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Quantitative EXAFS Analysis

Bruce Ravel

National Institute of Standards and Technology, Gaithersburg, MD, USA

Analysis of the extended x-ray-absorption fine-structure (EXAFS) provides fine details of the partial pair
distribution functions of atoms surrounding the absorber, including distances, mean square deviations in
distance, coordination numbers, and coordinating species. Because neither the theory nor the interpretation of
the EXAFS makes any assumption of configurational symmetry or periodicity, EXAFS is equally applicable
to all forms of condensed matter. Because the basic physical process of x-ray absorption spectroscopy (XAS),
the photo-excitation of a deep core electron, is element specific, EXAFS is applicable even to dilute systems.
Consequently, EXAFS plays a valuable role in a wide variety of scientific disciplines, with applications in
life science, earth and environmental science, chemistry, materials science, cultural heritage, and more. In
short, EXAFS is one of the core competencies of any synchrotron radiation facility.

The obvious first question is how to distinguish the x-ray-absorption near-edge structure (XANES) from
the EXAFS. From a real-space, multiple-scattering point of view, there is no obvious distinction. The photo-
excitation in XAS is an example of Fermi’s golden rule, wherein a dipole interaction (the incident photon)
mediates the promotion of an electron from its initial, deep-core state into an unoccupied, high-lying state.
That is true at all energies and at all energies there is a formal solution to Fermi’s golden rule involving
multiple-scattering theory. So, how, in practice, do we distinguish XANES from EXAFS?

The theory of the real-space, multiple-scattering formalism [1–3] involves a substantial amount of linear
algebra. It is possible to define a mathematical distinction between XANES and EXAFS on the basis of the
mathematical properties [4, 5] of one particular matrix used in the real-space, multiple-scattering approach.
As an example, in copper metal, this strict mathematical criterion defining the XANES region extends to
about 16 eV above the edge or about 2 Å−1 in photoelectron wavenumber. While this may be a rigorous
definition of the boundary between XANES and EXAFS, it is not a very practical one.

In practice, the EXAFS region is chosen to begin 25 eV to 35 eV above the edge, or about 2.5 Å−1 to 3 Å−1.
This is a useful rule of thumb. It is an energy where the formal solution is convergent as a path expansion.
The photoelectron has enough kinetic energy that it is relatively insensitive to the computational details of
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the potential model used in the theory. Finally, it is far enough away from the edge that common background
removal algorithms [6–10] are stable and reliable. In short, the definition of the EXAFS region used in this
chapter is the region of the XAS spectrum for which EXAFS analysis can be performed reliably.

11.1 A brief history of EXAFS theory

EXAFS as an analytic tool began with the seminal 1971 paper by Sayers, Stern, and Lytle [11]. A later paper
[12] outlined the basic data processing steps still used today. The slowly varying background function is
subtracted from the measured absorption data, isolating the fine structure 𝜒(E). The energy axis is converted
to photoelectron wavenumber, k, and 𝜒(k) is subjected to a complex Fourier transform. The complex 𝜒(R)
data, which resemble a pair distribution function, are interpreted to yield quantitative information about the
local configuration environment around the absorbing atom.

Early quantitative approaches to analysis of the fine structure were purely empirical and mostly involved
spectral filtering. That is, the |𝜒(R)| data are windowed around a peak in the low-R region and subjected
to a reverse Fourier transform. This isolates the contribution to 𝜒(k) from a narrow band in frequency, thus
isolating the signal from a near-neighbor coordination shell.

This Fourier filtered data was used in several ways to extract quantitative structural information from early
EXAFS measurements. Each of these strategies requires that the signal from a coordination shell be isolated
from the rest of the signal. Isolated signals from a well-known standard were used as fitting standards. In
Ref. [13], the first shell signal in bulk InP was used as the fitting standard to measure the effect of strain in
InP thin films. A second approach, the so-called “log-ratio” method [14], would fit polynomials to ratio and
difference spectra computed from Fourier filtered data of a known standard and an unknown sample. The
terms of the polynomials are related to changes in coordination number, distance, and 𝜎2. A third approach
[15] would reconstruct a partial pair distribution function by fitting a cumulant expansion to Fourier filtered
data, subject to certain constraints on the distribution function.

While each approach was used successfully for years, the Fourier filtering techniques all share serious
shortcomings. They require that the contribution from a coordination shell be amenable to spectral isolation.
Consider Fig. 11.1, which shows the Fourier transformed |𝜒(R)| for body-centered-cubic (BCC) iron metal
measured at 60 K along with the Fourier transforms of the fitted contributions from the two nearest neighbor
coordination shells – 8 iron scatterers at 2.477(5) Å and 6 at 2.860(6) Å. These two signals overlap substantially.
Even though the BCC structure is simple and well-ordered, an analytic technique relying on spectral isolation
of shells will fail. That is the case for most materials beyond the first coordination shell. A second pitfall to
filtering techniques is that they demand measurement of a suitable standard, something which may not exist
for a sample away from thermodynamic equilibrium or which contains an unusual absorber/scatterer pair.

During this early period, much progress was made towards a formal, theoretical understanding of EXAFS
[16, 17] as well as a practical, semi-empirical formulation [18] that we have come to call the “EXAFS
equation”. The contribution from an individual scattering atom (or, as explained below, from a multiple
scattering path), Γ, is given by

𝜒Γ(k) =
S2

0NΓFΓ(k)

2kR2
Γ

e−2k2𝜎2
Γ e−RΓ∕𝜆Γ(k) sin(2kRΓ + 𝛿Γ(k)) (11.1)

𝜒(k|𝗍𝗁𝖾𝗈𝗋𝗒) =
∑
Γ

𝜒Γ(k) (11.2)

and the full theoretical calculation is given by the sum over all scattering atoms (and multiple scattering
paths).
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Figure 11.1 Overlapping contributions from the first two shells in iron metal.

