
Proceedings of the 2014 Winter Simulation Conference 
A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds. 
 
 
 

DATA ANALYTICS USING SIMULATION FOR SMART MANUFACTURING   
 
 

Guodong Shao 
Seung-Jun Shin 

Sanjay Jain 

  
Systems Integration Division The George Washington University 

Engineering Laboratory 2201 G Street NW 
National Institute of Standards and Technology 

Gaithersburg, MD – 20899, USA 
Funger Hall, Suite 415 

Washington, DC- 20052, USA 
   
  

 

ABSTRACT 

Manufacturing organizations are able to accumulate large amounts of plant floor production and 
environmental data due to advances in data collection, communications technology, and use of 
standards.  The challenge has shifted from collecting a sufficient amount of data to analyzing and making 
decisions based on the huge amount of data available. Data analytics (DA) can help understand and gain 
insights from the big data and in turn help advance towards the vision of smart manufacturing. Modeling 
and simulation have been used by manufacturers to analyze their operations and support decision making. 
This paper proposes multiple methods in which simulation can serve as a DA application or support other 
DA applications in manufacturing environment to address big data issues. An example case is discussed 
to demonstrate one use of simulation.  In the presented case, a virtual representation of machining 
operations is used to generate the data required to evaluate manufacturing data analytics applications. 

1 INTRODUCTION 

Recently, due to technology advances of data generation, detection, transmission, and collection, a 
massive explosion in data volume has happened globally in every field. Techniques are required to deal 
with the big data that is growing every day. IDC Manufacturing Insights reports that more than 70 % of 
manufacturers are evaluating, planning, or putting into place smart technologies for maintaining and 
optimizing their own and customers’ assets (IDC 2014). According to the Cisco Visual Networking 
Index, by 2017, there will be 1.7 billion machine-to-machine wireless connections including asset-
tracking systems in shipping and manufacturing sectors (Dean 2014). Data Analytics (DA) is the science 
of examining raw data to draw conclusions and support decision making. It helps derive valuable insights 
through cleaning, transforming, modeling, and analyzing the collected data. How to use DA techniques 
with decision support tools such as simulation to help achieve Smart Manufacturing goals is an important 
research topic.  
 The Smart Manufacturing (SM) vision envisages use of smart technologies such as information 
technology, sensor networks, process analysis, and production management and control software to 
improve efficiency on agility, asset utilization, and sustainability. The National Institute of Standards and 
Technology (NIST) Smart Manufacturing Systems Design and Analysis program focuses on the design 
and analysis of smart manufacturing systems (SMS) that will enable industries to implement real-time 
control and data analytics throughout the extended enterprise (SMLC 2012).  
 Data analysis can provide insights into patterns, trends, areas of inefficiency, and potential risk to 
manufacturers and help improve manufacturing processes, production control, business processes, and 
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customer service based on past, real-time and expected behavior. Manufacturing big data come from 
various sources including machines and equipment with sensors that automatically monitor and collect 
operational status and performance data, radio-frequency identification and bar-code readers, financial 
transactions, market statistics, design images, internet, social media, and Subject Matter Experts (SMEs). 
Much of this data are generated at high velocity and in a variety of formats.   IBM data scientists break 
“big data” down into four dimensions: volume, velocity, variety, and veracity (IBM 2014).  With respect 
to the four dimensions, below are the characteristics of the manufacturing data that grow exponentially in 
volume, velocity, and complexity throughout the entire manufacturing enterprise: 

 Volume: As more manufacturing-related information being generated and collected, the issues are not 
only for data storage, but also for data analysis, i.e., how to effectively analyze the huge amount of 
data, which may include a variety of dynamically collected data in different forms and historical log-
data accumulated for a long time. For example, companies may have to handle a mix of data from 
web logs with customer information stored in a database and with sensor data that provides real-time 
information on production, inventory, and shipments on daily basis (Bredenberg 2014). Useful 
information needs to be extracted from all data collected and analyzed to support decision making. 

