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ABSTRACT.  We present an exploratory study of multimodal tapping-mode atomic force 

microscopy driving more than three cantilever eigenmodes.  We present tetramodal (4-

eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and 

computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, 

focusing on the case of large amplitude ratio between the fundamental eigenmode and the higher 

eigenmodes.  We discuss the dynamic complexities of the tip response in time and frequency 

space, as well as the average amplitude and phase response.  We also illustrate typical images 

and spectroscopy curves and provide a very brief description of the observed contrast.  Overall, 

our findings are promising in that they help open the door to increasing sophistication and 

greater versatility in multifrequency AFM through the incorporation of a larger number of driven 

eigenmodes, and in highlighting specific future research opportunities.   
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INTRODUCTION 

  Multifrequency atomic force microscopy (AFM) refers to a family of techniques in which the 

microcantilever probe is driven simultaneously or sequentially at more than one frequency [1].  

Often these frequencies correspond to different cantilever eigenmodes [2-12], but there are also 

methods involving single-eigenmode multifrequency excitation [13-15] and spectral inversion 

methods in which the cantilever is driven at a single frequency but the response is analyzed for a 

range of frequencies [16-18].  Generally speaking, the dynamics of the tip motion become 

increasingly complex in the case of simultaneous multifrequency excitation, as has been 

previously reported for multi-eigenmode methods [19-22], which are of particular interest since 

their purpose is to carry out multiple characterization functions at the same time.  Specifically, 

bimodal AFM methods were developed to perform simultaneous topographical imaging and 

compositional mapping [2, 3], and trimodal methods were later introduced to add imaging depth 

modulation capability to the bimodal schemes [9].  Although there is not yet an obvious need for 

methods involving more than three eigenmodes, and although a number of challenges are 

expected in terms of cantilever quality and drive systems performance (see Figure 1 for an 

example of non-ideal amplitude vs. frequency responses for different eigenmodes), signal 

processing instrumentation (higher eigenmodes have higher frequencies and require faster 

electronics as well as higher-performance tip tracking systems), and dynamic complexity [19-

22], it is important to explore the feasibility of imaging with multimodal drives since the rapid 

growth of multifrequency methods suggests they will soon be of interest [1] (in this paper we use 

the term multimodal to designate imaging schemes involving more than three eigenmodes).   

 



 

 

 

Figure 1.  Example of measured frequency response of the first four eigenmodes of one of the 

rectangular cantilevers used in our experiments, which have nominal fundamental resonance 

frequency and force constant of 70 kHz and 2 N/m, respectively.  As the mode order increases 

the shape of the peak increasingly deviates from the ideal response of a damped harmonic 

oscillator. 

 

   In general, multimodal imaging can be accomplished with similar equipment to that used for 

bimodal and trimodal methods [9], except that one needs to include a larger number of 

oscillation controllers according to the number of active eigenmodes.  While the instrumentation 

is already available, the key open question is whether this type of operation is stable and 

meaningful.  In this paper we explore tetramodal (4-eigenmode) imaging experimentally using a 

thin polytetrafluoroethylene (PTFE) film sample and simulate pentamodal (5-eigenmode) 
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cantilever dynamics and spectroscopy computationally (hardware, detection bandwidth and data 

acquisition limitations prevent us from using the same number of eigenmodes and range of 

eigenfrequencies in the experiments as in the simulations).  We focus on the case of large 

amplitude ratio between the fundamental eigenmode (used for topographical imaging) and the 

higher eigenmodes, as in previously validated bimodal and trimodal methods [2-9].  Although 

the dynamics of multimodal tapping-mode AFM can be quite complex, we find that imaging can 

be remarkably stable and that the cantilever eigenmodes, in general, exhibit the predicted 

behavior [20].  We focus our results and discussion section on five different topics, namely tip 

response in time and frequency space, amplitude and phase response, eigenmode frequency 

sweep response, imaging, and optimization of the tip-sample impact.  We discuss primarily the 

dynamics and stability of the method and do not offer an interpretation of the additional contrast 

channels in terms of material properties, as there still remain important open questions even for 

the bimodal and trimodal methods [20-23].  Overall, our findings are promising and open the 

door to increasing sophistication and greater versatility in multifrequency AFM through the 

inclusion of a larger number of driven eigenmodes along with the corresponding additional 

contrast channels.   