Table 11.1 The terms in the EXAFS equation. E0 is a parameter which aligns the energy grid of the calculation
to the energy grid of the data. R0,Γ is the half-path length from the input configuration and ΔRΓ is the deviation
from R0,Γ determined by the analysis.

parameter description source relation

k photoelectron wavenumber k = ℏ

2me

√
(E − E0)

FΓ(k) effective scattering amplitude theory
𝛿Γ(k) central + scattering atom phase shift theory
𝜆Γ(k) photoelectron mean free path theory
S2

0 amplitude reduction factor modeled
NΓ path degeneracy modeled
𝜎2
Γ mean square deviation in half path length modeled

RΓ half path length modeled RΓ = R0,Γ + ΔRΓ

The EXAFS signal, therefore is related to the terms of the local configuration environment and to the
complex function which describes the scattering of the photoelectron from the surrounding atoms. This
equation explains many of the basic physical characteristics of the EXAFS measurement. The fine structure
is oscillatory due to the sinusoidal dependence upon inter-atomic distance R. EXAFS is a local structure
probe due to the effect of the photoelectron mean free path, 𝜆, in the e−R∕𝜆(k)∕R term. Each term is explained
in Table 11.1. For an excellent, semi-empirical derivation of the EXAFS equation, the reader is referred to
Ref. [19].

By the middle part of the 1990s, there were three user-oriented theory packages which enabled the
application of high quality theory to EXAFS data analysis: excurve [20], gnxas [21], and feff [22],
each of which developed a wide user base and contributed substantively to the development of EXAFS
as a practicable measurement technique. The three packages share certain similarities. Each uses a cluster
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Muffin tin radius

Neutral atom radius

Interstice

Figure 11.2 A schematic, redrawn from Ref. [28], of the geometry of the muffin tin potential. Source: Pauli,
1999, [28]. Reproduced with permission from M. Pauli.

expansion to represent the EXAFS signal as a sum of geometric contributions and each computes scattering
potentials using a muffin tin formalism.

The muffin tin (MT) potential is an old idea [23] first introduced as a way of solving problems of electron
motion in periodic potentials. A thorough overview of its use in EXAFS is given in Sec. II.B.1 of Ref. [24].
As shown schematically in Fig. 11.2, each atom is represented by a sphere which just touches neighboring
atoms or is slightly overlapped. [25] The interstice, the space between the spheres, is flat and of uniform
charge density. From this potential surface, scattering amplitudes and phase shifts are calculated.

It is not obvious that the MT potential could be a successful basis for EXAFS analysis. A chemical bond
implies both a break from spherical symmetry and variable electron density within the interstice. Recent
developments [26, 27] in the computation of the near edge structure have clearly demonstrated that non-MT
potentials are essential to accurately replicate XANES spectra. However, far above the absorption edge, the
photoelectron has sufficient kinetic energy that it is mostly insensitive to the details of the potential surface.
The MT potential remains common and useful for EXAFS applications.

The earliest attempts [29] to provide a practical theory for EXAFS analysis made several significant
approximations. Among these was the treatment of the photoelectron as a plane wave rather than as an
outwardly propagating spherical wave. This is a reasonable approximation when the kinetic energy of the
photoelectron is large enough that the curvature of the spherical wave can be neglected. For an EXAFS signal
dominated by signal at low photoelectron wavenumber, either due to large 𝜎2 in Eq. (11.1) or to the nature
of F(k) of the scattering atom, this is a poor approximation. Each of the three theory program implements a
curved-wave approach.

Other significant improvements to the calculation of theoretical scattering factors were made in the period
between the 1970s and the mid-1990s. These included an effective treatment of intrinsic losses [30], typically
included in Eq. (11.1) by the S2

0 term, and of the quantum mechanical, many-body, exchange correlations.
The latter yields an energy dependent self-energy, which has an impact on the evaluation of 𝛿(k) in Eq. (11.1)
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and therefore of the evaluation of R in the analysis of the EXAFS. The reader is refered to Refs. [24] and [21]
for further discussion.

Given the MT description of the potential surface along with a curved-wave theory and ways of handling
intrinsic losses and many-body effects, the next step is to perform some kind of cluster expansion within the
context of real-space multiple-scattering theory. While a full derivation of the multiple scattering formalism
as it is applied to EXAFS is beyond the scope of this chapter, an overview of the most salient points helps
put the problem in proper context.

The process by which a photon is absorbed by an atom and a deep-core electron is photo-excited is an
example of Fermi’s Golden Rule:

𝜇(E) ∝
∑

f

||⟨f |𝜖 ⋅ r|i⟩||2𝛿(𝜔f − 𝜔i − E). (11.3)

Here, 𝜇(E) is the absorption cross-section as a function of incident photon energy, the very thing measured
in absorption spectroscopy and the thing whose oscillatory structure we analyze in EXAFS. |i⟩ and |f ⟩ are
the initial (deep-core) and final (photo-excited) states of the electron. The transition between the states is
mediated by a dipole interaction, 𝜖 ⋅ r. Finally, the Kronecker delta function restricts the evaluation of the
equation to final states of the correct kinetic energy.

There are, in the broadest possible sense, two strategies for computing this function. One could represent
the initial and final states and directly evaluate the integral implied by the bra-ket notation. More useful for
EXAFS is to solve Eq. (11.3) using the Green’s function for the Hamiltonian associated with the MT potential.
With the operator associated with this Green’s function,

∑
f |f ⟩𝔾⟨f |, the expression for 𝜇(E) is rewritten as

𝜇(E) ∝ ⟨i|𝜖∗ ⋅ r𝔾(r, r′; E) 𝜖 ⋅ r′|i⟩Θ(E − EF) (11.4)

where Θ is a broadened Heaviside step function assuring that 𝜇(E) is non-zero only above the Fermi energy,
i.e. only for incident photon energies which can promote a deep core electron into an unfilled state.
𝔾 is the one-electron propagator function in the presence of the MT potential. That means that𝔾 describes all

possible ways that the photo-electron can propagate away from the absorber and scatter from the surrounding
atoms. 𝔾 can be expressed in a series expansion as

𝔾 = 𝖦0 + 𝖦0𝖳𝖦0. (11.5)

Here 𝖳, the atomic scattering matrix [2, 31], is expressed in terms of the single atom scattering matrix 𝗍 as

