
Journal of Microscopy, Vol. 00, Issue 0 2015, pp. 1–14 doi: 10.1111/jmi.12269

Received 4 September 2014; accepted 30 April 2015

Empirical gradient threshold technique for automated
segmentation across image modalities and cell lines

J . C H A L F O U N ∗, M . M A J U R S K I ∗, A . P E S K I N ∗, C . B R E E N†, P . B A J C S Y ∗ & M . B R A D Y ∗
∗Information Technology Laboratory, National Institute of Standards and Technology

†Princeton University, Princeton, NJ 08544, USA

Key words. EGT, empirical model, open-source, robustness, scalability,
segmentation.

Summary

New microscopy technologies are enabling image acquisition
of terabyte-sized data sets consisting of hundreds of thousands
of images. In order to retrieve and analyze the biological in-
formation in these large data sets, segmentation is needed to
detect the regions containing cells or cell colonies. Our work
with hundreds of large images (each 21 000×21 000 pixels)
requires a segmentation method that: (1) yields high segmen-
tation accuracy, (2) is applicable to multiple cell lines with
various densities of cells and cell colonies, and several imaging
modalities, (3) can process large data sets in a timely manner,
(4) has a low memory footprint and (5) has a small number
of user-set parameters that do not require adjustment during
the segmentation of large image sets. None of the currently
available segmentation methods meet all these requirements.
Segmentation based on image gradient thresholding is fast
and has a low memory footprint. However, existing techniques
that automate the selection of the gradient image threshold
do not work across image modalities, multiple cell lines, and a
wide range of foreground/background densities (requirement
2) and all failed the requirement for robust parameters that do
not require re-adjustment with time (requirement 5).
We present a novel and empirically derived image gradient
threshold selection method for separating foreground and
background pixels in an image that meets all the requirements
listed above. We quantify the difference between our approach
and existing ones in terms of accuracy, execution speed,
memory usage and number of adjustable parameters on a
reference data set. This reference data set consists of 501 vali-
dation images with manually determined segmentations and
image sizes ranging from 0.36 Megapixels to 850 Megapixels.
It includes four different cell lines and two image modalities:
phase contrast and fluorescent. Our new technique, called
Empirical Gradient Threshold (EGT), is derived from this
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reference data set with a 10-fold cross-validation method.
EGT segments cells or colonies with resulting Dice accuracy
index measurements above 0.92 for all cross-validation data
sets. EGT results has also been visually verified on a much
larger data set that includes bright field and Differential
Interference Contrast (DIC) images, 16 cell lines and 61
time-sequence data sets, for a total of 17 479 images. This
method is implemented as an open-source plugin to ImageJ
as well as a standalone executable that can be downloaded
from the following link: https://isg.nist.gov/.

Background

Advances in microscopy image acquisition now allow the col-
lection of large quantities of cell image data. Efficient process-
ing of these terabyte-sized data sets demands novel algorithmic
approaches to segmentation that enables both faster execution
time and a high level of accuracy. To meet these demands, a
segmentation method is needed that meets the following five
criteria: (1) high accuracy as measured by the Dice index (0.9
or higher); (2) applicable to multiple cell lines with different cell
densities and image modalities; (3) high throughput to process
terabyte-sized data sets in a timely manner; (4) low memory
footprint; (5) small number of user-set tuning parameters that
are robust across an entire time-sequence of images.

Segmentation techniques can be classified into two cate-
gories based on their mathematical model: complex methods,
such as level sets, and simple ones, such as thresholding. Com-
plex methods are too computationally intensive for very large
images. They include level set methods, approaches utilizing
models based on partial differential equations, graph parti-
tioning, watershed methods and neural networks (Egmont-
Petersen et al., 2002; Cremers et al., 2006; Couprie et al., 2009;
Mobahi et al., 2011). These computationally expensive tech-
niques may satisfy the accuracy requirement, but do not meet
the other criteria mentioned above: their execution time to pro-
cess 1 TB of images takes longer than a day. Computationally
simple segmentation methods include thresholding methods,
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clustering methods and region-growing methods. Clustering
methods range from simple and less accurate methods, such as
k-means clustering (Dima et al., 2011), to more complex fuzzy
clustering methods that increase accuracy, but also increase
computational cost (Despotović et al., 2013). Region-growing
segmentation methods are an example of methods that re-
quire user input in the form of seeds for growth that make
this type of method difficult to automate (Kamdi & Krishna,
2012). Background reconstruction methods to improve seg-
mentation accuracy require a lot of memory and have slow
execution times (J Chalfoun et al., 2013).