 

RESULTS AND DISCUSSION 

Tip Response in Time and Frequency Space 

  The dynamic challenges encountered in multimodal tapping-mode imaging are best appreciated 

by analyzing the time-dependent trajectory of the tip and individual eigenmodes through 

simulation of ideal cantilevers.  Figure 2a illustrates typical tip trajectories simulated for 

pentamodal operation when imaging a polymer sample.  Here the first eigenmode free amplitude 



 

 

is 80 nm and the higher mode free amplitudes are set to either 3 nm or 8 nm, as indicated on the 

graphs, which correspond to typical amplitude ratios used in bimodal and trimodal AFM.  As the 

higher mode amplitudes are increased, the tip trajectory has the appearance of becoming 

increasingly noisy, which occurs in part because the various eigenfrequencies are generally not 

integer multiples of one another [1].  Figure 2b shows several successive tip trajectories for the 

same cases, for typical tapping-mode imaging conditions (only the lowest portion of the 

oscillation is shown, near the sample), illustrating how the tip can penetrate into the surface to 

different depths every successive impact, which is not surprising given the irregular tip 

trajectory.  Furthermore, the graph shows that impacts become less regular as the higher mode 

amplitude increases, which is also as expected.  Such irregular impacts constantly generate new 

transients that in turn lead to non-steady-state tip oscillations. These unsettled oscillations are 

problematic in the development of generalized theories that relate the measurement observables 

(amplitudes, phases, frequency shifts, etc.) to material properties because the transients depend 

on the particular sample, probe and parameters used, as well as on noise levels and non-linear 

intermodal interactions.  However, Figures 2c through 2e show that the oscillation of the 

individual eigenmodes remains remarkably undisturbed.  In fact, the perturbation in the third 

eigenmode (black traces) is not evident to the naked eye.  There is a reduction in the amplitude 

of the second eigenmode (red traces), which is more significant for smaller free oscillation 

amplitudes, but it is not excessive in any of the cases considered.  Some minor irregularity is 

observed from one oscillation of the second eigenmode to the next one for stiffer samples 

(Figure 2e), as was the case in previous studies [20], but the response is still well behaved.  This 

is further confirmed by the oscillation spectrum of this eigenmode, shown in Figure 2f, which 

exhibits a distinct resonance in all cases.  Figures 2c through 2e show only the second and third 



 

 

eigenmode responses, since these are the higher modes with the lowest dynamic force constant 

[1], which makes them more perturbable than the much stiffer and hardly affected fourth and 

fifth modes.  

 

Figure 2. Simulated tip and eigenmode responses for pentamodal tapping-mode AFM: (a) tip 

trajectories for two different higher eigenmode amplitudes over one fundamental cycle; (b) tip 

trajectories for two different higher eigenmode amplitudes over multiple fundamental cycles 

(only the lowest portion of the trajectory is shown, closest to the surface); (c)-(e) second and 

third eigenmode trajectories for different free amplitudes and sample parameters; (f) second 
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eigenmode spectra for different free amplitudes.  The surface properties were accounted for 

through a standard linear solid model (see methods section) with Ko = 7.5 N/m, Kinf = 7.5 N/m 

and Cd = 1 x 10
-5

 N s/m for the “soft” sample and Ko = 15 N/m, Kinf = 15 N/m and Cd = 3 x 10
-5

 

N s/m for the “hard” sample.  The cantilever parameters are 1 = 75 kHz, k1 = 4 N/m, Q1 = 

150, Q2 = 3 Q1, Q3 = 5 Q1, Q4 = 7 Q1 and Q5 = 9 Q1.  The free oscillation amplitudes were A1 = 

80 nm, and A2 = A3 = A4 = A5 = 3 nm or 8 nm, as indicated on the graphs.  The higher mode 

frequencies and dynamic force constants were scaled using the eigenfrequency ratios of ideal 

rectangular beams [1].   The cantilever height was kept fixed at 60 nm above the surface.  The 

mode 2 & 3 responses are color coded with their respective axes in figures (c) through (e). 