 Velocity: Velocity is used to describe how fast data are produced and captured. “Just in time” and 
“Data in Motion” indicate the continuous interactions between machines, people, and processes. 
During these interactions, relevant information is exchanged at a high speed so that managers, 
operators, and engineers are able to work together based on quick feedback in a data-driven 
environment (Dean 2014). This data feature requires manufacturers to process the data collected in a 
timely manner and be able to adapt to these time-sensitive imperatives.  

 Variety: The large amount of data collected is in a larger variety of forms, i.e., data from devices, 
sensors, Internet, cameras, and people. The data collected is not always numeric, e.g., data from 
SMEs. Identifying and transforming the data collected into different formats allows manufacturers to 
utilize and analyze them more efficiently (Aberdeen Group 2014).    

 Veracity: Within the huge amount of data available, there are a lot of noise data mixed with the useful 
information. Often time, it is hard to decide which information is accurate and up-to-date and which 
information is noise or out-of-date. For example, a lot of parameters are not precisely known, so they 
have to be either estimated/learned from data collected or based on SMEs’ knowledge, or historic, 
experimental, and statistical data. Uncertainty quantification or estimation needs to be performed. The 
uncertainties can be epistemic or aleatoric or both. Epistemic uncertainties arise from ignorance about 
the problems, whereas aleatory uncertainties arise from problem-inherent variability (Shao et al. 
2012). 

Currently, most of the manufacturing companies do not make good use of all the generated and collected 
data to improve production system efficiency, in turn, to increase their competiveness (Dean 2014). They 
are overwhelmed by the vast amount of data, yet are hesitating to invest more for technologies/software 
systems to perform DA. However, many of them do have simulation software in place. This paper focuses 
on using existing simulation software within companies to perform DA and integrating with DA 
applications for valuable decision support. The contribution of this paper is that we propose multiple 
methods in which simulation can serve as a DA application or support other DA applications in the 
manufacturing environment to address big data issues. The roles that simulation can play in this context 
include (1) using simulation as a DA tool to perform diagnostic, predictive, and prescriptive analysis for 
data analysis and visualization; (2) using simulation in support of other DA applications including offline 
executions to generate data for DA and serving as a Verification and Validation (V&V) tool. A case study 
is performed to demonstrate one of the uses, simulation as a data generator for analyzing machining 
performance. 
 The rest of this paper is organized as follows. Section 2 presents different roles of simulation for DA 
in manufacturing. Section 3 discusses a case study that demonstrates one of the uses of simulation, to 
assess machining performance. Finally, in Section 4, a summary is provided and future work is discussed. 

http://en.wikipedia.org/wiki/Just_in_time_%28business%29
http://www.cisco.com/web/solutions/data_center/data_motion.html
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2 SIMULATION ROLES FOR DATA ANALYTICS IN MANUFACTURING  

Modeling and simulation has been used by manufacturers to analyze their operations and provide decision 
supports for decades. Data analytics has been used as a key part of simulation since the inception of the 
concept of simulation. DA in the context of simulation includes input and output data analysis, both of 
which have generally required analysis of large amounts of data. DA applications also support simulation 
analysis by performing data calibration and estimate unknown input parameters for simulation and 
validating simulation results.  While DA has thus supported the use of simulation, simulation can support 
DA in various roles in return. The roles of simulation for DA in manufacturing can be divided into two 
main categories, direct use of simulation as a data analytics application and use of simulation for 
supporting other DA applications. These two major roles are presented in this section. 

2.1 Simulation as a data analytics application 

Four major applications of DA have been defined based on (Gartner 2014 and ISD 2013) as shown in 
Figure 1.  These include descriptive, diagnostic, predictive, and prescriptive analytics of big data. From 
left to right indicate a progress of using the useful subset (less) of data to derive more valuable higher 
levels of decision support. more decisions will be provided. Simulation is one of the important tools for 
the latter three of the four application areas. The following sub-sections successively discuss the roles of 
simulation for the three major applications in more detail. The four applications can be briefly described 
in context of manufacturing as follows. 

Descriptive 
Analytics

Prescriptive 
Analytics

Predictive 
Analytics

Diagnostic 
Analytics

Observe

Less data, more decision support, greater value 

What happened 
or happening?

Analyze Predict Influence

Why did it 
happen or is it 

happening?

What is likely to 
happen?