𝖳 = 𝗍 + 𝗍𝖦0𝗍 + 𝗍𝖦0𝗍𝖦0𝗍 + ⋅ ⋅ ⋅. (11.6)

Substituting this into Eq. (11.5) yields

𝔾 = 𝖦0 + 𝖦0𝗍𝖦0 + 𝖦0𝗍𝖦0𝗍𝖦0 + 𝖦0𝗍𝖦0𝗍𝖦0𝗍𝖦0 + ⋅ ⋅ ⋅ (11.7)

Eq. (11.7) is the starting point for EXAFS analysis. The matrix 𝖦0 is the free electron propagator, which
describes the ways an electron can travel from one point in space to another. 𝗍 is the single atom scattering
matrix. It describes how an electron scatters from each atom in the cluster. The second term in Eq. (11.7)
describes all the ways the photoelectron propagates away from the absorber and scatters exactly once from a
surrounding atom. The third term describes all the ways the photoelectron scatters twice, propagating between
and scattering from two other atoms in the cluster. The following terms describe successively higher orders of
scattering. At each order of Eq. (11.7), scattering is considered from all atoms in the cluster used to compute
the MT potential.

By itself, Eq. (11.7) is not especially useful. Each of the three theory programs further expands each term
of Eq. (11.7) into a series of scattering configurations. How this expansion is implemented is a substantial
distinction between the three popular theory programs. However, each of the theory programs implemented
several features essential to quantitative analysis of the EXAFS data.
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Figure 11.3 Pictorial depiction of GNXAS′ 𝛾2 signal. The light gray ball represents the absorber, the dark gray
ball is another atom in the cluster. The path of the photoelectron is indicated by the arrows for each order of
scattering. This was redrawn from figure 1 in Ref. [21]. Source: Filipponi, et al., 1995, [21]. Reproduced with
permission from American Physical Society and A. Filipponi.

11.1.1 The n-body decomposition in GNXAS

gnxas performs what its authors call an n-body decomposition of the Green’s function in Eq. (11.5). Given
the cluster of atoms from which the MT potentials were computed, the program considers sub-clusters of
atoms with 1, 2, or more atoms along with the absorbing atom. For each n-atom configuration, Eq. (11.5),
i.e. scattering to all orders within that sub-cluster, is calculated. For a two atom sub-cluster, this is called the
𝛾2 signal and is shown schematically in Fig. 11.3. The 𝛾2 signal from an absorber/scatterer pair includes the
single scattering contribution (𝜒2), the triple scattering contribution (𝜒4), and all successive odd orders of
scattering involving the rattling of the photoelectron between the two atoms. For n larger than 2, 𝛾n is the
irreducible signal from an n-atom configuration, meaning that the lower order 𝛾m (with m < n) signals are
removed. For a complete derivation of the 𝛾n signals, see Sec. II.C. of Ref. [21].

To make use of the n-body decomposition, the input cluster must be analyzed to extract all n-body
configurations. Even in a finite cluster, there are an infinite number of n-body configurations. In practice
[32], it is adequate to limit the decomposition to configurations of low order (n ≤ 4) and within the first few
coordination shells. Degeneracy – n-body configurations that produce identical signal, as from the atoms of
the same species in a well ordered coordination shell – is accounted for. Non-Gaussian disorder is considered
by integrating over appropriate n-body distribution functions. The EXAFS data is then fit using these 𝛾n

signals as theoretical fitting standards modified by parameters of the coordination environment.

11.1.2 The exact curved wave theory in EXCURVE

Early work [17] provided a computationally demanding but exact, curved-wave approach to the EXAFS
theory. The earliest effort at a user-oriented theory was excurve. This simplified the computation of the Lee
and Pendry theory such that it could be incorporated into routine analysis, but only for the single scattering
contribution. Later improvements [20] extended this exact theory to low order multiple scattering. However,
the approach taken by these early version of excurve did not scale well in terms of computation time and so
was restricted in its solution to Eq. (11.7) to single, double, and triple scattering paths.

Although less used today than the other two user-oriented theory packages, excurve was central to
several important developments in EXAFS. It was the first code for EXAFS analysis incorporated into
professionally supported, commercial software with a sophisticated graphical interface.1 excurve was used
in early discussions of constrained fitting in EXAFS [33], which is the topic of Sec. 11.2.3. It was the software
used in an early efforts to corefine [34] EXAFS and diffraction data measured on the same material, which
remains a thriving research area. Finally, it was the basis of a successful effort [35] to automate EXAFS
analysis.

1Certain commercial software is identified in this chapter to foster understanding. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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11.1.3 The path expansion in FEFF

By version 6 [22], feff brought several innovations to the EXAFS analysis problem, including a fast,
convergent, separable representation of the photoelectron propagator. [36] This is a substantial improvement
over the exact theory in excurve (it was later adopted by excurve) both in terms of speed of computation
and by enabling consideration of multiple scattering to any order. The second was an efficient, exhaustive
algorithm for the enumeration of all single and multiple scattering paths in an input cluster. [37] Even in
a small cluster of atoms, the number of possible scattering paths is infinite, if all orders of scattering paths
are considered. feff6 introduced the concept of an importance factor for each path computed as a sparse,
trapezoid integration of the magnitude of the calculated, complex 𝜒(k). In this way, paths could be assessed
for spectral weight and those contributing very little to the total 𝜒(k) could be discarded.

It is useful to understand how the path expansion relates to the n-body decomposition of gnxas. With
reference to Fig. 11.3, feff calculates each path (up to some order) on the right side of the equation,
whereas the function calculated by gnxas is their sum on the left side. In one way, feff’s path expansion
is less convenient as the sum of paths has far more terms than the sum of n-body configurations. How-
ever, consideration of individual paths allows for a more careful treatment of 𝜎2 for multiple scattering
paths.

A full treatment of all aspects of feff’s approach to the theory of EXAFS is presented in Ref. [24]. The
remainder of this chapter will be written in reference to feff and to one specific analysis package, ifeffit
[38], but hopefully in a way that is useful regardless of the choices of theory and analysis packages the reader
makes.