 

Amplitude and Phase Response 

   Simulations of the amplitude and phase behavior for the cases illustrated in Figure 2 show that 

these key observables also follow the expected trends, as seen in Figure 3 [24].  Figures 3a and 

3b provide, respectively, the amplitude and phase response vs. cantilever position for pentamodal 

operation using higher eigenmode amplitudes of 3 nm, and Figures 3c and 3d provide the 

corresponding results for higher eigenmode amplitudes of 8 nm (the fundamental free amplitude 

was set to 100 nm in both cases).  The oscillation amplitude of each eigenmode decreases with 

increasing tip-sample interaction (shorter distance between the cantilever and the sample) and the 

corresponding phase decreases and deviates increasingly from 90 °, indicating in this example a 

predominantly repulsive interaction [24].  The results also agree with previously known trends 

[9, 19, 20] in that the phase and amplitude responses become less and less sensitive as the 

eigenmode order increases (that is, the magnitude of the phase and amplitude shifts of the higher 

eigenmodes is in general smaller than for the lower eigenmodes, for the same free oscillation 



 

 

amplitude), and the sensitivity, defined as the rate of change in these observables with respect to 

a change in cantilever position, also decreases as the higher mode free oscillation amplitude is 

increased (as discussed in detail in reference [20] for the trimodal case).  This observation is 

important in terms of signal-to-noise ratio, since the amplitude, phase or frequency shifts, 

depending on the mode of operation used, could fall below the noise floor for very high (less 

sensitive) eigenmodes due to their small magnitudes.  It is also important to note that although 

the response curves for different modes exhibit some similarity with one another, they do not 

necessarily contain the same spectroscopic information, as the shape and curvature can vary 

significantly from one eigenmode to another, especially for the lowest ones.  Different 

eigenmodes may give different trends in their response variables either due to being able to 

oscillate in different regimes (attractive or repulsive) with respect to one another or due to 

nonlinear interactions between them [20-22] (see also Figures 4c and 4d below, which offer an 

experimental example where not all eigenmodes oscillate in the same regime).  As a result, the 

spectroscopy theory previously developed for bimodal AFM [25, 26] is not necessarily 

applicable to multimodal AFM.   

  The results of Figure 3 also highlight subtleties in the amplitude curve that could be important 

depending on the sample and the type of information sought.  Specifically, the results show that 

the amplitude curve for the first eigenmode, which is the basis of the amplitude modulation 

method [24], is not a straight line as it is in single-mode operation (for guidance, the dashed line 

in Figures 3a and 3c is a straight line of slope unity, containing the origin).  Furthermore, the 

curvature differs for different higher mode amplitudes (compare the red traces in Figures 3a and 

3c) and the curve shifts to the right for larger amplitudes of the higher modes, since the range of 

oscillation of the tip is the sum of the oscillation ranges of all active eigenmodes.   



 

 

 

 

 

Figure 3. Simulations of amplitude and phase response for two different free amplitudes of the 

higher eigenmodes.  All higher eigenmodes were driven at the same free amplitude in both cases, 

with the magnitude indicated at the top of the graphs (A = 3 nm or 8 nm), while the fundamental 

free amplitude was set to 80 nm.  The simulation parameters are the same as for Figure 2, except 

that the cantilever position was varied from 100 nm to zero.  The dashed lines in graphs (a) and 

(c) have slope unity and contain the origin, and are provided for guidance. 
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   Figure 4 shows experimental curves analogous to those of Figure 3, but for tetramodal 

imaging.  Since the instrument used has a limited number of acquisition channels, we focused 

our study on the fundamental amplitude and the four phase responses.  Furthermore, since higher 

eigenmodes have increasingly higher optical detection sensitivity [1], it is possible in an 

experiment to use smaller physical amplitudes (in units of length) for the highest mode 

oscillations while still being able to obtain relatively large amplitude readings at the 

photodetector (in units of voltage), which is also advantageous in terms of making these modes 

more sensitive [20].  In our experiments we set the free fundamental amplitude to approximately 

100 nm and the next three modes to free amplitudes of approximately 2.9 nm, 1.8 nm and 1.3 

nm, respectively.  With these settings the amplitude reading at the photodetector for all higher 

modes was approximately 10 % of the reading for the fundamental eigenmode despite the 

comparatively small physical amplitude of the higher modes.  Figures 4a and 4b correspond to an 

experiment in which all eigenmodes remained in the repulsive regime (as in Figure 3) and 

