
1

Static Analysis is not enough: The Role of Architecture and Design in Software Assurance

Software design errors are like space explosions. They are seldom heard and hard

to spot. You do not see them coming but when they hit, they hit with more energy

than they did when initiated. Once found, you spend the rest of the project dodging

their debris. Spend your time and attention in the design phase. Knock out design

flaws while they are small; do not wait until they are death stars. *

Gary Petersen
Shim Enterprise, Inc.
CrossTalk, July 2004 1

Walter Houser, NIST

Abstract

Static analysis testing of software source code is necessary but not sufficient. Of the nearly

1000 CWEs, 40 percent can be introduced in the architecture and design phase of the

development life cycle.2 By their very nature, architectural and design flaws are difficult to find

via static analysis. Furthermore, fixes to architectural and design errors can be complex, can

inject additional defects, and can alert adversaries to the existence of these weaknesses.

Moreover design flaws can obscure coding bugs that static analysis might otherwise detect, as

demonstrated by the Heartbleed vulnerability.3 This paper describes the techniques that

architects and designers can employ to minimize the implementation of architectural and design

flaws.

Introduction

Identification and mitigation of flaws early in the software development life cycle (SDLC) may

avoid a ten to hundred-fold cost in post deployment detection and remediation.4 5 Yet

cybersecurity reviews are often done just prior to an application’s going live, typically because of

a requirement for compliance.6 7 Architectural and design flaws found late in the SDLC can be

costly to repair so they are often catalogued and not acted on until the next release (assuming

the application survives that long). Moreover, by their very nature, architecture and design flaws

are resistant to code patches. Fixes to these errors can further compound the problem by

injecting additional defects. Moreover, patches can alert adversaries to the existence of these

flaws.8 Given that there are more than 61000 documented common vulnerabilities and

exposures (CVE),9 web application firewall rules can provide only partial mitigation against the

exploitation of applications. This paper describes the techniques architects and designers can

employ to minimize flaws in applications.

Common Weaknesses in Architecture and Design

In contrast to the dictionary of specific software vulnerabilities itemized in the CVE, the more

general Common Weakness Enumeration (CWE) 10 is a dictionary of classes of flaws and bugs.

Managed by MITRE Corporation under the sponsorship of the Department of Homeland

Security (DHS), the CWE provides a publicly available, unified, measurable set of software

*
 Certain commercial entities, equipment, or materials may be identified in this article to describe an experimental

procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the
purpose.

2

weaknesses. Thus the CWE enables more effective discussion, description, selection, and use

of software security tools and services for finding weaknesses in source code and operational

systems. Just as importantly, the CWE promotes a better understanding and management of

software weaknesses related to architecture and design.

Although the CWE is most

commonly associated with static

code analysis reporting, MITRE

classifies 381 of the total of 943

CWEs “as likely introduced in the

Architecture and Design phase of

the development life cycle.”11 Most

of these CWEs are not apparent in

the coding phase but can be

identified during the design phase

via the techniques discussed

below. In other words, over 40

percent of the CWE can be

addressed early in the SDLC in the

architecture and design phase. But

if not detected then, these

weaknesses can slip past

subsequent automated and

manual reviews, with substantial

cost and delays.

Three Perspectives of

Architecture

To better understand these flaws

and how to address them, we posit

three perspectives for architecture:

enterprise architecture, security

architecture, and software

architecture. The enterprise

architecture perspective looks to

the welfare and the effectiveness

of the entire enterprise. The

enterprise architect is concerned

with the designing, planning and

governing of strategic missions

and programs. The enterprise architect seeks to optimize and harmonize services, processes,

or components across the enterprise to achieve interoperability and portability. To enable the

business objectives of the enterprise, the enterprise architect works with the respective software

architects to leverage solutions across multiple systems and product lines. For example, the

enterprise architect will consolidate individual systems into a service-oriented architecture and

eliminate one-off personnel data sets, asset inventories, and expense tracking and

Definitions

The following definitions clarify concepts in this article:

Bug: A mistake introduced during the development, implementation,

and sustainment phases of the SDLC.
12

Flaw: A mistake introduced during the conceptual, architectural, or

design phases of the SDLC.
13 Flawed code can be bug-free.