11.2 Theoretical calculation of EXAFS scattering factors

Theoretical calculations of EXAFS scattering factors address most of the limitations presented by the purely
empirical analysis techniques discussed above. With this theoretical tool, EXAFS can be done on meta-stable,
in situ, or in operando materials or on any material otherwise unavailable as a measurement standard. Complex
systems – doped, mixed phase, surface sorbed or anything else with scatterer species or distances that are
not represented in readily available standards – can be analyzed. Finally, these theoretical tools provide a
rigorous way of including multiple scattering contributions and higher coordination shells.

As discussed in the previous section, construction of the scattering potentials and enumeration of scattering
paths are two essential components of the theoretical scattering factors used for EXAFS analysis. These
calculations begin by preparing a list of Cartesian coordinates of atoms as input for the theory program. This
list can come from a variety of sources, including crystallographic structure data, a large molecule structure,
or the output of a first principles or molecular dynamics calculation. In any case, a list of atomic species
and their Cartesian coordinates is the requisite input data. In Sec. 11.3.2, an approach is explained for using
theoretical scattering factors in a case where details of the structure cannot be known beforehand.

If the input structure comes from a reliable source – that is, the distances between atoms are physically
reasonable – then the MT potentials will be calculated well enough to yield a defensible EXAFS analysis.
[39] Similarly, if input atoms are at nonphysical separations, the resulting calculation will be unacceptable
for analysis.

A simplified method of generating theoretical scattering factors for use in first shell analysis [40] involves
prompting the user for the absorber and scatterer species and their approximate separation. Using this, a
rock-salt (or another similarly simple structure) configuration is constructed and used to compute the MT
potentials. In Fig. 11.4, the effect of an nonphysically large MT radius is shown on the computed 𝜒(k) for
S neighbors at the Fe K edge in FeS2. For the first coordination shell, the simplified method works well,
yielding nearly identical results as a calculation made on the known crystal structure of FeS2.
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Figure 11.4 𝜒 (k) calculated for the first shell (left) and second shell (right) Fe-S paths in FeS2. The black trace
is 𝜒 (k) computed using the known crystal structure of FeS2. The gray trace is 𝜒 (k) computed using the simplified
method described in the text. The inter-atomic distance used in the simplified calculation on the left is the known
near neighbor distance in FeS2, while on the right the second shell distance is used. This results in nonphysical
muffin tin radii and significant error in the calculated 𝜒 (k).

The right side of Fig. 11.4 shows the second shell Fe-S path computed from the known crystal structure
along with the simplified calculation using the inter-atomic distance of the second coordination shell. In that
case, the simplified calculation uses a large inter-atomic distance to make the notional rock-salt structure.
This yields a nonphysical MT radius and results in substantial error.

This demonstrates two important aspects of the application of theoretical scattering factors to EXAFS
analysis, (1) the importance of good MT potentials with sensible radii and (2) the need for a reasonable input
structure for EXAFS analysis beyond the first coordination shell.

11.2.1 The pathfinder

The next chore is to enumerate the scattering paths. An exhaustive algorithm [37] was included with feff6
[22]. It begins by first enumerating all single scattering (SS) paths within the input cluster. That is, it finds all
paths which leave the absorber (the white atom in Fig. 11.5) and scatter only once from another atom in the
cluster. Beginning with each single scattering path, every possible double scattering (DS) path is constructed
by extending each single scattering path to all possible third atoms – the black atom in the middle of Fig. 11.5
– in the cluster. However, the photoelectron cannot scatter twice from the same atom, so the successive atom
must be different. Each subsequent higher order of scattering is then constructed from the previous order by
extending from the last atom of every path to every other atoms in cluster. In this way, an exhaustive list

Figure 11.5 Schematic illustrating the sequential construction of multiple scattering paths.
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of scattering paths is made. An example of a high order multiple scattering path built from the DS path is
shown on the right of Fig. 11.5. For triple scattering (four-legged) paths and higher, the possibility that the
photoelectron scatters from the absorber between two of its interior legs must be considered. In feff, this
path expansion is truncated at eight legs.

The paths are sorted by increasing half-path length using a heap, which is a tree-like data structure [41]
constructed to guarantee that the path with the shortest half-path length is always at the top of the tree. The
half-path length is defined as half of the sum of the lengths of each leg. For a SS path, then, the half-path
length is the atomic separation. As paths are removed from the heap, they are compared for degeneracy with
all paths previously removed from the heap. An obvious example of degeneracy is two SS paths from atoms in
the first coordination shell. Since these two paths would produce identical contributions to the EXAFS, they
are considered degenerate. Various non-obvious sorts of degeneracy are considered, including time-reversal
(scattering from the atoms in a multiple scattering path in the opposite order) or mirror symmetry about
a plane in a high order path. The impact of polarization and ellipticity of the incident beam can also be
considered at this stage.

With a set of MT potentials and an exhaustive list of scattering geometries, all possible contributions to the
EXAFS can be computed and presented for use in analysis. For any path of any order, the atomic terms of
the EXAFS equation – FΓ(k), the effective scattering amplitude over all atoms in the path; 𝛿Γ(k), the effective
phase shift due to interaction of the photoelectron with the central atom and all scattering atoms; and 𝜆Γ(k),
the photoelectron mean free path – are computed based on the MT potentials and the scattering geometry.
Here, Γ is the index counting over all paths.

This presentation of the theoretical scattering factors maps naturally onto the EXAFS equation. [16]
The terms calculated by the theory program are used in the EXAFS equation, Eq. (11.1). The other terms
are somehow determined as part of the analysis. All the terms in Eq. (11.1) are explained in Table 11.1. The
EXAFS signal from the input cluster is then found by evaluating Eq. (11.1) for every path, the summing these
contributions, as in Eq. (11.2).

Eq. (11.7) is an infinite series. In practice, however, this series is severely truncated. The half-length
of the path indicates the region in R-space in which the path contributes Fourier components. Because
the range over which the EXAFS data are analyzed rarely exceeds about 6 Å, paths with half-lengths
much longer than 6 Å are safely neglected. Also, different paths contribute different spectral intensity.
The photoelectron scattering amplitude is peaked in the forward and backward directions [17], thus paths
with steep scattering angles tends to be quite small. Paths which contribute scant spectral weight can also
safely be neglected. The sum in Eq. (11.2) will typically include only a few to a few dozen significant
paths.