Figures 4c and 4d show similar data for an experiment in which the first eigenmode remained in 

the attractive regime while all others remained in the repulsive regime.  Although the simulations 

assume ideal eigenmode behavior, which is not the case for an experiment (see Figure 1), they do 

predict important features that were also observed in the experiments.  Firstly, non-linear 

amplitude curves can occur both when the topographical acquisition mode is in the repulsive and 

in the attractive regime, which as discussed above, has implications on the accuracy of 

topographical measurement.  Second, there is a decrease in the magnitude of the contrast signal 

(phase shift) as the higher mode order increases, although we did not observe cases in which the 

highest eigenmode contrast signals fell below the noise floor.  Notice also that the second and 

third phases are noisier than the other two, which is in agreement with the lower eigenmodes’ 



 

 

greater propensity to be perturbed by external forces.  Finally, the experimental results illustrate 

that the curvature of the amplitude or phase response is not necessarily preserved for different 

eigenmodes (this is especially true when not all eigenmodes operate in the same imaging regime, 

as illustrated in Figure 4d).   

 

 

Figure 4. Experimental fundamental amplitude (a, c) and phase responses (b, d) vs. cantilever 

position for tetramodal imaging using a cantilever similar to the one whose response is 

illustrated in Figure 1.  (a) and (b) correspond to an experiment in which all eigenmodes 

oscillated in the repulsive imaging regime, similar to the simulations of Figure 3, while (c) and 

(d) correspond to an experiment in which the fundamental eigenmode oscillated in the attractive 
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imaging regime (this mode’s phase is greater than 90 °) while all other eigenmodes oscillated in 

the repulsive imaging regime. The free oscillation amplitudes for the four eigenmodes were set to 

approximately 100 nm, 2.9 nm, 1.8 nm and 1.3 nm, respectively.  The dashed lines in graphs (a) 

and (c) have slope unity and contain the origin, and are provided for guidance. 

 

Engaged Frequency Response 

   A key consideration regarding the acquisition of meaningful results with multimodal AFM 

imaging is the quality of the amplitude vs. frequency curve of the higher eigenmodes while the 

cantilever and sample are engaged [20] (this is similar to the usual tuning curve, but with the 

cantilever and sample engaged).  Specifically the degree to which these curves resemble the 

response of a damped harmonic oscillator, determines the degree to which previous 

interpretations of the observables and calculated quantities (e.g., phase and amplitude contrast, 

calculated dissipated power, calculated virial, etc. [25, 26]) are applicable.  This consideration is 

also important in cases where higher modes are excited using constant drive frequency and 

amplitude without any feedback (i.e., in ‘open loop’ [2, 3]).  In such cases, as long as the 

oscillation is not chaotic, the user will generally be able to obtain an image, but imaging stability 

does not guarantee that the results are physically meaningful, since it does not guarantee that the 

contrast eigenmodes conform to the assumed ideal response.  In contrast, if frequency 

modulation methods are used to drive the higher modes [5, 7, 27], it is necessary that the 

frequency response be well behaved both to ensure the stability of the controls scheme and to 

guarantee physically meaningful results.  Our simulations show that the highest (least 

perturbable) eigenmodes retain their ideal response even in multimodal operation.  However, it is 

possible that the response of the lowest eigenmode, excluding the fundamental eigenmode, will 



 

 

be perturbed enough to compromise the stability of a frequency modulation drive.  Figure 5 

illustrates the amplitude response of the second eigenmode within pentamodal operation using 

conditions that are close to those used to construct Figures 2 and 3, for different amplitudes of 

the higher eigenmodes (Figure 5a), for different cantilever positions above the sample (Figure 5b 

– the trace for Zc = 120 nm is the free response), and for different amplitudes of the second 

eigenmode, while eigenmodes 3 to 5 were driven with a free oscillation amplitude of 3 nm.  In 

the first case (Figure 5a) we observe that the second eigenmode effective resonance frequency 