“Microsoft reports that more than 50% of the problems the company
has uncovered during its ongoing security push are architectural in

nature. Cigital data show a 60/40 split in favor of flaws…”
14

Software architecture: “…the structure or structures of the system,
which comprise software components, the externally visible properties
of those components, and the relationship among them… In this
regard, architecture is the primary determiner of modularity and thus
the nature and degree to which multiple design decisions can be
decoupled from each other. Thus, when there are areas of likely or
potential change, whether it be in system functionality, performance,
infrastructure, or other areas, architecture decisions can be made to
encapsulate them and so increase the extent to which the overall
engineering activity is insulated from the uncertainties associated with

these localized changes.”
15

Software development life cycle (SDLC): The scope of activities
associated with a system, encompassing the system’s initiation,
development and acquisition, implementation, operation and
maintenance, and ultimately its disposal that instigates another system

initiation.
16

Vulnerability: An occurrence of a weakness (or multiple weaknesses)
within software, in which the weakness can be used by a party to
cause the software to modify or access unintended data, interrupt
proper execution, or perform incorrect actions that were not specifically

granted to the party who uses the weakness.
17

Weakness: A type of mistake in software that, in proper conditions,
could contribute to the introduction of vulnerabilities within that
software. This term applies to mistakes regardless of whether they

occur in implementation, design, or other phases of the SDLC.
18

For
the purposes of this paper, weaknesses are categorized as being
either flaws or bugs.

3

reimbursement. The enterprise architect will promote adoption of a single technical architecture

(such as J2EE or .NET) to avoid the headaches of interconnecting incompatible technologies.

Portability and interoperability are the key architectural objectives.

Examples of flaws that can stem from a misunderstanding, or a misapplication of, enterprise

architecture include:

 Erroneous business rules can lead, for example, to CWE-20: Improper Input Validation,

 Misunderstood user authorities and responsibilities can lead, for example, to CWE-272:

Least Privilege Violation and CWE-200: Information Exposure,

 Failure to establish a common SDLC framework or methodology could led to coding

errors,19 and

 Incompatible data definitions and inconsistent data management can lead to CWE-202:

Exposure of Sensitive Data Through Data Queries.

The perspective of security architecture concerns itself with marshalling the controls, tools, and

skills needed to protect the enterprise from external and internal threats. The security architect

applies knowledge of the business goals and roles to identify and mitigate threat to the

enterprise.

“… the first iteration of the analysis should take place when only the operational

concept and a notional architecture is defined. Though the fidelity of the analysis

may be fairly rough, this early stage is the perfect time to be considering what

attacks your system could be facing, and whether there are design, architecture,

physical composition choices or changes in operational concepts that could

dramatically help to mitigate, manage, or control those attacks with minimal cost

and schedule impact.” 20

The recent iOS Security White Paper21 from Apple is a good example of security architecture.

The White Paper covers the iPhone system hardware and software security, encryption and

data protection, application security, network security, internet services, and device controls.

Apple identifies the threats at each of these levels and describes how the architecture

addresses them. “iOS protects not only the device and its data at rest, but the entire

ecosystem, including everything users do locally, on networks, and with key Internet services.”

Some flaws that should be addressed by security architecture include:

 CWE-260: Password in Configuration File

 CWE-261: Weak Cryptography for Passwords

 CWE-310 Cryptographic Issues

 CWE-330 Use of Insufficiently Random Values

 See CWE-254: Security Features for other CWE in this category.

The Guide to the Software Engineering Body of Knowledge Version 3.0 (SWEBOK®) asserts

that software architectural design “(sometimes called high-level design) develops top-level

structure and organization of the software and identifies the various components.” 22 It is a top

down process with various subcomponents and relationships between components. A software

architect works within a business unit to identify stakeholders and their concerns, developing the

4

architectural requirements for the systems that the business unit develops and deploys. The

software architect coordinates enterprise coding standards and recommended practices with

software development managers and software designers to reduce training costs and learning

curves and promote portability of developers and applications across the enterprise.

