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Abstract: Standard product data models enable information exchange across 
different organisations, actors, processes and stages in the product lifecycle. 
These standard models need to support diverse domain-specific requirements 
from the multitude of disciplines involved during a product’s lifecycle. Due to 
this diversity, challenges are to: 1) develop multidisciplinary models; 2) extend 
them to support new requirements over time; 3) implement the resulting 
gigantic information models. ISO 10303, the reference standard for  
PLM-related data models provides mechanisms to enable specialisation of 
generic product data to address some of these challenges. In this paper, we 
introduce the need for dynamic product data models, detail the ISO method and 
identify its limitations. We present enhancements to that methodology using 
ontologies and the SPARQL Inference Notation (SPIN) for validating product 
data. To conclude, we show how these ontologies can be leveraged to ease and 
strengthen PLM data integration through the use of Linked Data. 
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1 Introduction 

We live in the information age. Data has become an essential asset for most every-day 
situations and business interactions. The need to share data, to generate information, and 
create new information from that data is common to all fields of research and all 
economic activity. To manage data well, we must understand that it has a lifecycle 
composed of several steps including definition, instantiation, transformation, validation, 
integration and archive. When not properly defined and integrated (Lenzerini, 2002), data 
might become incomplete, inconsistent or, even worse, unusable. Data requirements 
evolve and we must define and manage data over its entire lifecycle. Evolving data 
requirements is an important issue and a technological challenge because it is not 
possible to define, in advance, data structures that meet requirements you do not yet 
know. 

Specifying data requirements is particularly challenging in domains such as product 
lifecycle management1 (PLM) where information exchange involves many actors and 
sharing across multiple functions and software applications. In these situations, each 
function has its own needs and each application has its own input/output requirements. 
As a result, it becomes hard to find a common information model for representing data. 
The challenge is even bigger when a temporal aspect has to be considered since it 
requires the ability to extend the information structure dynamically over time. One area 
within the PLM that we have identified with these characteristics is manufacturing. 



   

 

   

   
 

   

   

 

   

   40 S. Krima et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Manufacturing involves many global actors using a myriad of software applications that 
perform a series of product management functions that can last from weeks to decades. 

Because data models are a static view of a domain of discourse (Spyns et al., 2002), 
extending them require numerous updates of the initial model. This operation is 
expensive in cost and time. It requires an understanding of the entire initial model to 
ensure correct extensions are developed. Software components may need to be updated 
so they can exchange, understand, and use the information in the new model. Finding an 
alternative is crucial when dealing with complex products and multiple requirements 
typical of PLM. 

ISO 10303 (Pratt, 2001), informally known as STEP, is the reference standard among 
product-related data models, and is often considered as common model in PLM 
approaches (Mehta et al., 2009). ISO 10303 provides two mechanisms that enable 
specialisation of generic product data to address some of these issues. The first goal of 
this paper is to demonstrate how ontologies and semantically rich models can enable 
dynamic customisation of product models, using STEP as an example. The second goal 
of this paper is to demonstrate the role and the importance of closed world validation, and 
how to achieve it when dealing with ontologies. Finally, we will demonstrate benefits and 
limitations of semantically rich product data models, to simplify PLM data integration in 
a disparate and heterogeneous environment. 

2 Technical background and foundation 

2.1 ISO 10303 for interoperability 

ISO 10303, most commonly known as the Standard for Exchange of Product (STEP) 
model data, is an international standard designed to exchange digital information, 
enabling an ever-widening range of engineering software systems to interoperate. STEP 
is divided into parts, to ease its use and implementation. The parts of STEP that are 
designed for implementation are called application protocols (APs). APs contain 
information models developed using a standard language, called EXPRESS. The most 
common exchange structure for EXPRESS information models is also standardised, and 
is simply referred to as Part 21 (ISO 10303-21, 2002). 

STEP has a broad scope and new capabilities are continually being added to cover 
emerging user needs. However, the standards-development timeline is quite long, and a 
more responsive approach was sought for certain types of schema customisation. STEP 
provides two mechanisms that enable customisation for domain-specific needs. First, 
users can define and add new attributes to existing concepts. Second, users can classify 
STEP instances with an externally controlled vocabulary – this is called external 
classification. Although user-defined attributes give users the ability to add new 
properties to instances, those properties have no formally-defined semantics. Due to their 
implementation as independent key-value pairs, they are only human interpretable 
properties. We will focus on the external classification approach. 