11.2.2 The fitting metric

The terms of Eq. (11.1) are evaluated and the sum, Eq. (11.2), is compared to the data. Many of the popular
analysis programs which use theoretical scattering factors from feff employ a conventional, Levenberg-
Marquardt, non-linear minimization [42]. This involves the minimization of a 𝜒2 fitting metric.2 A difference
function, f , between the data and calculation is computed at each data point included in the evaluation of the
fit. For a fit evaluated in k-space with real-valued functions, this difference is of the form of Eq. (11.8). For
a fit evaluated in the R-space, the difference function includes the real and imaginary parts of the Fourier-
transformed data and calculation, as in Eq. (11.9). (The difference function for Fourier filtered data, also

2Unhappily, the letter 𝜒 serves two purposes in the EXAFS literature. In this chapter, the fitting metric is always squared (as in 𝜒2)
whereas the function usually has an argument (e.g. 𝜒(k)).



JWST583-c11 JWST583-VanBokhoven Printer: Yet to Come October 12, 2015 12:43 Trim: 246mm × 189mm

290 X-Ray Absorption and X-Ray Emission Spectroscopy

complex-valued, is also of the form of Eq. (11.9), albeit with wavenumber as the abscissa.) The fitting metric
is then evaluated as the sum of squares over all data points N included in the fit, Eq. (11.10).

f (ki) = 𝜒(ki|𝖽𝖺𝗍𝖺) − 𝜒(ki|𝗍𝗁𝖾𝗈𝗋𝗒) (11.8)

f (Ri) = Re
[
𝜒(Ri|𝖽𝖺𝗍𝖺) − 𝜒(Ri|𝗍𝗁𝖾𝗈𝗋𝗒)

]
+ Im

[
𝜒(Ri|𝖽𝖺𝗍𝖺) − 𝜒(Ri|𝗍𝗁𝖾𝗈𝗋𝗒)

]
(11.9)

𝜒2 =
Nidp

N

N∑
i=1

(
fi
𝜖i

)2

(11.10)

𝜖i is the measurement uncertainty at data point i. Nidp is the information content – the number of independent
points – of the data. Typically, the EXAFS data are quite over-sampled compared to the information content.
N, the number of data points, is typically a few hundred while Nidp is around 10 or 20. The prefactor Nidp∕N,
then, scales 𝜒2 to the number of independent measurements in the data.

Within the context of a Levenberg-Marquardt minimization, the estimation of the size of Nidp is commonly
taken as the Nyquist criterion [43], i.e. the bandwidth of a signal processing problem. In the context of EXAFS
analysis Nidp ≈ 2ΔkΔR∕𝜋, where Δk is the range over which the Fourier transform window is non-zero, and
ΔR is the range over which the fit is evaluated. See Refs. [44] and [45] for discussions of statistics in excurve
and gnxas.

11.2.3 Constraints on parameters of the fit

Some implementations of EXAFS analysis using feff consider the terms of Eq. (11.1) – N, S2
0, 𝜎2, E0, and

ΔR – to be the parameters of the fit. While this may be an adequate strategy when analysis is limited to
the first coordination shell, it quickly becomes untenable for larger fitting models. The number of floating
parameters quickly exceeds the information content of the fit as more scattering paths are considered.

To enable both the use of theoretical scattering factors beyond the first shell and the application of rich,
featureful models to the EXAFS analysis, constraints between parameters are essential. With constraints, the
parameters of the EXAFS equation are not the parameters of the fit. Rather, they are written in terms of the
parameters of the fit.

The simplest examples of constraints are those terms in Eq. (11.1) that relate to the central atom, S2
0 and

E0. S2
0 is used to approximate the attenuation of the EXAFS signal due to the incomplete overlap of wave

functions of the passive electrons – all the electrons other than one excited by the incident photon – in the
presence of the core-hole left behind by the photoelectron with their unperturbed wave functions [30]. This
is a property of the central atom, not of a specific path. Therefore, it is often reasonable to constrain S2

0 to be
the same for each path included in the fit. This means that a single parameter is floated in the fit and its value
is used for S2

0 as Eq. (11.1) is evaluated for each path. Similarly, E0 is a parameter that aligns the energy grid
of the calculation with the energy grid of the data. Often, only one such variable parameter is required in a fit
and its value is used for the evaluation of each path.

More interesting constraints are typically applied to the evaluation of ΔR and 𝜎2. Consider the analysis of
EXAFS data measured on a simple cubic structure, say copper metal or a rock-salt structure such as FeO. For
a cubic material, the lattice constant is the only structural parameter. That constant and the symmetries of the
cubic space group determine the locations of all atoms. As a result, the lengths of all paths can be expressed
using a volumetric lattice expansion coefficient 𝛼 such that, for any path,

ΔRΓ = 𝛼 ⋅ R0,Γ (11.11)

where R0,Γ is explained in Table 11.1. Here, 𝛼 is the parameter of the fit and the ΔR for every path are
written in terms of 𝛼. While this particular formulation is only valid for cubic crystals, conceptually similar



JWST583-c11 JWST583-VanBokhoven Printer: Yet to Come October 12, 2015 12:43 Trim: 246mm × 189mm

Quantitative EXAFS Analysis 291

Single scattering

Single scattering

Collinear double scattering

Collinear triple scattering

CDS through absorber

CTS through absorber

Rattle

Figure 11.6 Types of low-order collinear MS. The white ball is the absorber, the gray balls are atoms in the first
coordination shell, the black ball is an atom in a more distant shell. For example, in copper metal, the black ball
might be a Cu atom in the 4th shell. In the Ti K edge of cubic EuTiO3, the black ball could be a Ti atom in the 3rd

shell.

constraints using more variable parameters can be applied to systems of lower symmetry. A more elaborate
constraint on a ΔR parameter is shown in Sec. 11.3.1.