How can we 
make it happen?

What are the 
consequences?

 Simulation
 Optimization

 Simulation
 Statistics & 

linear 
regression

 Predictive data 
mining

 Forecasting & 
trend reporting

 Simulation
 Data mining & 

forensics
 Real-time 

analytics & 
mining

 Database 
queries

 Reporting & 
dashboards

 
Figure 1:  The role of simulation in major data analytics applications 

 
 Descriptive analytics, the science of identifying what happened or is happening. It includes 

presentation of manufacturing data in summarized or query form to provide meaningful information.  
Such analysis mainly provides different views of collected data such as monitoring data from device 
sensors and databases, and finds patterns and trends in such data. The output of descriptive analytics 
may be production and performance data visualization in forms of tables, charts, and drawings to 
summarize and report the trends. For example, average throughput and cycle time by product types.  

 Diagnostic analytics, the science of identifying why it happened or is happening. It helps identify the 
causes leading to the realized performance. This may include understanding the impact of the input 
factors and operational policies on the performance measures.  For example, the increase in cycle 
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time of a product may be tracked down to any or all of multiple factors including machine 
breakdowns, worker absenteeism, material defects leading to rework, and increase in priority of other 
products on shared machines and transporters. Diagnostic analytics can gain from sensitivity analysis 
using a simulation model of the manufacturing system that mimics the current operation.   

 Predictive analytics, the science of identifying what is likely to happen.  It focuses on estimating 
performance based on planned inputs. For example, predictive analysis may include estimation of 
cycle time and throughputs for various products based on the current policies for order release and 
dispatching, scheduled material arrivals, and machine and worker availabilities. Predictive analytics 
will benefit from use of simulation models to estimate the performance in future periods given the 
current set of applicable policies and inputs and executing what-if scenarios. 

 Prescriptive analytics, the science of focusing on how we can make it happen and what will be the 
consequences. It focuses on identifying the policies and inputs that will lead to desired performance. 
For example, prescriptive analytics may include identifying changes in input parameters and policies 
that will allow reducing cycle time and increasing throughput as close as possible to the desired levels. 
Predictive analytics using simulation models can estimate the performance in future periods by 
mimicking the operations under potential alternative plans. These plans may be improved using 
combined simulation and optimization procedures.   

2.1.1 Simulation as a Diagnostic Analytics Application 

Using simulation for diagnostic applications requires the development of a verified and validated 
simulation model of the manufacturing system of interest.   Sensitivity analysis using the simulation 
model can help identify the causes of the performance realized.  For example, the time lost due to 
machine breakdowns can be varied and its impact on the cycle time of the processed product types can be 
examined to quantify the contribution of such breakdowns. Similarly sensitivity analysis can be 
conducted for various input parameters and operational policies considered to have an impact on the 
performance measures.  Reported examples of use of simulation for diagnostic analytics include (Roser et 
al. 2002; Shao et al. 2003). 

2.1.2 Simulation as a Predictive Analytics Application 

Simulation for predictive application requires including anticipated changes in the future such as addition 
of machines or other equipment. Additional supporting data analysis may also be required to update the 
input data distributions, which can be derived from one of the DA applications. Forecasting models may 
be used for predicting customer orders for future periods as input to the simulation model.  Unknown 
model parameters may need to be estimated or learned from historical data using DA.    
 Simulation runs can be carried out with the operational policies and parameters set to the anticipated 
levels for future periods once the model and the input data distributions have been updated and validated.  
Output analysis can then be performed to determine the predicted performance measures and associated 
confidence levels. For example, this may include determination of cycle times, throughput, and delivery 
performance for future periods. Predictive simulation modeling is very useful for performing what-if 
analysis of various scenarios. Examples of use of simulation for predictive analytics include McLean and 
Shao (2001), Heilala et al. (2008), and Berglund et al. (2011).   