The STEP external classification approach defines added semantics with an external 
resource – such as a taxonomy or controlled vocabulary – and uses it to classify instances 
so each instance will contain a link to its formal definition. 

To establish links between an instance and its external definition, STEP uses  
three EXPRESS entities: Applied_classification_assignment, Externally_defined_class 
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and External_class_library. External_class_library represents an external classification, 
Externally_defined_class represents a classifier formally defined in the external 
classification and Applied_classification_assignment is the way to apply the external 
classifier to an instance. The following Part 21 code shows an example of classification 
where an instance of the product EXPRESS entity is classified as a ‘Car’, an external 
concept formally-defined in the external library whose identifier is ‘automotive-library’. 

#1 = PRODUCT($, $, ‘Car Assembly’,()); 

#2 = APPLIED_CLASSIFICATION_ASSIGNMENT(#3, $, (#1)); 

#3 = EXTERNALLY_DEFINED_CLASS(‘Car’, $, $, #4); 

#4 = EXTERNAL_CLASS_LIBRARY(‘automotive-library’); 

2.2 The OWL for reference data 

Since STEP does not provide any recommendation on the formalism to use, in this paper 
we choose to represent the external classification, also known as reference data, using an 
Web Ontology Language (OWL) ontology (W3C, 2004a). Because “an ontology is an 
explicit specification of a conceptualization” (Gruber, 1995) and provides “a shared, 
formal, explicit and partial account of [that] conceptualization” (Uschold and Gruninger, 
1996), it is an appropriate candidate to represent reference data. OWL is also 
recommended by the Organization for the Advancement of Structured Information 
Standards (OASIS) Product Lifecycle Support Technical Committee (OASIS, 2010) for 
implementing ISO 10303-239 (2005). Using ontologies for reference data allows us to 
use unique resource identifiers (URIs) to refer to the external class, as follows: 

#1 = PRODUCT($, $, ‘Car Assembly’, ()); 

#2 = APPLIED_CLASSIFICATION_ASSIGNMENT(#3, $, (#1)); 

#3 = EXTERNALLY_DEFINED_CLASS(‘http://nist.gov/rdl#Car’, $, $, #4); 

#4 = EXTERNAL_CLASS_LIBRARY(‘automotive-library’); 

2.3 Linked data for integration 

PLM data is often spread across a network of systems that produce different product 
information (e.g., requirements, design, manufacturing, maintenance, logistics), in 
different representations, in different physical locations. One challenge is to integrate the 
information in the varied representations together to obtain a global and homogeneous 
view of the product information, independent from location. Thanks to the internet, data 
can be relatively easily exchanged and shared across the globe. When properly 
represented and linked together, disparate information can build one integrated view of 
the product information. 

Berners-Lee (2006) introduced the concept of Linked Data, as part of the W3C 
semantic web activity, and described it as a way of publishing and linking structured and 
independent data together, over the web, to enrich its meaning. This concept of Linked 
Data is based on four principles defined by Tim Berners-Lee, and that appear in the W3C 
Linked Data platform definition (W3C, 2013): 
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• use URIs as name for things 

• use HTTP URIs so that people and user agents can look up those names 

• provide useful information, in standard form (RDF*, SPARQL) 

• include links to other URIs to enable further discovery 

Using globally unique identifiers to name things, and representing information about 
those things using standards, allows people and software to discover related information, 
formally and without ambiguity, over the internet. Consequently, identical things (and 
their related information) will be represented with different identifiers when published by 
different sources or in different datasets. The connection between things and related 
information and identification of the identical things through different datasets enable 
building a rich, meaningful and structured network of information. 

3 Dynamic customisation: using OWL for semantic STEP 

With OWL, extensions using External_class do have well-defined semantics, but present 
their own set of problems because of the heterogeneous architecture (see Figure 1) where 
the classifiers and the instances require integrating two different implementation 
technologies – OWL and Part 21, which increases the complexity for developers to 
implement a mechanism for classification of instances. 