The SWEBOK23 distinguishes architectural design from detailed design which “describes the

desired behavior of these components.” However, this distinction will vary by organization.

Some enterprises will not have software architects, instead dividing those duties between

enterprise architects and system and software designers. In some cases the enterprise

architecture will incorporate the higher level constructs of the security architecture, relegating

the details to the developers and security engineers. The software architects could develop the

security architecture, but this is not common given the specialized knowledge and skills of the

security architect.

Some software architectural design flaws include:

 CWE-203: Information Exposure Through Discrepancy

 CWE-710: Coding Standards Violation

 CWE-289: Authentication Bypass by Alternate Name

 CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data

 CWE-280: Improper Handling of Insufficient Permissions or Privileges

 CWE-227: Improper Fulfillment of API Contract ('API Abuse')

 CWE-733: Compiler Optimization Removal or Modification of Security-critical Code

 CWE-14: Compiler Removal of Code to Clear Buffers

Maturity Model Context for Software Architecture and Design Controls

What can organizations do to mitigate or remediate architectural and design errors? Why not

just fix the flaws identified in the CWE/SANS Top 25 Most Dangerous Software Errors? Before

itemizing the anti-flaw arsenal, an SDLC-based framework can provide context for these

controls and identify the gaps that will result from a purely tool and techniques point of view.

MITRE24 recommends that one should “treat the Top 25 as an early step in a larger effort

towards achieving software security. Strategic possibilities are covered in efforts such as

Building Security In Maturity Model (BSIMM),25 SAFECode,26 OSAMM,27 Microsoft SDL,28 and

OWASP ASVS.”29

As an assessment of maturity models is beyond the scope of this article,30 we will focus on

BSIMM owing to its broad appeal to security practitioners seeking pragmatic and actionable

content. Two of the four domains of the BSIMM Version 531 – Governance and Intelligence – list

practices that are exclusively related to architecture and designs. A third domain – Secure

Software Development Lifecycle (SSDL) Touchpoints – has the first of its three practices as

Architecture Analysis. In all, seven of the 12 practices or categories of BSIMM activities

precede the development phase of the SDLC.

“In the governance domain, the strategy and metrics practice encompasses

planning, assigning roles and responsibilities, identifying software security goals,

determining budgets, and identifying metrics and gates. The compliance and

policy practice is focused on identifying controls for compliance regimens such as

5

PCI DSS32 and HIPAA33, developing contractual controls such as Service Level

Agreements to help control COTS [commercial off the shelf] software risk, setting

organizational software security policy, and auditing against that policy. Training

has always played a critical role in software security because software developers

and architects often start with very little security knowledge.”

“The intelligence domain is meant to create organization-wide resources. Those

resources are divided into three practices. Attack models capture information

used to think like an attacker: threat modeling, abuse case development and

refinement, data classification, and technology-specific attack patterns. The

security features and design practice is charged with creating usable security

patterns for major security controls (meeting the standards defined in the next

practice), building middleware frameworks for those controls, and creating and

publishing other proactive security guidance. The standards and requirements

practice involves eliciting explicit security requirements from the organization,

determining which COTS to recommend, building standards for major security

controls (such as authentication, input validation, and so on), creating security

standards for technologies in use, and creating a standards review board.”

“The SSDL Touchpoints domain is probably the most familiar of the four. This

domain includes essential software security best practices that are integrated into

the SDLC. The two most important software security practices are architecture

analysis and code review. Architecture analysis encompasses capturing

software architecture in concise diagrams, applying lists of risks and threats,

adopting a process for review… and building an assessment and remediation plan

for the organization…”

Security Controls for Software Architecture and Design

Given the BSIMM (or one of the other maturity models) to provide context, enterprises can

integrate the following methods into their system development lifecycle process.