In general, pixel intensity gradients are higher for pixels at
cell edges than for background pixels in an image. Based on
this observation, we chose a segmentation approach based
on thresholding the gradient image. Thresholding has a short
execution time and a small memory footprint. However, find-
ing the optimal threshold for each image remains a challenge.
Sezgin and Bulent (Sezgin & Sankur, 2004) present an exten-
sive survey of techniques for automating intensity threshold
selection. Although many of these automated thresholding
methods are implemented in ImageJ (Schindelin et al., 2012)
and Cellprofiler (Carpenter & Jones, 2006), an evaluation of
these techniques against our reference data sets reveals that
they fall short of meeting our criteria.

In this paper, we present the Empirical Gradient Threshold
(EGT) method, a novel and empirically derived image gradi-
ent threshold selection method for separating foreground and
background pixels in an image that meets all five require-
ments. EGT operates on the histogram of the gradient image
and thus is a histogram shape-based thresholding method as
classified by Sezgin and Bulent. The EGT method is derived
from a reference data set using 10-fold cross validation where
the data set is randomly split into 10 groups of similar size
and nine groups are used for training and the remaining one
for validation. The process is repeated 10 times to ensure that
the empirical model is consistent across all groups. The refer-
ence data set consists of 501 validation images with manu-
ally determined segmentations and image sizes ranging from
0.36 Megapixels to 850 Megapixels. It includes seven different
cell lines and two image modalities, phase contrast and fluo-
rescent. We quantify the difference between our new approach
and existing ones in terms of accuracy, execution speed, mem-
ory usage, and number of adjustable parameters on a reference
data set. We show that EGT has the fastest execution time and
the lowest memory utilization and it is the only method that
segmented all data sets with a Dice value above 0.92. The re-
sults of this comparison are presented towards the end of the
paper. Our method is also visually verified on a much larger
data set that includes: bright field and Differential Interference
Contrast (DIC) images, 16 cell lines, and 61 time-sequence
data sets for a total of 17 479 images.

Figure 1 gives an overview of the work presented in this
paper that led to creating the EGT segmentation. Second sec-
tion describes the reference data sets, the selection process for

a gradient operator, and the empirically derived function that
automatically computes a useful gradient threshold. Third sec-
tion documents all experimental results. We describe how we
measure segmentation performance and compare our tech-
nique with other segmentation approaches. We display the
segmentation output on other image modalities and cell lines.
Fourth section summarizes our results.

Methods

Biological motivation

The biological motivation of this work comes from four differ-
ent applications displayed in Figure 2:

(1) Stem cell colonies: Pluripotent stem cells exist in a privi-
leged developmental state with the potential to form any
of the cell types of the adult body. Hence, there is great
interest in understanding the relation between gene ex-
pression and cell state, in order to potentially engineer
cell state for application to regenerative medicine. We
used a cell line expressing GFP under the control of a
critical pluripotency related transcription factor, OCT-
4, to understand how normal stem cell cultures behave
during routine feeding of cultures. These cells grow as
isolated colonies, each colony comprising tens to thou-
sands of cells as the culture progresses.
Because individual colony size is larger than the size of a
single camera frame, colony tracking can only be done
from movies of mosaics. In our case, we made a movie
of 18×22 individual camera frames (total mosaic size
� 1GB) with a 10% overlap between frames in both the
X and Y directions, over 162 time points (total movie size
� 350 GB). These large data set images were collected
through time in the form of contiguous mosaics in phase
contrast and GFP channels.

(2) NIH 3T3 cells: Despite numerous studies, the regulation
of the extracellular matrix protein tenascin-C (TN-C) re-
mains difficult to understand. By using live cell phase
contrast and fluorescence microscopy, the dynamic reg-
ulation of TN-C promoter activity is examined in an NIH
3T3 cell line stably transfected with the TN-C gene lig-
ated to the gene sequence for destabilized Green Fluores-
cent Protein (GFP). We found that individual cells vary
substantially in their expression patterns over the cell
cycle, but that on average TN-C promoter activity in-
creases approximately 60% through the cell cycle. We
also found that the increase in promoter activity is pro-
portional to the activity earlier in the cell cycle. This
work illustrates the application of live cell microscopy
and automated image analysis of a promoter-driven GFP
reporter cell line to identify subtle gene regulatory mech-
anisms that are difficult to uncover using population
averaged measurements. The fully automated image
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Fig. 1. Overview of the work presented in this paper.