(location of the peak in each curve) shifts to the left as the amplitude is increased, which is as 

expected since the influence of the tip-sample forces on the dynamics diminishes for larger 

amplitudes [20] (here the repulsive tip-sample forces shift the instantaneous resonance frequency 

of this eigenmode to the right, but this effect diminishes for larger amplitudes, which decrease 

eigenmode sensitivity [9]).  However, the level of perturbation does not change significantly for 

the range of conditions explored (it only improves slightly for larger amplitudes).  In the second 

case (Figure 5b), we see that the level of perturbation increases, accompanied by a greater 

frequency shift (due to a greater influence of the repulsive forces in the range of conditions 

considered), as the cantilever is lowered towards the sample.  Additionally, the frequency 

response curve gradually deviates from the ideal curve, suggesting that the stability of frequency 

modulation operations may be compromised unless slower scanning speeds are used, which 

permit greater averaging in the signals.  Finally, the results of Figure 5c show that the eigenmode 

frequency shift increases as its free amplitude is decreased while keeping the other higher 

amplitudes constant, in agreement with previous results [20] and with Figure 5a, although the 

shape of the response curve remains distorted for most of the range of amplitudes considered.  

Despite the nonidealities, the distortions are not extremely drastic for the examples considered, 



 

 

suggesting that frequency modulation drives could still be stable under these conditions as 

previously shown for trimodal imaging [20].  We recall also that the higher mode responses 

become more and more regular as the mode order increases (since they are perturbed to a lesser 

extent by the sample), so the user can in principle select a higher and higher mode whose 

behavior is close enough to that of an ideal damped harmonic oscillator, in order to enable stable 

controls.  In practice, however, this may not always be feasible or useful in light of the results of 

Figure 1 which illustrate the typical decline in the quality of the higher eigenmode responses due 

to tip shaker and cantilever nonidealities. 
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Figure 5.  Simulated amplitude vs. frequency response of the second eigenmode in pentamodal 

operation, calculated by sweeping the frequency using chirp drive functions while the cantilever 

and sample remained engaged [28].  The simulation parameters are similar to those provided 

for Figure 2, except that the first eigenmode free amplitude was set to 100 nm.  (a) Effect of 

higher mode free amplitude (A2 = A3 = A4 = A5 = 3 nm, 5 nm, 7 nm or 9 nm – Note: the various 

traces shown are normalized by the free amplitude in each case); (b) effect of cantilever position, 

Zc (A2 = A3 = A4 = A5 = 3 nm); (c) effect of second eigenmode peak chirp response amplitude 

(Achirp = 1 nm, 3 nm, 6 nm or 9 nm) for constant amplitude of the highest eigenmodes (A3 = A4 = 

A5 = 3 nm). 

 

Imaging 

   Using the same settings as for figure 4, imaging of the PTFE film was carried out using typical 

scan rates for tapping mode AFM with an amplitude setpoint of 50 % to 60 %.  Similar to the 

spectroscopy results of Figure 4, it was possible to image the surface with the fundamental 

eigenmode operating in the repulsive imaging regime (Figures 6 and 7) as well as in the 

attractive imaging regime (Figure 8), although there was little control on the selection of the 

regime.  In general, higher free amplitudes, lower amplitude setpoints, and drive frequencies 

lower than the natural frequency favor the repulsive regime, but the result is also strongly 

determined by the cleanness and sharpness of the tip.  Cleaner and sharper tips undergo smaller 

tip-sample attraction due to their smaller effective radius of curvature.  Therefore, they are more 

amenable to imaging in the repulsive regime, which in general gives sharper topographical 

contrast since it is governed by contact as opposed to long-range forces which are more likely to 

cause tip broadening artifacts [29]. 



 

 

   For characterization in the repulsive regime (see Figure 6) the phase images generally 

resembled one another for all eigenmodes, although differences and even contrast inversion 

between eigenmodes emerged on certain regions of the sample as the imaging conditions were 

changed.  Additionally, the varying range of phase values observed for each eigenmode (phase 

range decreasing with increasing mode order) confirms the decreasing sensitivity of higher 

eigenmodes, even though higher modes were driven with smaller amplitudes (see parameters in 

the caption of Figure 4).  This is better illustrated in Figure 7, where all phase images from 

Figure 6 are plotted using the same scale.  Clearly the highest modes exhibit the smallest phase 

shift from 90 °.   In contrast, the phase images acquired driving the fundamental eigenmode in 

the attractive regime almost always exhibited partial contrast inversion with respect to one 

another.  For example, some bright spots in the first phase image of Figure 8 look dark in the 

fourth phase image and vice-versa.  The observed contrast inversion may be related to the 

mechanism previously identified for bimodal imaging, which was related to the energy content in 

each eigenmode [20-22], or may be the result of nonlinear interactions between the eigenmodes, 

given the complexity of the multimodal tip-sample impact. 