Attack Trees

Attack trees, or threat trees,34 provide a

formal model for depicting the attacker

perspective on the security of systems.

The potential attacks against a system

are arranged in a tree structure, with the

ultimate objective as the root node. The

leaves represent the various paths to

achieving that objective. In Figure 1, the

path to “obtaining the authentication

credentials” uses network monitoring to

recognize credential data. The arc

labeled ‘AND’ indicates that the

connected two leaf nodes both must be

completed before going to the parent

node. Every arc that isn’t labeled as an

‘AND’ is considered an ‘OR’ condition.

Figure 1 Attack Tree Example

6

Adding monetary values to the leaf nodes can indicate the financial cost for an attacker to

accomplish the attack. With assigned monetary values, the designer can create

countermeasures that increase the expense of attack routes.35

Threat Modeling

Threat modeling (aka threat analysis) is “a design-time conceptual exercise where a system’s

dataflow is analyzed to find security vulnerabilities and identify ways they may be exploited.”36

The process of identifying threats can reveal flaws in data handling, data sensitivity,

authorization requirements, workflow, business logic, and hazards and other manifestations of

failure 37 that can be addressed with changes in documentation rather than revisions to

deployed code or re-engineered solutions. Moreover, static analysis tools lack knowledge of the

operating environment and can only infer the potential threats facing the system being

analyzed.”38

Information categorization39 is used to establish information sensitivities, data sharing rules, and

access privileges. Next, users can be grouped by privilege and their duties can be separated to

prevent abuse and theft. The manner in which duties are separated may be an architectural

determination derived from organizational missions; the software architect or software designer

will need to ensure the appropriate stakeholders are identified and consulted before coding

begins.

Data flow analysis can enable the use of appropriate levels of encryption and appropriate data

handling, enforcement of encrypted data transfers between web browsers and servers, and

encrypted backend data storage and transfer. Threat analysis can identify restrictions on the

type and quantity of content a user can upload and download, as well as the file headers

needed to enforce those actions.

Misuse Cases

Misuse cases40 are like use cases that present potential abuses of the system. Like use cases,

misuse cases require understanding of the functionality to be provided by the application. A use

case generally describes behavior that the system owner wants the system to implement. In

contrast, misuse cases create conditions or situations that are undesirable in the view of the

stakeholders. Misuse cases help organizations understand their software as the attackers

would. Just as use-case models have proven quite helpful for eliciting functional requirements,

misuse cases can effectively reveal security requirements.

Secure Design Patterns

Secure design patterns41 are descriptions or templates describing general solutions that can be

applied in many different situations to eliminate or mitigate the consequences of flaws. By

providing a higher level of abstraction than secure coding guidelines, secure design patterns

can be applied across programming languages. Secure design patterns differ from security

patterns in that the former do not describe specific security mechanisms such as access control,

authentication, authorization, and logging. Whereas security patterns are focused on security-

related functionality, secure design patterns can (and should) be employed broadly in a system.

7

Least Privilege

The concept of least privilege is: “Every program and every user of the system should operate

using the least set of privileges necessary to complete the job.”42 By considering least privilege

during threat modeling, the system designers can reduce the damage caused if a system is

compromised. A compromised application running with full privileges can perform more

damage than a compromised application executing with reduced privileges. Most operating

systems make little if any distinction in access privilege between a web browser and a word

processer, despite the greater risks associated with the former’s exposure to the internet.

Sandboxing of applications can employ operating system security features to restrict the access

available to sandboxed processes.

Identity and Access Management

Owing to the complexity of the task, most applications use enterprise services for identity and

access management (IDAM) of internal users43. However, an increasing number of applications

are using outside social networks to authenticate external users. Although on-boarding for

social networks tends to be far less rigorous than enterprise on-boarding processes,

membership in a social network raises the threshold for malicious and spam accounts.

However outsourcing IDAM for external users in this manner trades away user privacy to avoid

the technical and management challenges in creating and maintaining accounts for external

users. Unfortunately, such outsourced services are hard (or impossible) to scan for coding

errors and review for design flaws, particularly if provided for free or in barter for customer

usage data.