2.1.3 Simulation as a Prescriptive Analytics Application 

The simulation model used as a predictive analytics application can also be used as a prescriptive 
analytics application. A range of potential changes in input parameters and operational policies can be 
evaluated and those changed parameters’ contribution to change in performance measure of interest 
towards the goals understood.  Such understanding can then be used in further simulation runs to identify 
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the level of input parameters and operational policies that get the system closest to the goal performance. 
The successive changes and simulations’ runs should be guided by a combined simulation optimization 
approach such as those described in Melouk et al. (2013) and Raska and Ulrych (2012). 
 Alternatively, simulation may be used in conjunction with another predictive analytics application.  
First, an application other than simulation, such as an optimization model, may be used to generate the 
solution alternatives that are anticipated to lead to the desired goals. Simulation can then be used to 
quantify the performance using the alternative generated by the optimization model.  Such quantification 
adds value since simulation allows modeling all the realistic constraints that other analytics applications 
are usually not able to.  Simulation will also allow fine tuning of the parameters of the proposed approach 
and allow identifying the parameters that have relatively larger impact on the performance measures of 
interest through sensitivity analysis.  Simulation thus allows providing more accurate predictions in its 
role as a predictive analytics application. For example, Johansson et al. (2009) present a simulation model 
of an automotive paint shop that simulates different input parameter options to determine the one with the 
least CO2 emission. 

2.2   Simulation Support of Other Data Analytics Application 

Simulation can also support other DA applications in addition to its role as a DA application discussed in 
the previous sub-section.   The supporting roles of simulation are discussed below. 

2.2.1 Simulation as a data generator 

Testing of a DA application requires large sets of data.  It is usually difficult for developers of such 
applications to find manufacturing companies that are willing to provide access to their factories for 
collection of large sets of real factory data. Validated simulation models of real factories can be regarded 
as virtual factories, which can be instrumented to generate the data for selected measures and in formats 
as they would be in a real factory. The virtual factory needs to be set up to allow flexibility in modeling a 
wide range of factory configurations and in level of details desired.   The models’ capability will need to 
be based on a plug compatible structure that allows multi-resolution modeling with the ability to 
exchange modules that represent factory sub-systems at different levels of detail.  The vision of virtual 
factory has been around for a while (see for example, Jain et al. 2001) but hasn’t been implemented to the 
full extent. Advances in technologies for interfacing simulation models, computation, and 
communication, and in standards for model interfaces have made the implementation of the vision of 
virtual factory within reach. The virtual factory should allow generation of data at the level of details 
desired.  For example, for analytics at machine level it should be able to model the physics of the machine 
process to generate data streams on energy used, temperatures, pressure, forces, vibrations and associated 
impact on product quality. At a higher level of abstraction, the virtual factory should be able to generate 
streams of data on material arrivals, resource utilizations, and product shipments to feed data to factory 
level analytics applications.   

2.2.2 Simulation to support evaluation and validation 

The virtual factory can be used to evaluate and validate the DA applications for many areas.  In this 
aspect, access to a virtual factory offers an advantage even over the access to a real factory.    
 In a real factory, the true variations for the factors affecting the performance such as part arrivals, 
machine breakdown, and material quality are not known.  DA applications can be used to estimate the 
variations and underlying distributions. However, it may require analysis of data over long periods 
extending from months to years before estimates with acceptable confidence levels can be established.  
Different DA applications may lead to fitting different distributions or same distributions with different 
parameters when provided with the same data streams from a real factory.  There may be no objective 
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way to rank one DA application clearly over another one in their ability to estimate the distributions and 
parameters.    
 The virtual factory offers the advantage that the underlying distributions will be known as they are 
inputted by the analysts.   The output data streams from a virtual factory are based on input data 
distributions for a range of factors. DA applications can then be used to take the data streams and 
determine the variations in underlying factors affecting the performance.  The distributions determined by 
the DA applications based on the output data streams can be compared with the known input data 
distribution to evaluate the quality of their analytics.    

3 CASE STUDY 

This section demonstrates how simulation technology can play the role of supporting DA via generation 
of machine level data streams that can be used by a diagnostic analytics application.  