Constraints can be placed on 𝜎2 parameters. One common strategy is to treat a pair of atoms as masses
bound by a quantum oscillator, thus expressing 𝜎2 for a path in terms of an Einstein temperature [46]. This
is particularly effective for a model which considers the temperature dependence of 𝜎2 for a path. Another
model described in that same reference relates the 𝜎2 values for all paths in a monoatomic crystal to its
acoustic phonon spectrum. This is attractive as it allows evaluation of all 𝜎2 parameters in Eq. (11.1) using
a single variable representing the Debye temperature of the material. Unfortunately, few EXAFS analysis
problems involve monoatomic materials, limiting the utility of that approach.

The 𝜎2 parameters of collinear MS paths are related to the 𝜎2 values of geometrically related SS paths with
two reasonable assumptions [47], the thermal motion in the perpendicular direction is small compared to the
separation between the atoms and the thermal motions of the atoms are uncorrelated. Given those assumptions,
the relations between the 𝜎2 parameters given in Fig. 11.6 are obtained, allowing parameterization of all of
these paths using only two variable 𝜎2 parameters in the fit. In certain situations, it is possible to relate the 𝜎2

of non-collinear MS paths to the 𝜎2 of the SS paths made up of legs in the MS path. In Ref. [32], a formula
is given as Equation 13 for a triangular configuration of Ge atoms in crystalline germanium.

The constraints discussed in the last few paragraphs represent ways of encoding prior knowledge into a
fit. Consider the example of representing all the ΔR parameters using a single lattice expansion parameter. In
this case, our prior knowledge is that the material is cubic and the lengths of the paths must be constrained
by cubic symmetry. Acknowledging this by using constraints in the fit serves to reduce the number of fitting
parameters which must be determined by the fit and, hopefully, to make the fit more statistically robust.

11.2.4 Fitting statistics

One reasonable definition [38] of an R-factor for EXAFS is

 =

N∑
i=1

[
f (Ri)

]2

N∑
i=1

([
Re

(
𝜒(Ri|𝖽𝖺𝗍𝖺)

)]2 +
[
Im

(
𝜒(Ri|𝖽𝖺𝗍𝖺)

)]2
) (11.12)
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where f (Ri) is from Eq. (11.9) and  is evaluated over all data points included in the fit. ( evaluated
in k-space takes the same form, except that the denominator is the sum of squares of the real-valued 𝜒(k)
function.) In this form,  is interpreted as a percentage misfit or, equivalently, as a numerical evaluation of
how closely the fitted function overplots the data. As such it is a useful metric for judging misfit, but not fit
quality. One can imagine a scenario in which  is small, but the fitted values of one or more fitting parameters
are physically indefensible.

The reduced chi-square is a metric which weights the closeness of the fitted function to the data by the
unused information content:

𝜒2
𝜈 =

𝜒2

𝜈
where 𝜈 = Nidp − Nvar. (11.13)

Nvar is the number of parameters evaluated in the fit, thus 𝜈 is the unused portion of the information content.
The value of 𝜒2

𝜈 is that it allows comparison of fits using different fitting models. Consider a fit to Fe K edge
data measured on Fe2O3, hematite. This is a rhombohedral crystal [48] in which the first coordination shell
is split into two distances, 1.946 Å and 2.116 Å, each populated by 3 oxygen atoms. One might wish to know
whether 𝜎2 can be measured independently for these two oxygen scatterers given the quality of the data. 𝜒2

𝜈

offers a way of answering that question. Adding a second 𝜎2 parameter increases Nvar and reduces 𝜈. If 𝜒2
𝜈

decreases sufficiently when that second parameter is added to the fit, then one might have confidence that
the two 𝜎2 parameters can be measured. On the other hand, if 𝜒2

𝜈 changes little or increases upon adding the
second 𝜎2 parameter, then the data cannot support their independent measurement.

Formally, 𝜒2
𝜈 provides an absolute metric [42] of goodness of fit. If 𝜒2

𝜈 ≈ 1, then the data are consistent
with the fitting model. Typically in EXAFS, 𝜒2

𝜈 is rarely near 1. Consider the fit to the first shell of room
temperature, metallic gold shown in Fig. 11.7. Theoretical scattering factors using feff was computed using
face-centered cubic gold with a lattice constant of 4.08 Å. The Fourier transform and fit ranges are given by the
vertical, dotted lines. With N fixed to 12, this fit resulted in S2

0 = 0.85(4), E0 = 5.56(31) eV, ΔR = −0.023(3)

Å, 𝜎2 = 0.00824(34) Å2, and  = 0.0070. This is unambiguously an acceptable fit – the misfit is well
below 1% and the values of all four fitting parameters are physically defensible and with small uncertainties.
However, 𝜒2

𝜈 = 754.0, supposedly indicating an extremely poor fit. How can this be?
The resolution to this apparent incongruity is the evaluation of 𝜖, the measurement uncertainty, in

Eq. (11.10). It is, at best, extremely difficult to evaluate 𝜖 well. In most EXAFS measurements, it is not
measured at all. (Ref. [49] is a rare and welcome exception.) One way of approximating 𝜖 is to presume that
no structural information persists above 15 Å in 𝜒(R). The average value of |𝜒(R)| in the range from 15 Å to
25 Å is computed and used [38] for each 𝜖i in Eq. (11.10).

The tacit assumption behind this evaluation of 𝜖 is that the noise is dominated by statistical variation.
This is a poor assumption when a synchrotron source is used for the EXAFS measurement. Except for the
most dilute samples measured in fluorescence, the flux incident upon the experiment, even from a second
generation source, is so high that statistical variation is typically small compared to instrumental sources of
uncertainty and to error in the theoretical scattering factors. When the evaluation of 𝜖 is too small, 𝜒2

𝜈 is too
large, even for an obviously good fit. With ambiguity in 𝜖, 𝜒2

𝜈 is not a useful parameter for evaluating the
goodness of a single fit.

Still, 𝜒2
𝜈 is an essential statistical parameter. Examination of 𝜒2

𝜈 allows the EXAFS analyst to determine
whether a fit is improved by adding additional paths or variables. When 𝜒2

𝜈 is significantly reduced by the
addition or removal of a parameter or a path, the resulting fit can, with confidence, be said to have improved.