 

  



 

 

 

Figure 6. Tetramodal imaging of a thin PTFE film sample using a cantilever similar to the one 

whose response is shown in Figure 1.  The range of each phase image was chosen such that the 

contrast is easily discernible.  A small percentage of pixels in each image has values that are 

outside the chosen range.  For comparison, Figure 7 shows all phase images of this figure 

plotted using the same scale.  In this experiment all eigenmodes oscillated in the repulsive 

imaging regime (all phase values are below 90 °). 

 



 

 

 

Figure 7. Phase images of Figure 6 plotted using the same scale.  As discussed in the text, the 

phase shifts generally decrease with increasing eigenmode order. 



 

 

 

Figure 8. Imaging results analogous to those of Figure 6, but with the first eigenmode 

oscillating in the attractive regime (this mode’s phase values are greater than 90 °).      

 

Optimization of the Tip-Sample Impact 

   Despite the stability with which imaging can be carried out and the apparent robustness of our 

results, the non-uniformity of successive tip-sample impacts, the nonlinear coupling of the 

various eigenmodes, as well as time-dependent tip-sample behaviors such as viscoelasticity 

suggest that unless single-cycle techniques [16, 18, 30] can be implemented accurately for 

multimodal imaging, it may not be possible to carry out fully quantitative measurements of the 

surface properties.  As already discussed, the tip trajectories for a tetramodal or pentamodal 

operation are even more complex than the already complex bimodal [19] and trimodal [20] 

trajectories.  Furthermore, the variation of the impact shape from one fundamental oscillation to 



 

 

the next one results in non-steady-state dynamics which may not only require lower scanning 

speeds in order to properly characterize each location on the surface, but which may also 

preclude the application of spectroscopy theories based on ideal responses and the recording of 

observables averaged over multiple cantilever cycles [25, 26].  However, our simulations also 

show that the regularity of the tip-sample impact can be significantly improved by choosing non-

consecutive eigenmodes with relatively high frequency ratios among them, as illustrated in 

Figure 9 for the trimodal case (the regularity of the impact depends on the frequency spacing 

between each pair of active eigenmodes, so similar arguments can be made for other multimodal 

cases).  Figure 9a compares the trajectories of a trimodal oscillation using eigenmodes 1, 2 and 3 

vs. using eigenmodes 1, 4 and 9.  It is clear that the successive impacts shown differ significantly 

in the former case, but not in the latter (see also Figure 9b, which shows a close-up view of the 

lowest portion of the tip trajectories of Figure 9a, illustrating a more symmetric and regular 

impact when the eigenmode spacing is greater).  Figure 9c shows the force trajectory for a large 

number of impacts, confirming that successive tip-sample interactions become more similar with 

greater eigenmode spacing.  Notice how the peak forces over a large number of fundamental 

oscillations in Figure 9c are similar in both cases, but the dynamics are less steady for the case 

when the first three eigenmodes are used.  Note also that in order to improve the regularity of the 

multimodal tip-sample impact, it is necessary to increase the frequency ratio for each pair of 

adjacent eigenmodes.  For the case discussed here, for example, using eigenmodes 1, 8 and 9 

would not be as effective as using eigenmodes 1, 4 and 9.  Although the spacing between the first 

two active eigenmodes would be large in the former case, the frequency ratio of the highest two 

eigenmodes (8 and 9) would only be ≈ 1.3.  The results of Figure 9 suggest that it could in some 

cases be advantageous to maximize the frequency ratios when selecting the active eigenmodes, 



 

 

although this may not always be possible due to bandwith limitations in the electronics and 

cantilever and shaker nonidealities (see Figure 1).  As stated above, the use of very high 

eigenmodes can also result in low signal-to-noise ratios due to the decreasing sensitivity in the 

spectroscopic observables (e.g., small phase shifts, etc.) with increasing mode order, despite the 

higher optical sensitivity in tracking the tip response [1].  

 

 

Figure 9. (a) Comparison of tip trajectories for trimodal oscillations using the first three 

eigenmodes (A1 = 100 nm, A2 = A3 = 3 nm) and eigenmodes 1, 4 and 9 (A1 = 100 nm; A4 = A9 = 

3 nm) with Asetpoint ≈ 80 %; (b) close-up of the lowest portion of the tip trajectory for the above 
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cases; (c) illustration of force trajectories for the above cases (notice how the peak forces in 

successive impacts become more similar to one another as eigenmode spacing increases). The 

sample and cantilever parameters are the same as for Figure 2. 