Figure 1 STEP external classification heterogeneous architecture (see online version for colours) 

 

One needs to convert both the classifiers and the instances to a common implementation 
technology that allows dynamic classification of instances so that the type of an instance 
can change through its lifecycle. A technology that enables such dynamic classifications 
is the ontologies where classification of instances is driven by constraints. OWL is a 
language for implementing this mechanism and has been used, in OntoSTEP2 (Krima  
et al., 2009) as a destination language to translate STEP APs and instances originally in 
EXPRESS/Part 21. Once STEP APs and instances are transformed into OWL and 
combined with an external classification in OWL, one can achieve an automatic 
classification of instances by enriching the external classification with OWL restrictions. 
Figure 2 shows an example where an instance of Product is classified using an ontology 
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where Car, FastCar and SUV are defined. We then enrich this ontology so that any 
instance of Product is classified as an instance of Car when the STEP method for external 
classification is correctly used (see bottom condition in Figure 2). After classification, the 
Product instance #1 is not only an instance of Product but also an instance of Car. In 
Figure 2 instances are shown as Part 21 for ease of readability only. Reference data and 
the OWL constraint are expressed using the N3 notation3. 

Figure 2 Example of external classification using STEP and OWL in a homogeneous architecture 
(see online version for colours) 

 

In this section, we presented a mechanism, implemented with OWL, which enables 
automatic classification of instances based on constraints. We converted STEP instances 
into OWL to perform this classification. However, OWL has limitations that we explain 
and overcome in the next section. 

4 Using OWL for STEP validation 

In the previous section, we classified instances based on the string value of an attribute 
(i.e., the name of the external class used for classification). This classification is purely 
syntactic and does not ensure that classified instances are semantically correct. To be 
semantically correct, classified instances need to pass some integrity constraint 
validation. 
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As an example of an integrity constraint, consider the following. A car is defined as a 
product with four wheels (the constraint); any instance of car that does not have four 
wheels should be seen as an error. Using OWL with the absence of Unique Name 
Assumption (UNA), where different names refer to different instances, we are essentially 
dealing with the Open World Assumption (OWA) (Elçi et al., 2008). In the open world, a 
car with three wheels cannot be seen as inconsistent with our constraint. This can happen 
because it is possible that this car has four wheels, but the information about the fourth 
wheel has not been discovered yet. In other words, open world means that we cannot 
assume that our knowledge base, used to build our assumptions, is complete. As a result, 
it is quite complex to use native OWL mechanisms for integrity constraint validation. We 
need an approach that simulates a closed world. 

Research efforts in this domain have yielded some approaches, implementations, and 
software (Motik et al., 2007; Sirin and Tao, 2009) that provide solutions for validation of 
integrity constraints when using OWL. SPARQL Inference Notation (SPIN) (Knublauch 
et al., 2011) is the solution we have chosen. SPIN is a SPARQL-based rules and 
constraints language with an object-oriented approach. With SPIN users can define rules 
and constraints at the class definition level, and then apply them to instances. More 
importantly for our purpose, implementations of SPIN can produce data validation 
constraint results as if the world was closed. 

Let us consider the following Part 21 instance file (syntactically valid with respect to 
STEP AP2034) that represents five products where one, instance #1 is defined as a car, is 
an assembly of #6, defined as a body, and three instances of #9, defined as a wheel. The 
reference data used in #17 is defined using OWL. 

#1 = PRODUCT($, $, ‘Car Assembly’, ());
#2 = PRODUCT_DEFINITION_FORMATION($, ‘Car assembly’, #1); 

#3 = PRODUCT($, $, ‘Body’, ()); 

#4 = PRODUCT_DEFINITION_FORMATION($, ‘Body’, #3); 

#5 = PRODUCT_DEFINITION($, ‘Body’, #4, $); 

#6 = PRODUCT_DEFINITION($, ‘Car’, #2, $); 

#7 = PRODUCT($, $, ‘Wheel’, ()); 

#8 = PRODUCT_DEFINITION_FORMATION($, ‘Wheel’, #7); 

#9 = PRODUCT_DEFINITION($, ‘Wheel’, #8, $); 

#10 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($, $, ‘Body’, #6, #5, $); 