The question remains of how to determine whether a particular fit is, in fact, a good fit. The resolution is
to consider whether the results of an analysis are defensible. While it is certainly true that a defensible fit
will have small values for  and 𝜒2

𝜈 , examination of the fitted values for the variable parameters and of the
evaluations of the parameters of Eq. (11.1) is essential. Parameter values must be sane. Some rules of thumb
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χ
χ

Figure 11.7 The result of a simple fit to the first coordination shell in metallic gold. The data (black) are over-
plotted with the best fit function (gray) as 𝜒 (k), |𝜒 (R)|, and Re[𝜒 (R)].

include that S2
0 [50, 30] not be much smaller than 0.7 or much larger than 1.0, that ΔR values not result in

nonphysical distances between atoms, that 𝜎2 – the mean square variation in distance – not be negative, and
that E0 shifts should not be so large [51] that the fit finds a false minimum. While a particular sophisticated
fitting model might parameterize Eq. (11.1) in a way that does not observe these rules of thumb, it is certainly
true that a defensible fit results in defensible values for all fitting parameters.

Error bars The algorithm for finding the minimum of the fit also yields a matrix [42] whose diagonal ele-
ments are the error margins for each variable parameter and whose off-diagonal elements are the correlations
between the variables. When 𝜖 is too small, 𝜒2

𝜈 is too large and the diagonal elements of the matrix are too
small and do not correctly represent the level of uncertainty in the variable parameters. To correct for this,

the diagonal elements are scaled by
√

𝜒2
𝜈 , resulting in error margins that would be correct were 𝜖 evaluated

correctly and under the assumption that the fit is a good fit. Therefore, if you consider a fit to be defensible,
the error margins scaled in this way are defensible 1𝜎 uncertainties.

Correlations Certain correlations between parameters are unavoidable. Even in the excellent fit to Au foil
shown in Fig. 11.7, the S2

0 and 𝜎2 parameters are over 80% correlated, meaning that a statistically equivalent
fit can be recovered by changing one parameter within its error margin so long as the correlated parameter
changes by 80% of that amount. Similarly, the E0 and ΔR parameters are nearly 70% correlated. While low
correlations between parameters is desirable as it indicates robustness of the parameterization, it is common
for parameters effecting the amplitude (or the phase) of Eq. (11.1) to be highly correlated.
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11.2.5 Extending the evaluation of 𝝌2

Multiple FEFF calculations Many EXAFS analysis problems cannot be solved by a single calculation of
the theory program. Examples include mixed-phase systems for which each phase contains the absorbing
atom, crystal systems for which the absorber sits on more than one crystallographic site, metalloproteins
with multiple active sites, or any other situation for which the absorbing atom exists in two or more distinct
coordination environments.

In any such case, the general form of the solution is the same. The theory program is run for each distinct
coordination environment. Paths are used from each such calculation to model that component of the measured
data. The summation in Eq. (11.2) then includes paths from two or more calculations. An example is discussed
in Sec. 11.3.2.

Multiple data sets A sample might be measured at several temperatures or pressures or at the edge of two
or more elements. This suggests the prospect of corefinement of data. As a practical matter, corefinement
of multiple data sets is a simple modification of Eq. (11.10). Eqs. (11.1) and (11.2) are evaluated for the
paths used to model each data set, then Eq. (11.10) is evaluated with an additional summation over all data
sets.

The great advantage of a multiple data set fit is that it multiplies the information available to the fit. Nidp
is evaluated for each data set and summed. A corefinement becomes attractive when an aspect of the fitting
model either is independent of the extrinsic parameter or can be modeled in terms of the extrinsic parameter.
For example, in a temperature series for which the data have been carefully aligned onto a common energy
axis, a single E0 parameter (see Table 11.1) can be used for each data set. In a temperature series, 𝜎2 for a
path might be related at all temperatures to a single Einstein temperature [46]. Likewise, ΔR might be related
to a linear expansion coefficient. In each case, the information content of the fit is increased without similarly
increasing the number of variable parameters.

EXAFS data from multiple edges in a material present interesting possibilities for constraints in the context
of a multiple data set fit. Consider EuTiO3, a cubic perovskite. The data measured at the Eu LIII and Ti K
edges must see the same lattice constant. The second coordination shell of each edge contains the other metal
as a scatterer. 𝜎2 for that path must be the same when observed with either metal as the absorber. The use of
multiple data set in a problem with data measured at multiple edges is discussed in Sec. 11.3.3.

Multiple k-weights In EXAFS analysis, it is common to perform the analysis on kn-weighted data, where
typically n ∈ [1, 2, 3], but could be a non-integer value as well. That is, the 𝜒(k) function is multiplied by
some exponent of k before further data analysis. For example, in Fig. 11.7, the 𝜒(k) data are displayed with
n = 2. This serves to scale the oscillations such that they are of about the same size over the entire energy
range of the data. The Fourier transform was then performed on the k2-weighted data.

Weighting the data by different exponents of k can serve a numerical purpose in the analysis by changing
the relative importance of different energy regions in the evaluation of the fit. Because 𝜎2 is multiplied by k2

in Eq. (11.1), a misfit in the value of 𝜎2 will have more profound impact on the evaluation of 𝜒2 at the high-k
end of the data. Using a larger n, therefore, will increase the sensitivity of the evaluation of 𝜒2 to a misfit
in 𝜎2. In similar fashion, the sensitivity of the evaluation of 𝜒2 to a misfit in E0 is greater at low k (see the
expression of E0 in Table 11.1). Using a smaller n will, therefore, increase the sensitivity of the evaluation of
𝜒2 to a misfit in E0.

Eq. (11.10) is extended such that 𝜒2 is evaluated for each value of kn-weighting included in the model. The
sum of these 𝜒2 values is the quantity minimized in the fit. This provides an effective compromise between
the merits of the different k-weighting options, enhancing the sensitivity of the evaluation of 𝜒2 over the
entire k range.
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11.2.6 Other analytic methods

The discussion in this chapter covers current practice common by many of the most widely used EXAFS data
analysis packages. In no sense can this the discussion in this chapter be considered “modern” in 2014, the
year that this chapter was written. Most of the theory of EXAFS was in place by the mid 1990s. The statistical
formalism described here was developed decades earlier. Aside from the graphical user interfaces employed
by some EXAFS analysis packages, most of the EXAFS software of today could have been written in 1995.
That is not a criticism – concepts that are useful and productive tend to age gracefully.