The software or security architect, or possibly the application designer, will need to identify and

negotiate roles and responsibilities for IDAM controls. The architects and designers will need to

agree on password complexity, resulting action for failed login attempts, session timeouts, user

session refresh, forced re-authentication, re-authentication for privileged or sensitive data

access, etc. The enterprise needs consistency for password reset and login input sanitization to

prevent injection attacks. The software or security architect should ensure the IDAM interface

enforces strict authentication and least privilege for administrative user access and prevention

of session hijacking attacks against privileged users. The IDAM must meet authorization and

accountability requirements, as well as provide logging and reviewing of administrative

transactions for insider threats.

Secure Session Management

The hypertext transport protocol is stateless44; the protocol does not maintain user state from

one page to the next. Session management allows web applications to authenticate users at

the beginning of the session by issuing a Session ID. This ID ensures that all actions during the

session are performed by the same user (or web browser) that originally supplied their

authentication information. Attackers will seek to manipulate the Session ID to steal the session

from an authenticated user. Defense against such attacks includes asking the user to re-

authenticate when the session has timed out or when the user attempts to use sensitive

functionality. The system design must identify all functions where preservation of session state

is necessary.

8

Formal methods

Formal methods are the incorporation of mathematically based techniques for the specification,

development, and verification of software.45 Owing to mathematical syntax and semantics,

formal specification is precise when compared to non-formal and even semi-formal

specifications that may be ambiguous or internally inconsistent. “Much anecdotal evidence

suggests that formal verification can increase productivity, improve quality, and reduce

development time by finding errors early and avoiding rework and testing delays.”46 Formality is

used to achieve clarity of expression, to force early expression of precise behavior, and to allow

more powerful verification and validation techniques to be applied.” 47

Formal methods add to the time needed to specify an application, yet they can improve the

code quality and reduce testing and maintenance costs.48 Formal methods are often employed

in safety critical systems such as trains and nuclear reactors. Formal methods can be used in

the design phase to build and refine the software’s formal design specification, as well as

employed in verification to prove that each step satisfies the requirements imposed by previous

steps. Likewise, they can be used to improve software security, although they are not well

understood and not commonly practiced in that context owing to the training and discipline

required.

To compensate for a lack of experienced personnel and organizational support, formal methods

can focus on algorithms, components, properties, and other key functions in software, rather

than applying them to the entire system. As for training limitations, it may be difficult to find

developers with the needed expertise in formal logic, the range of appropriate formal methods

for an application, or appropriate automated software development tools for implementing

formal methods. Therefore, formal methods are best for software likely to be reused or for

critical functionality.

Conclusions

Over 40 percent of the CWEs can and need to be addressed in the architecture and design

phases of the SDLC, especially as they are not usually apparent in the coding phase. They can

be prevented, discovered, and mitigated via attack trees, threat models, misuse cases, and

secure design patterns. Designers can use these techniques to identify sensitive information for

encryption at rest and in transit. Session identifiers must be protected. Formal methods can

improve software security with mathematically proven techniques. Lastly, managers should

assure themselves that development teams are taking appropriate measures to prevent

software weaknesses.49

Acknowledgements

Ram Sriram, Paul Black, Yan Wu, Vadim Okun, Bertrand Stivalet, and Clarence “Butch” Rappe

provided useful feedback on earlier versions of this paper.

About the Author

Walter Houser works in the Software and Systems Division of the National Institute of Standards
and Technology (NIST) on the Software Assurance Metrics and Tool Evaluation (SAMATE)
Project. There he investigates design flaws, code weaknesses, and reviews static analysis tool
findings. Previously, he led information assurance projects with numerous Federal agencies and
served as an IT policy officer, webmaster, applications development manager, and enterprise

9

architect. Over 40 years ago he began his career as a COBOL and FORTRAN programmer; his
work with SAMATE returns him to his professional roots to bring a coder's perspective to the
challenge of software assurance. He is certified as a CISM, PMP, CISSP, CGEIT, and CCSK.