Fig. 2. Example images of the reference data sets. Six phase contrast images and one fluorescent images data sets. The first four images show stem cell
colonies, the fifth NIH 3T3 cells; the sixth NIH breast epithelial sheets, and the seventh A10 rat cells.

segmentation and tracking are validated by compari-
son with data derived from manual segmentation and
tracking of single cells. More detail about this work
can be found in Halter et al. (2011a) and Chalfoun
et al. (2013).

(3) MCF10A breast epithelial sheet cells: Many cell lines
that are currently being studied for medical purposes,
such as cancer cell lines, grow in confluent sheets. These
cell sheets typically exhibit cell line specific biological
properties such as the morphology of the sheet, protein
expression, proliferation rate, and invasive/metastatic
potential. However, cell sheets are comprised of cells of
different phenotypes. For example, individual cells in a
sheet can have diverse migration patterns, cell shapes,

can express different proteins, or differentiate differ-
ently. Identifying phenotypes of individual cells is highly
desirable, as it will contribute to our understanding of
biological phenomena of tumour metastasis, stem cell
differentiation, or cell plasticity. Time-lapse microscopy
now enables the observation of cell cultures over
extended time periods and at high spatiotemporal
resolution. Furthermore, it is now possible not only to
label cells with fluorescent markers, but also to express
fluorescently labelled protein, enabling spatiotemporal
analysis of protein distribution in a cell sheet at a
cellular level. More information about this project can
be found in Weiger et al. (2013), Stuelten et al. (2010)
and Chalfoun et al. (2014).
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(4) A10 rat vascular smooth muscle cells: High resolution
images of A10 cells are acquired in order to understand
cell responses to the mechanical characteristics of extra-
cellular matrix (ECM). The ECM represents the extracel-
lular environment that affects cell behaviour. This is of
great importance to elucidate the biological pathways
of cancer and other pathologies and analyze and com-
pare the behaviour of different proteins and organelles
at subcellular level.

Reference image data sets

We have collected seven reference image data sets with four
cell lines and two image modalities, six data sets in phase
contrast and one in fluorescent. The first four data sets (Stem1,
Stem2, Stem3 and Stem4) are images of stem cell colonies.
These large data sets are terabyte-sized image sets and were
acquired to study the temporal and spatial behaviour of stem
cell colonies from the time of seeding (small colonies) to the
time before differentiation (5 days later). The fifth data set is
a time lapse sequence of NIH 3T3 cells; this experiment was
performed to study the dynamic regulation of TN-C promoter
activity (Halter et al., 2011b). The sixth data set is a time
sequence of a breast epithelial cell sheet (Stuelten et al., 2010;
Weiger et al., 2013). The seventh data set contains fluorescent
images of fixed A10 rat cells stained to analyze the subcellular
protein expression for 129 cell images. Table 1 gives details
about these 7 sets. Figure 2 shows an image example of each
set. Higher resolution images can be downloaded from the
following link: https://isg.nist.gov/.

A human expert manually segmented cells/colony edges
in each frame using the pencil and brush tool in ImageJ
(Schindelin et al., 2012). A second expert inspected the
manual segmentation to minimize human errors. For the
large data sets, the manual segmentation is performed on a
subset of each set. The total number of manually segmented
images is 501. We use all the manually-segmented images
in the reference data set to train the EGT model by a 10-fold
cross-validation method.

Selection of a gradient operator

Many techniques are available to compute the gradient of an
image with different kernel sizes. We began our analysis by
comparing the most common gradient methods available to
us in Matlab: (1) numerical gradient, (2) central difference, (3)
intermediate difference, (4) Roberts, (5) Prewitt and (6) Sobel.
More detailed information about each operator can be found
in Gonzales and Woods (Gonzalez et al., 2008).

To select an operator for this analysis, we randomly selected
four images and their manual segmentations, one for each
cell line. The gradient is computed for each image using
six different operators and thresholded at every gradient
percentile. The accuracy of all resulting masks is compared

against the manual segmentation using the Dice index
(Dice, 1945). The Dice index measures spatial overlap
between two segmentations using the following formula:
D i ce = 2 × overla p/(area1 + area2) where area1 and
area2 are the respective areas of the foreground masks. It
ranges from 0 (no match) to 1 (perfect match). Figure 3 shows
Dice index results for every percentile threshold for one of the
large images using all 6 operators. This figure shows that a
solution can be found by thresholding the image gradient to
generate a segmented mask that is very close to a manual seg-
mentation. Every operator gave a maximum Dice index value
above 0.9. The uncertainty related to cell edge pixel locations
has a margin of a couple of pixels due to the smooth transition
between background and foreground intensities (Dima et al.,
2011) which minimizes the differences between all operators.
However, after examining the results on all four test images,
we chose the Sobel operator because it gave the highest
average maximum Dice values across all images as shown in
Table 2.