#11 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($, $, ‘RF’, #6, #9, $); 

#12 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($, $, ‘LF’, #6, #9, $); 

#13 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($, $, ‘RR’, #6, #9, $); 

#22 = APPLIED_CLASSIFICATION_ASSIGNMENT(#19, $, (#1)); 

#21 = APPLIED_CLASSIFICATION_ASSIGNMENT(#20, $, (#3)); 

#20 = EXTERNALLY_DEFINED_CLASS(‘Body’, $, $, #17); 

#19 = EXTERNALLY_DEFINED_CLASS(‘Car’, $, $, #17); 

#18 = EXTERNALLY_DEFINED_CLASS(‘Wheel’, $, $, #17); 

#17 = EXTERNAL_CLASS_LIBRARY(‘http://myOntology/Car’); 

#16 = APPLIED_CLASSIFICATION_ASSIGNMENT(#18, $, (#7)); 

After applying OntoSTEP and the mechanism described in Figure 2, we are able to 
classify instances #1, #6 and #9. Unfortunately, because of the OWA, it is impossible to 
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enrich the reference data, defined in #17, with the following rule: if an instance of Car 
does not have four Wheels then the instance is inconsistent. 

To overcome the OWA limitations we will use SPIN to enrich the reference data in a 
way that any instance of Car will raise an inconsistency if it does not have four wheels. 
First we create an OWL object property called hasWheel whose domain is Car and range 
is Wheel. We then create a rule, which we attach to the Car class, that instantiates the 
hasWheel object property every time an instance of Wheel is used in the assembly of an 
instance of a Car. 

CONSTRUCT5 { 
?this :hasWheel ?x 

} 

WHERE { 

?x rdf:type :Wheel. 

?pdf :product_definition_formation_has_of_product  ?this. 

?pd :product_definition_has_formation :pdf. 

?nauo 

:product_definition_relationship_has_related_product_definition 

?pd. 

?nauo 

:product_definition_relationship_has_relating_product_definition 

?pdw. 

?pdw :product_definition_has_formation ?pdfw. 

?pdfw : product_definition_formation_has_of_product  ?wheel. 

?wheel rdf:type :Wheel. 

} 

Now we can enrich the reference data ontology with a SPIN constraint, which we attach 
to the Car class definition that represents an integrity constraint, to raise an inconsistency 
when an instance of Car does not have four wheels; when this instance of Car does not 
have four instances of the hasWheel object property we previously defined. Such a 
constraint can be expressed in SPIN, as follows: 

ASK WHERE{ 

{ 

FILTER(spl:objectCount(?this, :hasWheel) <4). 

}UNION{ 

FILTER(spl:objectCount(?this, :hasWheel) >4). 

}UNION{ 

?this :hasWheel ?wheel. 

FILTER(!spl:instanceOf(?wheel, :Wheel)). 

}. 

} 
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After running the SPIN engine with the enriched reference data and the OntoSTEP result 
we had, the instance #1 is first classified as an instance of Car, but then it is flagged 
because it only has three wheels. This error could not have been identified by an OWL 
reasoner due to the OWA. Using SPIN we are able to overcome the OWL’s OWA in 
order to enable integrity constraints validation. 

5 Implementing Linked Data with OWL 

In the previous sections of this paper we discussed using ontologies, classification and 
query mechanisms provided by semantic web languages and tools to enable easy 
customisation and validation of data. The power of semantic product data modelling does 
not stop there. This section will demonstrate how to leverage semantic models to ease 
data unification across PLM, by following the Linked Data principles. 

5.1 Using owl:sameAs for Linked Data 

We previously introduced Linked Data as a way of connecting sets of disparate data. 
These datasets are generally represented using RDF and OWL, which propose properties 
to connect pieces of information together. Based on the four principles of the Linked 
Data, two properties are of interest and used: 

1 the rdfs:seeAlso6 property specifies a resource that might provide additional 
information about the subject resource 

2 the owl:sameAs7 property to build links between different pieces of information 
about the identical subject resource, indicating a possible overlap between datasets. 