E-mail: walter.houser@nist.gov

1
 Shim, Gary, “Movie Physics and the Software Industry,” CrossTalk The Journal of Defense Software

Engineering, July 2004 http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-

Petersen.pdf
2
 MITRE. CWE-701: Weaknesses Introduced During Design https://cwe.mitre.org/data/lists/701.html

3
 A. Chou, On Detecting Heartbleed with Static Analysis, April 2014, at

http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
4
 Kan, Stephen. Metrics and Models in Software Quality Engineering, 1995, P.171. “Defect removal at

the earlier development phases is generally less expensive… Fagan (1976) contended that rework done

at the I0, I1, and I2 inspection levels can be 10 to 100 times less expensive than if done in the last half of

the process (formal testing after code integration).”
5
 Jones, Capers and Olivier Bonsignour, The Economics of Software Quality, 2012, P.97. “The oft

repeated aphorism that ‘it costs 100 times as much to fix a bug after release as during design’ is based

on a flawed analysis that ignores fixed costs. Due to fixed costs, the following rule applies: ‘Cost per

defect is always cheapest where the number of defects found is highest.’ … the cost-per-defect metric

focuses too much attention on defect repairs and ignores the greater economic advantages of high quality

in shortening schedules and lowering costs.” Furthermore on page 111 … “Cost per defect penalizes

quality and is always cheapest where the greatest numbers of bugs are found.” And on page 112 “writing

test cases and running them act like fixed costs.”
6
 Federal Information Security Management Act of 2002 Title III of the E-Government Act of 2002 (Pub.L.

107–347, 116 Stat. 2899).
7
 Payment Card Industry Data Security Standard

https://www.pcisecuritystandards.org/security_standards/index.php
8
 Rains, Tim. Director of Trustworthy Computing, Microsoft

http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-running-windows-xp-after-support-

ends.aspx
9
 https://cve.mitre.org/cve/cve.html

10
 MITRE. CWE–Common Weakness Enumeration. 10 Apr 2014 <http://cwe.mitre.org/>.

11
 MITRE. CWE-701: Weaknesses Introduced During Design https://cwe.mitre.org/data/lists/701.html

12
McGraw, Gary. Software Security. 2006. P. 14. Please note that MITRE does not make this distinction

in describing the CWE

13
Ibid, p. 16.

14
Ibid, p. 18.

15
Guide to the Software Engineering Body of Knowledge Version 3.0 (SWEBOK®) A Project of the IEEE

Computer Society, 2014, Page 7-5.

16
“National Information Assurance (IA) Glossary: CNSS Instruction No. 4009.” Committee on National

Security Systems, 26 April 2010, page 72. <http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf>.
17

 MITRE. https://cwe.mitre.org/documents/glossary/index.html#Vulnerability MITRE.

18
 MITRE. https://cwe.mitre.org/documents/glossary/index.html#Weakness

19
 “The SSG [software security group] takes a proactive role in software design by building or providing

pointers to secure-by-design middleware frameworks or common libraries. In addition to teaching by
example, this middleware aids architecture analysis and code review because the building blocks make it
easier to spot errors. ” Also “Secure coding standards help developers avoid the most obvious bugs and
provide ground rules for code review. Secure coding standards are necessarily specific to a programming
language and can address the use of popular frameworks and libraries.” Although the identification and

http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-Petersen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-Petersen.pdf
https://cwe.mitre.org/data/lists/701.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
https://en.wikipedia.org/wiki/E-Government_Act_of_2002
http://www.law.cornell.edu/jureeka/index.php?doc=USPubLaws&cong=107&no=347
http://www.law.cornell.edu/jureeka/index.php?doc=USPubLaws&cong=107&no=347
https://en.wikipedia.org/wiki/United_States_Statutes_at_Large
http://www.gpo.gov/fdsys/granule/STATUTE-116/STATUTE-116-Pg2899/content-detail.html
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://www.pcisecuritystandards.org/security_standards/index.php
http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-running-windows-xp-after-support-ends.aspx
http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-running-windows-xp-after-support-ends.aspx
https://cve.mitre.org/cve/cve.html
https://cwe.mitre.org/data/lists/701.html
https://cwe.mitre.org/documents/glossary/index.html#Vulnerability
https://cwe.mitre.org/documents/glossary/index.html#Weakness