Automatic selection of a gradient threshold value

The gradient threshold selection is based on the assumption
that there is a relationship between an optimal threshold value
T and image histogram descriptors. First, we explored whether
there exists a threshold that would yield a good segmentation
result as assessed by the Dice index. We concluded that there is
such a threshold and established a set of optimal threshold val-
ues by human inspection. Second, we observed a relationship
between the histogram distribution shapes and these optimal
threshold values. Third, we modelled the relationship mathe-
matically by using empirical observations.

Existence of a solution. The gradient of every image in the
reference data set is computed using the Sobel operator. The
resulting gradient image is segmented by thresholding it at
every gradient percentile value. The Dice index is computed
between every segmented image and the corresponding man-
ual segmentation. Figure 4 shows the maximum value of the
Dice index (scaled between 0 and 100) computed for each im-
age in the reference data set and the corresponding gradient
percentile that generated that maximum Dice value. In all of
our reference data set images, the best segmentation corre-
sponded to percentiles between the 25th and 95th gradient
percentiles. Figure 4 shows that an accurate segmentation so-
lution exists using the percentile threshold across all reference
images. The next step is to examine the histograms of these
images.

Empirical observations. Figure 5 shows four examples of
normalized histograms where the 95th, 75th, 55th and 35th
percentiles gave the maximum Dice index, respectively. In an
image where most pixels are background with low gradient
values, higher percentages (> 75% for example) are needed
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Table 1. Summary of reference image data sets

Image Foreground Density of Image size Image Images
# Data set modality type foreground objects (in pixels) acquisition manually segmented

1 Stem1 Phase contrast Colony Low, medium and high 21 000×21 000 157 images (45 min/image) 16, taken every 7.5 h
2 Stem2 Phase contrast Colony Low, medium and high 21 000×21 000 136 images (45 min/image) 14, taken every 7.5 h
3 Stem3 Phase contrast Colony Low, medium and high 10 000×10 000 477 images (15 min/image) 24, taken every 7.5 h
4 Stem4 Phase contrast Colony Low, medium and high 10 000×10 000 388 images (15 min/image) 19, taken every 7.5 h
5 NIH 3t3 Cells Phase contrast Cell Low, medium and high 696×520 238 images (15 min/image) All
6 Breast epithelial

cell sheets
Phase contrast Cell sheet High 692×520 59 images (2 min/image) All

7 A10 rat cells Fluorescent Cell Low 1024×1024 131 images All

Fig. 3. The Dice index computed on every percentile threshold of one large image using all operators.

Table 2. Maximum Dice value reached for each operator and for each test image

Operator Max Dice Image1 Max Dice Image2 Max Dice Image3 Max Dice Image4 Average Dice

Sobel 0.987 0.992 0.995 0.987 0.990
Prewitt 0.987 0.991 0.995 0.968 0.985
Central Difference 0.984 0.992 0.995 0.936 0.977
Intermediate Difference 0.977 0.992 0.991 0.920 0.970
Roberts 0.981 0.991 0.994 0.910 0.969
Numerical 0.984 0.992 0.995 0.936 0.977

to reach the correct percentile threshold for edge detection
(Figure 5.1). In contrast, in an image where most pixels
are foreground, lower percentages (> 35% for example) are
needed to reach the correct percentile threshold for edge
detection (Figure 5.3). The difference between the four plots
in Figure 5 can be described by how much of the area X under
the histogram curve lies to the right of the highest point of the
histogram, the mode location.

The background of a biological image usually has low
intensity variations in a small neighbourhood surrounding
a pixel, which translates to low gradient magnitudes. Sharp
changes in surrounding neighbour intensities around a pixel
often correspond to noise in the acquired image. Gradient

values for cell or colony edge pixels are usually between the
highest gradient values and the lowest ones. Therefore, to
measure the difference between the four curves in Figure 5,
the area X under the histogram curve is computed between
a lower bound (lb) and an upper bound (ub) for each image
based on the location of the mode of the histogram, as outlined
below.

Mathematical model. The previous section shows that there
is a relationship between the histogram distribution and the
gradient percentile values of which the threshold is computed.
We will model this relationship with three equations relating
(1) histogram H to area X under the histogram curve between

C© 2015 The Authors
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Fig. 4. Maximum Dice value (scaled between 0 and 100) and the corresponding gradient percentile threshold for every image in the reference data set.