In this paper, we will focus on using the owl:sameAs property to consolidate  
PLM information from different datasets. The owl:sameAs construct links identical 
individuals together, having them to share properties, or as specified by the OWL 
specification: “an owl:sameAs statement indicates that two URI references actually refer 
to the same thing”. When one has, on one side, a set of parts with their requirements and, 
on the other side, a set of parts with the assembly structure, if the same part appears in 
both sets, its representations can be linked together using owl:sameAs. This results in a 
new and more complete dataset that has both requirements and assembly structure. The 
use of owl:sameAs is made possible because the same part is present in both datasets. 
Figure 3 shows data we want to link together (the arrows represent owl:sameAs links) 
based on the part: 

1 the graph on the left side is a minimalist assembly structure of a car 

2 the table on the right side is a minimalist requirements table of a car. 
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Figure 3 Linking the assembly structure to the requirements (see online version for colours) 

 

In this use case, data schema and instances are implemented with RDF/OWL as presented 
in Table 1 and Table 2. 
Table 1 Assembly structure and requirements ontologies 

Assembly structure model Requirement model 

:Part a owl:Class; :Part a owl:Class; 

rdfs:label rdfs:label 

“Part”^^xsd:string. “Part”^^xsd:string. 

:Part_ID a rdf:property; :Part_ID a rdf:property; 

rdfs:domain :Part; rdfs:domain :Part; 

rdfs:range xsd:string. rdfs:range xsd:string. 

:Assembly a owl:Class; :Name a rdf:property; 

rdfs:label rdfs:domain :Part; 

“Assembly”^^xsd:string. rdfs:range xsd:string. 

:Assembly_ID a :hasRequirement a rdf:property; 

rdf:property; rdfs:domain :Part; 

rdfs:domain :Assembly; rdfs:range :Requirement. 

rdfs:range xsd:string. :Requirement a owl:Class; 

:hasSubAssembly a rdfs:label 

rdf:property; “Requirement”^^xsd:string. 

rdfs:domain :Assembly; :Req_ID a rdf:property; 

rdfs:range :Assembly. rdfs:domain 

:HasPart a rdf:property; :Requirement; 

rdfs:domain :Assembly; rdfs:range xsd:string. 

rdfs:range :Part. :Requirement_text a rdf:property; 

 rdfs:domain 

 :Requirement; 

 rdfs:range xsd:string. 
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Table 2 Assembly structure and Requirement instances 

Assembly structure instances Requirement instances 

:Car a :Assembly; :Wheel a :Part; 

:Assembly_ID :Name “Wheel”^^xsd:string; 

“A1”^^xsd:string; :Part_ID “X1”^^xsd:string; 

:hasSubAssembly :A2; :hasRequirement 

:hasPart [a :Requirement; 

[a :Part; :Req_ID 

:Part_ID “R1”^^xsd:string; 

“X1”^^xsd:string :Requirement_text 

]. “Drive on road”. 

:A2 a :Assembly; ]. 

:Assembly_ID :Trunk a :Part; 

“A2”^^xsd:string; :Name “Trunk”^^xsd:string; 

:hasPart :Part_ID “X2”^^xsd:string; 

[a :Part; :hasRequirement 

:Part_ID [a :Requirement; 

“X2”^^xsd:string :Req_ID 

]. “R2”^^xsd:string; 

:hasPart :Requirement_text 

[a :Part; “Space for storage”. 

:Part_ID ]. 

“X3”^^xsd:string :Top a :Part; 

]. :Name “Top”^^xsd:string; 

 :Part_ID “X3”^^xsd:string; 

 :hasRequirement 

 [a :Requirement; 

 :Req_ID 

 “R3”^^xsd:string; 

 :Requirement_text 

 “Protect passengers”. 

 ]. 

Because of the use of the owl:sameAs, the two datasets are virtually integrated together 
into a single model, shown in Table 3. The two datasets are only integrated together when 
a reasoner is ran and duplicates all the objects of the owl:sameAs predicates, and their 
properties, into the subject dataset, creating the inferred view. This inferred view, which 
corresponds to the integrated model, provides new information that can be queried: one 
can now seamlessly query the model and find out what requirement is attached to the part 
X1. 
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Table 3 Assembly structure – requirement integrated model (see online version for colours) 

Assembly_Id Has_Sub_Assembly Has_Part  Part_ID Name Req_ID Requirement 

A1 A2 X1 ↔ X1 Wheel R1 Drive on road 
A2 N/A X2 ↔ X2 Trunk R2 Space for  

storage 
A2 N/A X3 ↔ X3 Top R3 Protect  

passengers 

Leveraging Linked Data allows to: 

1 easily infer new information, using the owl:sameAs, that can be read or queried 

2 discover up to date information 

3 easily navigate through a trusted network of information. 