10

maintenance of frameworks, libraries and coding standards is arguably a security architecture function,
the decision to create an SSG and to establish and enforce these methods is an enterprise commitment.
“We have observed that successful software security initiatives are typically run by a senior executive who
reports to the highest levels in an organization. These executives lead an internal group that we call the
Software Security Group (SSG), Software Security Group (SSG)…” McGraw, Gary. Sammy Migues,

Jacob West. Building Security In Maturity Model, Version 5, October 2013, at http://bsimm.com/
20

 MITRE, Engineering for Attacks https://cwe.mitre.org/community/swa/attacks.html
21

 http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf
22

 SWEBOK® Version 3.0 IEEE Computer Society, 2014, P. 2-1
23

 SWEBOK® Version 3.0 IEEE Computer Society, 2014, P. 2-1
24

 http://cwe.mitre.org/top25/index.html
25

 McGraw, Migues, and West, ibid.
26

 Software Assurance Forum for Excellence in Code (SAFECode). Fundamental Practices for Secure
Software Development, page 2. http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
Software Assurance Forum for Excellence in Code http://www.safecode.org/publications.php
27

 The Open Software Assurance Maturity Model http://www.opensamm.org/
28

 Microsoft Security Development Lifecycle http://www.microsoft.com/security/sdl/default.aspx
29

 Open Web Application Security Project (OWASP) Application Security Verification Standard Project
(ASVS) https://www.owasp.org/index.php/ASVS
30

 SwA Capability Benchmarking, https://buildsecurityin.us-cert.gov/swa/forums-and-working-

groups/processes-and-practices/swa-capability-benchmarking
31

 McGraw, Migues, and West, ibid.
32

 Payment Card Industry Data Security Standards (PCI DSS) Overview,

https://www.pcisecuritystandards.org/security_standards/
33

 SP 800-66 Rev 1 An Introductory Resource Guide for Implementing the Health Insurance Portability

and Accountability Act (HIPAA) Security Rule Oct 2008 http://csrc.nist.gov/publications/nistpubs/800-66-

Rev1/SP-800-66-Revision1.pdf
34

 Swiderski, Frank, and Window Snyder, Threat Modeling, Microsoft Press, 2004.
35

 Related to attack trees, “kill chains” can be reviewed by designers when developing attack trees.
Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and
Intrusion Kill Chains Eric M. Hutchins, Michael J. Clopperty, Rohan M. Amin, Ph.D.
http://papers.rohanamin.com/wp-content/uploads/papers.rohanamin.com/2011/08/iciw2011.pdf. For an
example of a kill chain analysis, see A “Kill Chain” Analysis of the 2013 Target Data Breach, Majority Staff
Report, Committee on Commerce, Science, and Transportation, U.S. Senate. March 26, 2014
 http://www.commerce.senate.gov/public/?a=Files.Serve&File_id=24d3c229-4f2f-405d-b8db-
a3a67f183883
36

 McGraw, Migues, and West, op.cit.
37

 Critical Code: Software Productivity for Defense, 2010, Computer Science and Telecommunications

Board, National Academy of Sciences. Page 92.
38

 SAFECode, Op. cit.
39

 NIST Special Publication 800-60 Rev. 1 Guide for Mapping Types of Information and Information
Systems to Security Categories Aug 2008.
40

 OWASP Comprehensive, Lightweight application Security Process (CLASP),

http://www.lulu.com/shop/owasp/owasp-clasp-v12/paperback/product-1869926.html
41

 Dougherty, Chad. Kirk Sayer, Robert Seacord, David Svoboda, and Kazuya Togashi, “Secure Design