 

 

 

CONCLUDING REMARKS 

   We have explored experimentally and computationally the dynamics and stability of 

multimodal tapping-mode atomic force microscopy when using more than three active cantilever 

eigenmodes.  We have illustrated the increase in complexity with a larger number of 

eigenmodes, as well as its indirect effect on the topographical measurement and the response of 

the spectroscopic observables.  We have also shown that stable imaging is possible, although 

contrast differences emerging from the nonlinear interaction of the eigenmodes are also 

expected.  Overall our findings are positive and encourage further development of multimodal 

techniques, as well as fundamental research on the probe dynamics and on the measurement 

process itself.  We take the opportunity to remind the reader that our results are only applicable 

to measurements performed in air environments, corresponding to fundamental quality factors of 

a few hundreds, and that the work reported here represents by no means an exhaustive study.  

High-damping environments may offer even greater complexities [31] and our amplitude-

modulation/open-loop results are not directly applicable to vacuum environments [24, 32]. 

 

METHODS 

Experimental 



 

 

   The tetramodal experiments were performed using a Cypher AFM (Asylum Research, Santa 

Barbara, CA), driving all four modes through the instrument’s internal lock-ins (see disclaimer 

below).  Since the number of signals that can be recorded is limited to six, we recorded all the 

eigenmode phases along with the fundamental amplitude during the experiments.  Images were 

acquired with a resolution of 512 x 512 pixels at a scan rate of 1 Hz in the fast direction.  We 

used a commercial cantilever having a nominal fundamental resonance frequency of 70 kHz and 

a nominal fundamental force constant of 2 N/m. The sample consisted of PTFE pipe thread seal 

tape (nominal thickness ≈ 0.1 mm) stretched onto the back of single-sided scotch tape, which 

was adhered sticky side down onto a metal substrate.  This type of polymer sample was chosen 

in order to obtain high contrast in the phase signals. 

 

Computational 

   For the numerical simulations five eigenmodes of the AFM cantilever were modeled using 

individual equations of motion for each, coupled through the tip-sample interaction forces as in 

previous studies [8, 20].  Driven eigenmodes were excited through a sinusoidal tip force of 

constant amplitude, and frequency equal to the natural frequency.  Chirp excitation functions [8, 

28] were used to construct the engaged amplitude vs. frequency curves of Figure 5.  The 

equations of motion were integrated numerically and the amplitude and phase of each eigenmode 

were calculated using the customary in-phase (Ii) and quadrature (Qi) terms: 





N

ii dtttzI )cos()(     (1) 





N

ii dtttzQ )sin()(     (2) 



 

 

where zi (t) is the i-th eigenmode’s spatial response in the time domain, N is the number of 

periods over which the phase and amplitude were averaged,  is the excitation frequency, and  

is the nominal period of one oscillation.  The amplitude (Ai) and phase (i) were calculated, 

respectively, as: 

22

iii QI
N

A 



    (3) 

)/(tan 1

iii IQ     (4) 

  The repulsive tip-sample forces were accounted for through a standard linear solid (SLS) model 

[9] which exhibits both stress relaxation and creep (see Figure 10 and notice the variety of force 

and surface trajectories for the single and multiple impacts observed in multimodal tapping-mode 

imaging [20]). Long-range attractive interactions were included via the Hamaker equation [24] 

for a tip radius of curvature of 10 nm and a Hamaker constant of 2 x 10
-19

 J.   
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Figure 10. (a) Standard linear solid (SLS) model [9]; (b) illustration of the force trajectory for a 

single tip-sample impact along with the relaxation trajectory of the surface (notice how the 

surface remains temporarily indented and gradually recovers after the impact); (c) illustration of 

a triple impact within a single cycle of the fundamental oscillation for a multimodal imaging 

case (see also the discussion on multiple impacts in reference [20]); (d) force curve (force vs. tip 

position) for a double-impact, illustrating also the temporary depression of the surface due to 

relaxation of the SLS model (the red arrow illustrates the depressed position of the surface 

where tip-sample contact is lost after the first impact). 
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