3.1 STEP2M simulator   

The purpose of the simulator, STEP2M simulator, is to simulate the machining process by generating 
machine monitoring data from process planning data, which is required for creating data-driven analytic 
models for machining operation. Standards have been used to facilitate data exchange, i.e., the simulator 
adopts the STEP-compliant data interface for Numerical Controls (STEP-NC) to represent  process 
planning data and the MTConnect standard has been used for representing machine monitoring data. 
STEP-NC specifies machining processes rather than machine tool motion via the concept of workingstep, 
which correspond to high-level machining features and associated process parameters. Computerized 
Numerical Control (CNC)s are responsible for translating Workingsteps to axis motion and tool operation 
(ISO14649-1, 2003).  MTConnect is an open standard that intends to foster greater interoperability 
between controls, devices, and applications by publishing data using internet protocol such as eXtensible 
Markup Language (XML) and Hyper Text Transfer Protocol (HTTP) (MTConnect Part 1, 2011). 
MTConnect enables a continuous data log for machining. It provides a mechanism for system monitoring, 
process, and optimization with respect to energy and resources. The information is valuable for analyzing 
processes and facilities performance (Vijayaraghavan et al. 2008).  

3.2 Functional architecture 

Figure 2 presents a functional architecture of the simulator. It organizes simulation functions and data 
flows. The architecture consists of three modules (1) STEP-NC processing, (2) machining estimation, and 
(3) MTConnect generation.  
 The inputs to the simulator are a STEP-NC program, a machine tool specification, and an NC system. 
The machine tool specification defines capability and performance of a machine tool. The NC system 
defines the code scheme for the G-code program. The output of the simulator is an MTConnect streaming 
document corresponding to a given STEP-NC program.  

3.2.1 STEP-NC processing 

Considering the current CNC requirement, a STEP-NC part program needs to be transformed to a specific 
machine-interpretable format in order to be executed by a machine tool. In ‘STEP-NC processing’ 
module, ‘STEP-NC interpretation’ parses a STEP-NC program and instantiates STEP-NC objects 
according to the data scheme defined. ‘Tool path generation’ creates a tool path by using STEP-NC 
objects. This tool path only includes sequential tool movement and its instruction (rapid or interpolation 
trajectory). ‘G-code generation’ creates a G-code program that includes associated actions (e.g., 
miscellaneous function, tool selection, spindle, and feedrate) and the tool path.  
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Figure 2: A functional architecture 

3.2.2 Machining estimation 

A G-code part program only includes static information while MTConnect data includes timestamps and 
records a machine tool’s action. In order to map these data, we need to estimate time and event in 
accordance with sequential execution of a G-code program. Depending on the machine tool’s actions, we 
need to forecast the dynamics and kinematics of each machine component (base load, coolant, linear axis, 
and rotary axis).  
 ‘Machining estimation’ module estimates items’ measurement including movement and relevant 
power of each machine component at a given timestamp. ‘Event/time/position estimation’ predicts time-
dominant events of the machine components, and then determines tool positions corresponding to given 
timestamps. It also obtains current status and capability of the components. ‘Power estimation’ forecasts 
power consumed by components for each of their actions. Each G-code instruction provides a specific 
power pattern. For example, a rapid trajectory (G00) consumes static power determined by performance 
of the machine components. On the other hand, actual cutting executed in an interpolation trajectory 
(G01, G02 or G03) has cutting power in addition to the static power. Finally, the output of this module; a 
time-series data set of recording time, event, position, and power; is delivered to ‘MTConnect 
generation.’ 

3.2.3 MTConnect generation  

The ‘MTConnect generation’ module generates and outputs an MTConnect-based streaming document 
when requested. This module involves three tasks: (1) registration of machine specification, (2) runtime 
data collection, and (3) MTConnect data request.  

 Registration of machine specification: ‘machine configuration’ registers specifications of a machine 
tool and its components as well as the measurable data items in ‘machining estimation.’ ‘Machine 
configuration’ sends an XML probe document to not only ‘streaming data repository’ but also a client 
through ‘runtime outbound connection’ when the probe request is issued. Based on the specifications 
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and the data items, a data schema structure is constructed in ‘streaming data repository’ for data 
storage.  

 Runtime data collection: ‘runtime inbound connection’ is a communication channel with ‘machining 
estimation’ and collects the streaming data delivered. ‘Streaming data handling’ translates the 
streaming data into an MTConnect-based data, whose structure has already been defined in the 
‘registration of machine specification.’ “streaming data repository’ stores the MTConnect data.   