But because most often this network is open and one can easily enrich it by linking in 
new datasets, the volume of available information can rapidly impacts performances. 

5.2 Limitations and drawbacks of using owl:sameAs 

5.2.1 (Too) Strong semantics 

The owl:sameAs property is known for its strong implication: its subject and object are 
declared identical and can be seen as one unique individual, or as formally expressed by 
“The identity of indiscernables” (Forrest, 2012), ∀x∀y(∀P. (P(x) ↔ P(y) → x = y)). In 
Halpin et al. (2010), the authors state that the owl:sameAs is being abused and present 
four contexts in which the identity principle is not respected. We have identified the three 
following contexts to be of interest to us. 

• Same thing as but referentially opaque: this happens when two declared identical 
things violate the principle of substitution, which means the substitution of one by 
the other will alter the truth of the statement. A famous example used in the literature 
is based on the adventure of Superman. Clark Kent is Superman, Lois Lane believes 
Superman can fly, but she believes Clark Kent cannot fly. Since Clark is Superman 
we should be able, by substitution, to infer that Lois believes Clark can fly, which is 
not a true statement. Here the substitution would raise an inconsistency. 

• Same thing as but different context: this situation happens when two things are 
defined to be identical but are used in different contexts. The same assembly can be a 
product, P1, in one context and part, P2, in another, and the associated data in the 
different contexts will not be the same. Inference based on owl:sameAs will combine 
all properties together while it is not necessarily needed. Inferred properties do not 
necessarily make sense outside of their original context. 

• Very similar to: in this situation two things that are not identical (as defined by the 
previous ‘Identity of indiscernables’) but very similar (the majority of their 
properties are the same), are still linked with a owl:sameAs property, because this 
property is the best way OWL has to express a very strong similarity. If two very 
similar parts, P1 and P2, are linked through the owl:sameAs property, the implied 
principle of substitution means that, for example, during a maintenance or repair 
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operation, a defaulting P1 could be replaced by a new P2. Unfortunately, even given 
a close-to-perfect similarity between P1 and P2, a difference in a physical property 
could render P2 unsuitable as a substitute. 

These three issues are direct consequences of the strong semantics of the owl:sameAs 
property. Such issues highlight the need for a more flexible property to represent  
different levels and conditions of similarity and identity. One of the W3C standards, 
Simple Knowledge Organization System (SKOS) (W3C, 2004b), aims at providing more 
flexibility in connecting information together. Initially designed to represent systems 
such as taxonomies, SKOS provides properties with different levels of similarity to 
represent close match (skos:closeMatch), exact match (skos:exactMatch), broad  
match (skos:broadMatch), narrow match (skos:narrowMatch) or related match 
(skos:relatedMatch). Correctly using these properties reduces the chance of facing some 
of the issues mentioned earlier. 

In the context of the very similar parts P1 and P2, replacing the owl:sameAs property 
between these parts with a skos:closeMatch would avoid violating the principle of 
substitution. Not only because these parts are not defined as identical anymore, but also 
because due to the fuzziness introduced by some of the SKOS properties, no reasoner is 
able to infer information. This lack of reasoning capabilities raises the importance of a 
careful choice in the way one connects data where a tradeoff is to be made between the 
degree of semantics and the reasoning capabilities. 