Fig. 5. Normalized histogram plots for images where (1) the 95th percentile, (2) the 75th percentile, (3) the 55th percentile and (4) the 35th percentile
gave respectively the maximum Dice index. The plots are truncated at 500 instead of 1000 on the x axis to better highlight the difference.

a lower and upper bound, (2) area X to gradient percentile Y
and (3) percentile Y to the optimal threshold value T :

⎧⎨
⎩

X = g (H )
Y = f (X)
T = p (Y)

, (1)

where

- H is the normalized histogram of the gradient image
with respect to its cumulative sum (sum(H ) = 1), rep-
resented by 1000 bins evenly spaced between the min-
imum and the maximum values found in the gradient
image that are greater than 0.
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- X is the area under the histogram between a lower and
upper bound computed as a function of H .

- Y is the optimal gradient percentile value computed as
a function of X .

- T is the gradient image intensity threshold value.
- p computes the threshold value T from the percentile

value Y . p(i) is the threshold such that i% of image
pixels have intensity gradients less than p(i) .

The percentiles are computed from the gradient image
without the saturation values (where the gradient is equal
to zero). Gradient magnitudes of zero correspond to neigh-
bouring pixels in the image where the intensity is the same
and thus do not correspond to edge pixels. Lower bounds are
always greater than zero. Derivation of the lower and upper
bounds are shown below.

The functions f and g and their respective arguments are
determined empirically in the next sections. These functions
compute the threshold value from the normalized histogram
which constitutes the novelty of the EGT algorithm.

Empirical derivation of function g . The function g that com-
putes the area X under the histogram curve is modelled as
follows:

X = g (H ) =
ub∑

x=lb

H (x) , (2)

where lb is a lower bound and ub is an upper bound that will be
determined empirically from the mode location. The gradient
magnitude mode value generally corresponds to pixels with
low gradient variations (pixels that belong to the background
or homogeneous pixels that do not belong to an edge). Since the
mode is a statistical value of a histogram, we decided to empiri-
cally compute these bounds from an approximated mode loca-
tion xmode : lb = n ∗ xmode and ub = m∗ xmode with m > n
. We approximate the mode location xmode using the average
of the three highest estimated frequencies. The average mode
location value is more accurate than the single maximum
peak location and will minimize the uncertainty of comput-
ing the mode location in the presence of noise and artefacts
in the background. The empirical derivation of the lower and
upper bounds is made in such a way that enables a known
fit (linear if possible) for function f . Therefore, we made an
exhaustive search of these bounds looking for linearity of the
function f.

Figure 6 displays the residual error of a linear fit to the func-
tion f colour coded between dark blue (lowest error value) to
dark red (highest error value). The top portion is the residual
error computed with regards to the exhaustive selection of a
lower and an upper bounds as multiples of the mode location.
The optimal solution corresponds to the global minimum of the
lower and upper bounds exhaustive search. The lower portion
displays the plots of 6 marked examples of area X vs. optimal
percentile Y , where you can see the linearity. By analyzing

the plots in Figure 6, we found that the optimal solution is the
compute the area X between a lower bound equal to 3 × mode
location on the x axis and an upper bound equal to 18 × mode
location on the x axis. These empirically derived bounds en-
sured that most of the background or the very low varying pixel
intensities and the high gradient magnitudes that correspond
to image noise are removed. Furthermore, we impose an addi-
tional constraint on the upper bound to ensure that the area
under the histogram is computed between the lower bound
and at least the location xcs that corresponds to a 95% drop
in frequency value from the mode. Since the histogram is dis-
cretized, xcs corresponds to the location where: H (xcs + 1) >

0.05 × H (xmode) AN D H (xcs) ≤ 0.05 × H (xmode) .

Summary : lb = 3 × xmode and ub = max (18 × xmode, xcs)

Empirical derivation of function f. Figure 7 plots the per-
centile Y corresponding to the maximum Dice index values for
all images when computed as a function of the area under the
histogram X . This plot reveals a linear relationship between
X and Y with a saturation of Y = 25 for X ≥ 50 . The
function f derived empirically from the plot can be written as
follows:

Y = f (X) =
⎧⎨
⎩

95
a X + b

25

X ≤ s1

s1 < X < s2

s2 ≤ X
, (3)

where s1 and s2 are derived from the plot with values equal
to s1 = 3 , s2 = 50 .