 MTConnect data request: when a request from a client is received, ‘MTConnect data handling’ 
collects the user-requested data from ‘streaming data repository.’ Then, it translates the data into the 
XML-based MTConnect document and sends the document to ‘runtime outbound connection.’ 
Finally, an MTConnect XML document or a probe document is outputted to the client through 

‘runtime outbound connection.’ 

3.3 Implementation 

Based on the architecture, a prototype is developed for a 2-axis turning machine. The prototype 
development uses Java as the programming language, PrimeFaces for a web interface, and Tomcat for 
MTConnect server, respectively. 
 Figure 3 shows an example of the input STEP-NC part program. The workpiece material is aluminum 
alloy (AL6061). A machining operation and a machining strategy are assigned as contouring_rough (an 
entity or an attribute of STEP-NC data model) and unidirectional_turning respectively. 
Feedrate_per_revolution, spindle_speed, and cutting_depth are assigned with 0.25 mm/rev, 166.5 rad/s 
(1590 rpm), and 5.0 mm. A turning machine tool with a FANUC 0-series controller is used for 
determining machine tool specification and G-code instruction. 
 An output of the prototype is an MTConnect XML file. The MTConnect data architecture consists of 
the organization of a device, components, and data items. The device represents the machine tool. 
Components represent major physical systems of the device (i.e., Z-axis, X- axis, a rotary axis, a coolant 
system, and a main body). Data items cover the information of the device or components. Each data item 
contains a rich set of information including a unit, a scale, a coordination system, and constraints. Data 
items for this prototype include tool position, a power data set of the components.  
 To validate the accuracy of the simulator, a simulated result is compared with an actual measurement. 
Figure 4 is a line chart to plot measured power and simulated power in terms of time. The simulated result 
coincides with the measured result. The four points marked in Figure 4 are analyzed as follows: (1) when 
the spindle starts rotating, a momentary power peak takes place due to the spindle’s immediate response 
to a desired rotating speed; (2) A coolant power is added when a coolant system is turned on; (3) The 
cutting power increases whenever a tool insert contacts with a workpiece and gradually decreases over 
machining time due to the decrease of the cutting forces as the workpiece diameter decreases; (4) There is 
a gap between the measured power and the simulated power when the spindle stops. Our ‘machining 
estimation’ considers a reverse power consumed for immediate stop of the heavy spindle. However, the 
experiment applies natural deceleration to decrease the spindle momentum thus the machine tool doesn’t 
require the reverse power for the spindle stop.  
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Figure 3: A STEP-NC part program 

 

 
Figure 4: A line chart for measured power and simulated power 

3.4 Role of the STEP2M simulator in data analytics  

3.4.1 Role as a diagnostic analytics application    

Diagnostic analytics includes figuring out the cause-effect relationship from a data set. A main approach 
of previous studies of machining simulation is to use an NC program as the input of simulation for 
machining performance assessment. This approach is not appropriate for identifying the cause data 
because the NC program is only a set of machining instructions. It is impossible to find out all the details 
such as process sequence and parameter selection determined in the process planning stage from the NC 
program alone. To solve this problem, in this case study, we simulate a machining process by using 
process plan data as input data instead of an NC program. STEP-NC explicitly represents process 
sequence and parameter selection via object-oriented workingsteps.  On the other hand, machine 
monitoring data can be used as effect data. MTConnect-based data contents provide fundamental data for 
measuring machining performance. Thus, the STEP2M simulator can provide a pairwise set of cause and 
effect data for diagnostic analytics. 