5.2.2 Volume of data 

Besides the semantics issue described previously, computational performance is an 
important drawback in a PLM context due to the important volume of data managed 
through a product lifecycle. To build a semantically rich network of information based on 
the owl:sameAs, most reasoners will physically duplicate remote information to the 
source they are run on. Based on the data provided in Table 1, Table 2 and Table 3, 
enriched with owl:sameAs links between the Parts of each model, if one runs a reasoner 
on the Assembly structure dataset, requirements data will be physically moved as shown 
in Table 4. This new information model, inferred by the reasoner, is physically located 
where the reasoner has been run. In this example, the data volume and complexity are 
very low, thus the inference is a seamless operation. In the context of PLM, one expects a 
high volume of information and a complex network leading to possible scalability and 
computational issues. Unless the ‘cartography’ of the network is known, as well as the 
volume of information, it is impossible to predict the time of computation needed by the 
reasoner, and the amount of data that will be duplicated to the source. 
Table 4 Assembly structure and requirement inferred model 

Inferred model: assembly structure + requirements 

Initial model: assembly structure model Initial model: requirements model 
Assembly_Id Has_Sub_Assembly Has_Part 

 
Name Req_ID Requirement 

A1 A2 Y1  Wheel R1 Drive on road 
A2 N/A Y2  Trunk R2 Space for storage 
A2 N/A Y3  Top R3 Protect passengers 
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6 Conclusions 

In this paper, we introduced the benefits of ontology-based product modelling: 

1 to support the need for dynamic information models to support changing data 
requirements during the product lifecycle 

2 as a seamless approach to PLM data integration and consolidation using  
Linked Data. 

Based on the ISO 10303 work on dynamic customisation we acknowledged that although 
the STEP external classification mechanism shows promise as an effective solution for 
changing data requirements, its implementation using reference data represented in OWL 
leads to some issues. The heterogeneous architecture issues that result from the use of 
different implementation technologies for the STEP data and the external classification 
are resolved using OntoSTEP. By transforming STEP information models and data to 
OWL, OntoSTEP enables a homogeneous architecture that takes full advantage of OWL 
(Gruber, 1995). We highlighted the OWA as an issue when validating classified data. We 
demonstrated that SPIN, a new semantic web technology, can overcome validation issues 
by producing data validation results as if the world was closed. Using SPIN, we are able 
to maintain consistency despite OWL’s OWA. 

Using the W3C work and recommendations for Linked Data principles and usage we 
demonstrated how ontological product data can be integrated together with the help of a 
reasoner. Although Linked Data enables seamless data integration and consolidation, we 
have identified, with the help of Halpin et al. (2010), semantics issues related to the abuse 
and strong semantics of the standard owl:sameAs property widely used to implement 
Linked Data. While we have seen that SKOS properties can be used to reduce this abuse 
by providing different levels of similarity and identity, the fuzziness of these properties 
does not allow typical reasoning tools to infer the same information. 

Though we demonstrated in this paper the clear benefits of semantic product 
modelling for data representation, validation and integration, some limits have been 
highlighted, especially in a data integration context. Some directions for future work 
include: 

1 overcoming the reasoning capabilities limitations due to the use of SKOS 

2 evaluating the potential benefits of semantic product modelling to long term product 
data retention 

3 ease the use of semantic technologies in a PLM environment for a wider adoption by 
its engineering community. 
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Notes 
1 In this paper, we refer to the following definition from the International Journal of Product 

Lifecycle Management (IJPLM): “Product lifecycle management is defined as a strategic 
business approach for effective management and use of corporate intellectual capital. PLM 
systems are gaining acceptance for managing all information about products throughout their 
whole lifecycle, from conceptualisation to operations/disposal”. 

2 OntoSTEP plugin for Protégé is available at: http://www.nist.gov/el/msid/ontostep.cfm 
(accessed May 2013). 

3 http://www.w3.org/TeamSubmission/n3/ (accessed May 2013). 
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4 ISO 10303-203 (1994) Industrial Automation Systems and Integration – Product Data 
Representation and Exchange – Part 203: Application Protocol: Configuration Controlled 3D 
Design of Mechanical Parts and Assemblies. 

5 In this SPIN rule: 
• terms prefaced by question marks represent variables bindings 
• instructions are delimited by a ‘.’ 
• the ‘:’ sign is used to represent the namespace of a class/property. 

6 rdfs:seeAlso definition available at http://www.w3.org/TR/rdf-schema/#ch_seealso (accessed 
May 2013). 

7 owl:sameAs definition available at http://www.w3.org/TR/owl-ref/#sameAs-def (accessed 
May 2013). 