To compute the linear relationship, we randomly arranged
the reference data set into 10 groups of similar size. Nine of the
groups are used for training and the remaining one as a vali-
dation set. A linear least squares fit is applied to the training set
and the resulting linear equation is validated on the validation
data set. This process is repeated 10 times. From the results
shown in Table 3, we noticed only very small differences be-
tween all 10 iterations, showing that the selected model is very
robust. We saw less than 1.3% variation in the slope param-
eter a of the linear function and less than 0.2% variation in
the intercept parameter b. The linear function is computed as
the average of all 10 values and is equal to a = −1.3517 and
b = 98.8726 .

When the percentile Y is computed, the image gradient
threshold is then derived from the percentile by T = p(Y)
where p(i ) is the threshold such that i % of image pixels
have intensity gradients less than p(i ) .

The EGT algorithmic steps for segmenting an image are
given below:

(1) Compute the gradient image G of the raw input image
I using Sobel operator.

(2) Compute the histogram H of G with 1000 bins.
(3) Normalize the histogram with respect to its cumulative

sum: sum(H ) = 1 .
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Fig. 6. Empirical derivation of the upper and lower bounds of function g . The top portion is the residual error of a linear fit between X and Y . The axis
of this plot are the multiplicative factors (m, n) respectively of the mode location of which the lower bound = n × xmode and the upper bound = m ×
xmode. The optimal solution corresponds to the global minimum of the lower and upper bounds exhaustive search. The lower portion displays the plots of
the 6 marked examples.

(4) Average the top 3 histogram value locations to find an
approximate mode location.

(5) Compute the area under the histogram X between the
lower and upper bounds.

(6) Compute Y = a X + b .
(7) Compute the gradient threshold T = p(Y) and segment

the image.
(8) Fill holes in the resulting mask that are less than a user-

input minimum hole size.
(9) Apply morphological erosion with a disk radius of 1 pixel

to clean the noise around the edges.
(10) Filter small artefacts that are smaller than a user specified

minimum cell size.

Figure 8 shows examples of segmentation results for the 7
reference data sets.

Handling special cases

Our assumptions for this analysis are (1) we can segment cells
or colonies if edge pixel intensities are different from back-
ground intensities and (2) the background is locally uniform.
However, edges of cell lines like Retinal Pigment Epithelial
(RPE) cells are distinguishable by the human eye but are very
close in intensity to the background as shown in Figure 9.1.
The same type of edges are found when images are out of focus
or have low Signal to Noise Ratio (SNR). To segment these
types of cell images, we analyzed two data sets: (1) A large
stem cell colony data set acquired with a lower exposure time
and lower SNR than our four reference sets and (2) the RPE
cell line images shown in Figure 9. Manual segmentation was
performed on these two data sets and their respective plots
corresponding to the maximum Dice indices are shown in Fig-
ure 10. The plots show that the relation between X and Y

C© 2015 The Authors
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Fig. 7. Percentile Y as a function of the area under the histogram X . For each image of the reference data sets the percentile corresponding to the max
Dice index is plotted. This plot shows a visibly linear relationship between X and Y .

Table 3. Results of the 10-fold cross validation for the linear function

Iteration A b Mean Dice Min Dice

1 -1.350 98.859 0.983 0.931
2 -1.356 98.940 0.982 0.938
3 -1.349 98.842 0.985 0.936
4 -1.351 98.853 0.985 0.945
5 -1.345 98.805 0.986 0.925
6 -1.345 98.788 0.986 0.957
7 -1.347 98.861 0.986 0.940
8 -1.361 98.963 0.984 0.943
9 -1.362 98.933 0.983 0.937
10 -1.349 98.880 0.986 0.962

remains linear for these special data sets, but the slope of the
line drops by a constant factor compared with our previous
data. Therefore, a user-defined parameter called “greedy” is
introduced to control the percentile threshold for an entire
time sequence data set for any data set that falls within these
special cases. Figure 10 also shows that the greedy factor is
consistent throughout a particular data set and hence the user
needs to adjust this parameter only on one test image for the
entire sequence. This parameter changes equation (1) to the
following:

T = p (Y + greedy) , (4)

with−50 ≤ greedy ≤ 50 , greedy ∈ N and 0 ≤ Y + greedy ≤
100 .

