for a review, and Toner et al. [118] and Karlsson et al. [47]
for intracellular applications). In fact, Körber et al. [59–61,123]
among others have demonstrated that there is solute polarization
at the advancing ice front that will affect the local concentration
at the cell membrane, in turn affecting the cellular state, and Levin
et al. demonstrate that there is an effect of intracellular solute
polarization in erythrocytes at high enough cooling rates [77].

The thermodynamical quantities describing transport are gov-
erned by the energy of the system [13]. A formulation of the energy
amenable to our present purposes is the Gibbs energy, differentials
of which yield expressions of the potentials that drive transport.
Therefore, it is appropriate to our purpose of building the founda-
tion of modeling in cryobiology that after clearing up the notation
of compositional quantities,6 we derive the transport equation (Eq.
(27)), though this equation remains unused until the next part in our
series. In this manuscript we then defined the Gibbs energy in terms
of the concentrations of an arbitrary number of solutes and derived
its critical differentials. We have also highlighted possibilities for
composition variables and their end-effects on the constitutive
equations that determine the diffusive flux in the Online supplemen-
tal material. While algebraically equivalent, the practical effects of
the choices for compositional variables and constitutive equations
will become more apparent in the companion papers and their sup-
plemental material. With the exception of a few other foundational
manuscripts (e.g. [10,28,30,32]) most manuscripts describing cryo-
biological transport modeling begin with a declaration of both the
governing flux model and the chemical potential model. In this man-
uscript we have taken one step back from this to acknowledge that
the chemical potential model is dependent on the underlying choice
of energy model.

One interesting outcome of this approach is that beyond the
standard concentration dependence, it yields the temperature
and pressure gradient dependence of the chemical potential
gradients that drive solute transport. These gradients are often
overlooked or assumed negligible in the single cell cryobiological
setting. We will in future manuscripts examine these assumptions
more critically. Additionally, this approach allows the explicit
determination of the concentration dependence of the spiecies dif-
fusivity coefficients (i.e. Eqs. (56)–(61)) for the arbitrary Gibbs
energy, and Eqs. (56)–(61) for the Gibbs energy chosen by Elliott
et al. [30,32].

There have been a great number of modeling approaches in
cryobiology over the last 50 years that take into considerations
various aspects of the process of cooling and warming cells and tis-
sues to and from low temperatures. The majority of manuscripts
focusing on the behavior of cells in the cryobiological context
assume spatial homogeneity. That is, most models of single cell
cryopreservation (i.e. cells in suspension as opposed to multicellu-
lar tissue models) make the assumption that the intra- and
extracellular spaces are perfectly stirred, heat transport is instanta-
neous, and therefore all mass transport is governed by a system of
ordinary differential equations defined by transmembrane concen-
tration or chemical potential differences. While not complete in
their description of the processes, the predictions of these models
have been extremely useful in guiding experimental design, demon-
strating feasibility of approaches, etc. [11,12,20,36,44,48–50,69,78,
84,122]. Many advances in computational complexity, transport
and solution theories [10,28,32,57,97], as well as experimental
ng in cryobiology—I: Concentration, Gibbs energy, and chemical potential
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parameter identification techniques [24–26,58,116,117] have been
made along the way, facilitating more accurate models and better
predictions of intracellular ice formation. However, interesting and
potentially critical phenomena are hiding in the spatial homogene-
ity assumption. To address this, in their multipart analyses of intra-
cellular solute polarization, Levin et al. [74,77] look at a ‘‘one
dimensional cell’’ with a moving semipermeable membrane, but,
while they include multiple solutes, they do not address trans-
membrane solute transport. While the extracellular concentrations
are assumed to be given, their treatment has many of the features
of the models that we will attempt to develop here. On the other
side of the membrane, Körber et al. [60] carefully examine the
interaction of inert particles with a solidifying ice front, setting
the foundation for Chang et al. [15]. In both cases, however, the cell
is non-reactive, and the diffusion within the cells and these effects
on the extracellular environment are ignored. In some sense, in this
series we will attempt to put together both of these models while
accounting for additional effects.

In the next part of this series, we discuss bulk (away from
liquid/cell and liquid/ice interfaces) and interfacial mass and
energy balance equations, make specific choices for constitutive
flux terms, and present equations for melting point depression as
a function of concentration and pressure. In the final part, we distill
the complete model derived in Part 2 into a working model that
can be used to demonstrate some interesting features often unac-
counted for in past and present cryobiological models.
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