Patterns, Software Engineering Institute, October 2009. www.cert.org/archive/pdf/09tr010.pdf. See also
Architecture and Design Considerations for Secure Software, Version 2.0, 18 May 2012.
https://buildsecurityin.us-
cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf.
42 Saltzer, Jerome and Michael Schroeder “The Protection of Information in Computer Systems.”, 1975
http://web.mit.edu/Saltzer/www/publications/protection/ .
43

 National Strategy for Trusted Identities in Cyberspace (NSTIC), www.nist.gov/nstic/

http://bsimm.com/
https://cwe.mitre.org/community/swa/attacks.html
http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf
http://cwe.mitre.org/top25/index.html
http://www.safecode.org/publications.php
http://www.opensamm.org/
http://www.microsoft.com/security/sdl/default.aspx
https://www.owasp.org/index.php/ASVS
https://buildsecurityin.us-cert.gov/swa/forums-and-working-groups/processes-and-practices/swa-capability-benchmarking
https://buildsecurityin.us-cert.gov/swa/forums-and-working-groups/processes-and-practices/swa-capability-benchmarking
https://www.pcisecuritystandards.org/security_standards/
http://csrc.nist.gov/publications/nistpubs/800-66-Rev1/SP-800-66-Revision1.pdf
http://csrc.nist.gov/publications/nistpubs/800-66-Rev1/SP-800-66-Revision1.pdf
http://papers.rohanamin.com/wp-content/uploads/papers.rohanamin.com/2011/08/iciw2011.pdf
http://www.commerce.senate.gov/public/?a=Files.Serve&File_id=24d3c229-4f2f-405d-b8db-a3a67f183883
http://www.commerce.senate.gov/public/?a=Files.Serve&File_id=24d3c229-4f2f-405d-b8db-a3a67f183883
http://www.lulu.com/shop/owasp/owasp-clasp-v12/paperback/product-1869926.html
https://buildsecurityin.us-cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf
http://web.mit.edu/Saltzer/www/publications/protection/
http://www.nist.gov/nstic/

11

44

 MITRE. CWE-384: Session Fixation http://cwe.mitre.org/data/definitions/384.html and CWE-613:

Insufficient Session Expiration https://cwe.mitre.org/data/definitions/613.html
45

 Ghezzi, Carlo. Mehdi Jazayeri and Dino Mandrioli Fundamentals of Software Engineering (2nd Edition),

Sep 29, 2002. 334-337 and pp 550-559. “Validation of the specification and verification planning required

slightly more resources than expected,… The design activity turned out to be substantially simpler than in

similar traditional projects, because of the higher quality of the specification.”
46

 P. Black, personal correspondence.
47

 Ibid
48

 The National Security Agency (NSA) asked Praxis High Integrity Systems to undertake a research

project to develop part of an existing secure system (the Tokeneer System) using Praxis’ Correctness by

Construction development process. “Notice that the productivity during coding for the TIS core is higher

than for the support software despite the core coding effort including static analysis. This is because there

was very little rework of the TIS core software since the early lifecycle activities produced an

unambiguous definition of the required software functionality… It should be noticed that almost half of the

project costs were incurred prior to coding. This reflects the emphasis placed on correct construction of

requirements, specification and design.” http://www.adacore.com/sparkpro/tokeneer/
49

 Department of Homeland Security, “Architecture and Design Considerations for Secure Software,”

Version 2.0, 18 May 2012. https://buildsecurityin.us-

cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf

http://cwe.mitre.org/data/definitions/384.html
https://cwe.mitre.org/data/definitions/613.html
http://www.amazon.com/Fundamentals-Software-Engineering-2nd-Edition/dp/0133056996/ref=sr_1_1?ie=UTF8&qid=1397503218&sr=8-1&keywords=fundamentals+of+software+engineering
http://www.adacore.com/sparkpro/tokeneer/
https://buildsecurityin.us-cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/ArchitectureAndDesign_PocketGuide_v2%200_05182012_PostOnline.pdf