The greedy parameter lowers or raises the percentile
threshold to capture the missed edge pixels that are in a
low or high gradient region. Percentiles follow the intensity
variations in the image better than just multiplying the

current threshold by a factor, which is the case in the open
source software Cellprofiler (Carpenter & Jones, 2006). Figure
9.2 shows the resulting segmentation after adjusting the
greedy parameter. The RPE cells are imaged on a plastic plate
which by manufacturing has scratched on it. Some scratches
are very visible and thus will be picked up by the segmentation
method and the result will appear as a line connecting cells.

Experimental results

Accuracy measurement and comparison with other techniques

Table 4 and Figure 11 present the accuracy summary com-
parison with the top 15 thresholding techniques compared
against our method. Table 4 has a summary of the manual
user input required (if any), the execution speed/image, and
the memory consumption/image that shows that the EGT
has the fastest execution speed and the lowest memory usage.
Figure 11 shows the accuracy of segmenting each data set
with the 16 methods as boxplots. The lower left corner of
the figure shows the legend for all the plots. The green line
in each plot indicates the accuracy threshold at Dice value
of 0.9. A successfully segmented data set has the entire Dice
boxplot above that line. These plots show that EGT success-
fully segmented all data sets with a Dice value above 0.92.
Furthermore, EGT is the only method that segmented data
sets 1 and 5 successfully. Three methods worked on data set 2,
two methods for data set 3, three methods for data set 4, two
methods for data set 6, and seven methods for data set 7. These
results are summarized in the last column of Table 4 where the
number of data sets successfully segmented by each method
is presented, confirming that our new method is robust and
accurate across multiple cell lines and image modalities.
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Fig. 8. Segmented images results with the contour overlaid on top of the original raw image. Large images (the first four) are zoomed in for better
visualization. The cyan colour is only for edge highlighting.

Fig. 9. Segmentation with (1) greedy parameter = 0 and (2) with greedy parameter = 20.

The free standalone executable, the plugin to ImageJ, the
source code, and the data sets can be downloaded from the
following link: https://isg.nist.gov/.

Application to different image modalities and cell lines

The EGT segmentation is empirically derived with the assump-
tions that edge pixel intensities are different from background
intensities and the background is locally uniform. These as-
sumptions are independent from a cell line and an image
modality. As long as these two conditions are met, EGT should
be appropriate to use on most cell images and cell lines. To

test this theory, we applied EGT on 4 image modalities, 16
cell lines, 61 time-sequence data sets for a total of 17 479
images. No quantification of the EGT performance is made on
these data sets due to the lack of manual segmentation. How-
ever, the results have been inspected visually for accuracy.
The segmentation results can be viewed and downloaded from
https://isg.nist.gov/.

Figure 12 displays six example images of the EGT segmen-
tation results. The cell lines and image modalities used are: (1)
Bright field images of rat brain cells from NIH, (2) Fluorescent
images of yeast cells downloaded from Duke University (Di
Talia et al., 2007; Wang et al., 2010), (3) DIC images of iPS

C© 2015 The Authors
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Fig. 10. Percentile Y as function of the area under the histogram X . For each image of the reference data sets in green and for the two special case data
sets: low SNR stem cell colony images (blue) and RPE cells (red). The plot show that the slope of the line defined for the reference data set to compute the
percentile, at which the threshold of the image gradient is defined, drops by a constant factor called “greedy” and the relation between X and Y remains
a line for a particular special data set.

Table 4. Summary of relevant factors to large data sets: The execution speed (ES) in s and the memory usage (MU) in GB, the number of manual inputs
(MI), and the number of data sets successfully segmented (DSS) by each method. A successful segmentation for a data set is when a minimum Dice value
of 0.9 is obtained for each image in that data set. NA (not applicable) refers to a technique that could not be applied

ES Data ES Data MU Data MU Data
Technique (1-2) (3-4) ES Data5 ES Data6 ES Data7 (1-2) (1-2) MI DSS