… 

#1=WORKPIECE('SIMPLE WORKPIECE',#2,0.001,$,$,$,());

#2=MATERIAL('AL6061','ALUMINUM',(#3));

…

#10=GENERAL_REVOLUTION('GENERAL_REVOLUTION 1’,#1,(#20),#200,#204,0.0,#205);

#20=CONTOURING_ROUGH($,$,'ROUGH GENERALREVOLUTION1',$,$,#280,#61,#60,#130,#130,#131,0.0);

… 

#34=PROJECT('TURNING EXAMPLE 4',#35,(#1),$,$,$);

#35=WORKPLAN('MAIN WORKPLAN',(#36),$,#52,$);

#36=WORKPLAN('WORK PLAN FOR SETUP1',(#37),$,$,$);

#37=MACHINING_WORKINGSTEP('WS ROUGH GENERAL_REVOLUTION 1',#56,#10,#20,$);

…

#60=TURNING_MACHINE_FUNCTIONS(.T.,$,$,(),.F.,$,$,(),$,$,$);

#61=TURNING_TECHNOLOGY($,.TCP.,#62,0.25,.F.,.F.,.F.,$);

#62=CONST_SPINDLE_SPEED(1273);

…

#131=UNIDIRECTIONAL_TURNING(2,.F.,(2.5),$,$,$,$,$,3.5,$,$);

…

#205=GENERAL_PROFILE($,#206);

#206=COMPOSITE_CURVE('COMPOSITE_CURVE',(#207,#211),$);

#207=COMPOSITE_CURVE_SEGMENT(.CONTINUOUS.,.T.,#208);

#208=POLYLINE('POLYLINE1',(#209,#210));

… 

#280=GENERAL_TURNING_TOOL('GENERAL_TURNING_TOOL 1',120.0,45.0,$,$,$,#282,.LEFT.);

…

Manufacturing feature

Machining operation

Workplan

Machine function

Machining technology

Machining strategy

Feature profile

Machining tool 

Workpiece

Workingstep

(1)

(2)

(3)

(4)
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3.4.2 Role as a data generator  

For data analytics of a machining operation, it is important to capture the measures of machining 
performance to determine the efficiency of machining operations (Muchiri and Pintelon 2008).  Machine 
monitoring data record the machine tool’s status, events, and movements. However, the collection of the 
monitoring data usually requires installing physical measurement devices and their interfaces on the 
machine, thereby demanding extra cost and effort. By using simulation technology, a virtual measurement 
device can replace physical devices and generate measurements necessary for analytics. 
 In this case study, a power data set of machine components (x axis, z axis, spindle, coolant, and base 
load) is generated with respect to time to support DA applications. The data can be used primarily to 
generate two machining performance metrics, i.e., power consumption and machining time. Other metrics 
such as surface roughness, machining error, and their associated data items such as velocity and cutting 
force can also be generated by the simulation.     

4 CONCLUSIONS AND FUTURE WORK 

Data analytics and decision support tools help manufacturers handle, integrate, and analyze collected data 
and provide deeper insights for their production, market, customers, and partners. It provides 
opportunities for manufacturers improving manufacturing processes, production control, business 
processes, and customer service to lower costs, increase profit, and stay competitive. Modeling and 
simulation can be used as a DA tool itself and as a supporting tool for other DA applications. 
 This paper attempts to construct a bridge between modeling and simulation and data analytics to 
provide decision support for smart manufacturing systems. This paper proposes multiple ways in which 
simulation can support DA in the manufacturing environment. The roles of simulation for that purpose 
include (1) using simulation as a DA to perform diagnostic, predictive, and prescriptive analysis for data 
analysis and visualization; (2)  supporting other DA applications by using simulation offline to generate 
data for DA and for evaluating other DA applications. An example case is discussed to demonstrate one 
of the uses of simulation to support data analytics. In the presented case, a virtual representation of 
machining operations is used as a diagnostic analytics application and to generate the data required to 
support manufacturing data analytics applications.  
 Future work includes developing a virtual factory that integrates simulation models for different 
operational levels with different level of details to perform and support data analytics; and configuring 
these simulation models as data modules to enable deployment of reconfigurable open manufacturing data 
analytics applications.  Continuing research on the interactions between simulation and DA applications 
to help achieve Smart Manufacturing goals includes (1) using DA  to generate input data distributions for 
simulation modelling; (2) using DA applications to perform data calibration and learn unknown 
parameters for simulation; and (3) verifying and validating a simulation model using a DA application or 
vice versa.   

DISCLAIMER  

No approval or endorsement of any commercial product by NIST is intended or implied. Certain 
commercial software systems are identified in this paper to facilitate understanding. Such identification 
does not imply that these software systems are necessarily the best available for the purpose. 
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