1. Huang (Schindelin et al., 2012) 86.39 17.09 0.26 3.19 0.89 8.5 1.5 0 1
2. Li (Schindelin et al., 2012) 52.67 11.88 0.09 0.08 0.32 8.5 1.5 0 1
3. Mean (Schindelin et al., 2012) 92.65 17.22 0.09 0.08 0.32 8.5 1.5 0 2
4. MinError(I) (Schindelin et al., 2012) 91.92 17.25 0.09 0.08 0.32 8.5 1.5 0 1
5. Shanbhag (Schindelin et al., 2012) 95.01 18.86 2.57 46.39 8.78 8.5 1.5 0 0
6. Triangle (Schindelin et al., 2012) 72.2 16.11 0.09 0.06 0.25 8.5 1.5 0 0
7. Background (Carpenter & Jones, 2006) N/A 27.37 0.6 0.75 1.03 NA 21 0 0
8. Kapur (Carpenter & Jones, 2006) N/A 32.22 0.65 0.77 1.08 NA 21 0 0
9. MoG (Carpenter & Jones, 2006) N/A 31.64 0.73 0.79 1.06 NA 21 1 0
10. Otsu (Carpenter & Jones, 2006) N/A 30 0.72 0.75 1.07 NA 21 0 1
11. RidlerCalvard (Carpenter & Jones, 2006) N/A 32.25 0.71 0.75 1.06 NA 21 0 1
12. RobustBackground (Carpenter & Jones, 2006) N/A 29.8 0.64 0.78 1.07 NA 21 0 1
13. Sobel (Gonzalez et al., 2008) 59.91 10.37 0.06 0.07 0.21 11 2.5 1 0
14. LoG (Gonzalez et al., 2008) 164.37 22.78 0.11 0.12 0.42 11 2.5 1 2
15. Canny (Gonzalez et al., 2008) 186.79 43.73 0.2 0.2 0.83 12 2.8 1 2
16. EGT (new technique) 22.75 4.23 0.02 0.01 0.05 8.5 1.5 0 7

cells from the Lieber Institute, (4) phase images of bone cancer
cells from the Broad Institute (Khan et al., 2011), (5) Fluo-
rescent images of E. coli cells from Duke University (Rosenfeld
et al., 2006; Wang et al., 2010) and (6) Bright field image of
hematopoietic progenitor cells (Buggenthin et al., 2013).

Discussion

We quantified the difference between our new approach EGT
and existing ones in terms of accuracy, execution speed,

memory usage and the number of adjustable parameters on a
reference data set. EGT had the best results among all 16 tested
methods, on 501 validation images with manually determined
segmentation and image sizes ranging from 0.36 Megapixels
to 850 Megapixels. Tests included seven different cell lines
and two image modalities: phase contrast and fluorescent.
EGT segmented 100% of the cells or colonies with a Dice index
above 0.92. It was also visually verified on other image modal-
ities like bright field and Differential interference contrast (DIC)
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Fig. 11. Boxplots of all 16 methods applied to each of the 7 reference data sets. The green line in each plot indicates the accuracy threshold at Dice value
of 0.9. A successfully segmented data set has the entire Dice boxplot above that line.
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Fig. 12. Segmentation of different types of image modalities and cell lines with the contour overlaid on top of the original raw image. (1) Bright field
images of rat brain cells, (2) fluorescent images of yeast cells, (3) DIC images of iPS cells, (4) phase images of bone cancer cells, (5) Fluorescent images of
E. coli cells and (6) bright field image of hematopoietic progenitor cells.

images, with 16 cell lines, 61 time-sequence data sets and
17 479 total number of images.

One way how to improve the current segmentation results
is to add a more sophisticated post-processing step that fills
segment holes, for example, use of texture features per regions.
Currently, the hole filling algorithm is based on the size of a
hole (i.e. a region with background colour and size less than a
user defined pixel threshold will get filled).

Another way how explore the EGT method robustness to the
underlying image content is to apply it to medical images ac-
quired using magnetic resonance imaging (MRI) or computer
tomography (CT). We have conducted preliminary test with
CT images of the American College of Radiology (ACR) CT
accreditation phantom (Gammex 464). While qualitatively
the EGT method successfully segmented the phantom objects
on every image, systematic quantitative accuracy evaluations
have to be performed in the future.

Conclusions

By developing this automated segmentation technique,
we are able to automate segmentation to achieve higher
reproducibility. This method has the potential to be applied
in microscopy labs using phase contrast, DIC, bright field,
and fluorescent imaging modalities in high-throughput
environments. While we cannot make any statements about
the use of the method in clinical practice at this point, we have

shown that the performance is satisfactory across multiple
imaging modalities and cell types.

Working with terabyte-sized images requires segmentation
techniques to be not only accurate, but also computationally
fast and efficient, so that very large data sets can be processed
in a timely manner with limited computational resources. We
found that we had a need for a new fast and efficient segmen-
tation method that was robust across all of the challenges of
these data sets. The EGT is an empirical method derived from a
very wide range of biological images, varying in image modal-
ity, cell density, and pixel intensity and gradient ranges. It
satisfied all of the requirements and has shown to be highly
accurate on all data sets we have used it on to date. We have
released an open-source user interface for the community to
test this technique on an even wider range of applications.
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