That said, EXAFS researchers have explored many new ideas in the last twenty years. Two prominent
areas that merit attention are Bayesian statistical analysis and the use of the wavelet transformation. While
full treatment of these topics is beyond the scope of this chapter, overviews are presented here.

Bayesian statistics There are a number of problematic aspects of the statistical discussion in the preceding
pages. The difficulty determining an appropriate estimate of 𝜖 leads to several ambiguities in the analysis,
including the absolute determination of goodness of fit and the scaling of error bars. In multiple data set or
multiple k-weight fits, no explanation was given for how to weight the relative importance of the different
components of the evaluation of 𝜒2. Even the determination of the number of independent points, given after
Eq. (11.10), results from an analogy with the theory of signal processing that is unlikely to hold true for
a typical EXAFS analysis problem. In short, the conventional formulation of the EXAFS 𝜒2 minimization
problem is usually ill-posed. Despite this problem, the application of the simple statistical model presented
in this chapter has proven successful, albeit only when approached conservatively and skeptically.

This approach can be improved upon. Bayesian inference provides a rational system for evaluating assump-
tions made about a body of data and updating those assumptions on the basis of the measured data. Refs. [52,
53] demonstrate an approach to assessing the value of prior knowledge and the reliability of measured data.
By this algorithm, the ill-posed problem is reduced to a series of well-posed, linear equations. Then a series
of non-linear equations are evaluated iteratively to determine the relationship of the prior knowledge and the
data to the confidence in the result.

This approach contributes a significant solution to each of the shortcomings of the conventional approach.
The problems of evaluating measurement uncertainty, confidence in prior knowledge, and confidence in
different portions of the data ensemble are treated formally. This Bayesian approach even provides a rigorous
way to evaluate the true information content of the data. The treatment presented in Ref. [52, 53] is the most
thorough discussion of Bayesian methods as applied to EXAFS, but its demonstration was limited to rather
simple examples of measured and synthetic data. Other authors have applied Bayesian methods to more
realistic research problems, see, for example, Refs. [54] and [55]. As a practical matter, prior knowledge is
always used in some sense in the formulation of fitting models for use in EXAFS analysis, as is demonstrated
by the examples in Sec. 11.3.

Wavelet transforms The basis used in a Fourier transform – an integration of 𝜒(k) over the exponential
eikR – is delocalized in k space and completely localized in R space. In EXAFS measurement, however,
𝜒Γ(k) is not infinite. Since the measured 𝜒(k) is typically defined beginning around 3 Å−1 and extending for
only about 5 Å−1 to 15 Å−1, the 𝜒(R) signal will be quite broad even before consideration of the 𝜎2 term
in Eq. (11.1). The wavelet transform offers a tool for distinguishing overlapping scatterers by use of basis
functions that are partially localized in both k and R. [56, 57] In a situation where two overlapping scatterers
are considerably different in mass, their scattering functions will be peaked in amplitude in different regions
of k space. As a general rule, light elements are peaked at low k, while heavier elements have signals that
extend to much higher k. Very heavy elements show a Ramsauer-Townsend [58] effect in their scattering
amplitudes, adding additional structure to 𝜒Γ(k) in some k range. If a basis can be found with components
localized in k space in a way that emphasizes one kind of scatterer over another, then the wavelet transform
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might provide a much needed sensitivity in the case of scatterers at similar distances. In most applications to
EXAFS analysis, Morlet wavelets [59] are used. One particularly interesting implementation of the wavelet
transform [60] uses scattering functions from feff to define wavelets which are specialized for application
to EXAFS analysis.

The use of multiple k-weights discussed in Sec. 11.2.5 bears a certain similarity to the use of wavelet
transforms. By including terms in the evaluation of 𝜒2 with different sensitivities to different regions of k
space, the fitting model is often able to resolve ambiguities introduced by different scattering species at similar
distances. Well-chosen wavelets, particularly those based on scattering functions from EXAFS theory, might
be a more refined tool for resolving these ambiguities in a data analysis.

11.3 Practical examples of EXAFS analysis

This section further explores the notion that the parameters of the EXAFS equation, Eq. (11.1), are not the
parameters of the fit but are, instead, written in terms of the parameters of the fit. This use of prior knowledge
to create rich, sophisticated fitting models is central to the practice of EXAFS analysis.

11.3.1 Geometric constraints on bond lengths

In Ref. [61], EXAFS measurements were made on an artificial DNA construct proposed as a sensor for
mercury in solution. The DNA construct is specifically engineered to be selective for a particular metal. The
binding of the metal to the DNA results in the activation of a phosphor, which provides the optical signal
making this a metal sensor. The purpose of the EXAFS measure was to identify the bonding environment
of the mercury atom to the DNA sensor. Earlier work by nuclear magnetic resonance suggested that the Hg
atom replaces the weak hydrogen bond between a thymidine-thymidine mispair.

The analysis started from the known structure [62] of the nucleotides. To avoid bias in the result of the
analysis, the possibility of the Hg atom bonding to any position on any of the four nucleotides was considered.
Several such positions are shown for thymidine in Fig. 11.8. The Hg might bond to a corner of a nitrogenous
base, to a corner of a sugar (marked as Hg), or even bound to the nucleotide via a monodentate bridge (two
examples are marked as H̃g). Obviously, these options are not equally likely from a chemical perspective, but
each can be tested against the EXAFS data.

Figure 11.8 Schematic of some conceivable ways that Hg might bond to thymidine.
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The data, seen in Ref. [61], define the approximate distance of the Hg atom from its nearest neighbor, ∼2.04
Å. Input for feff was created using the nucleotide structure and with the Hg absorber placed at that distance
in each of the many possible locations. The data itself eliminated several possible absorber environments.
Of the three kinds of locations shown in Fig. 11.8, only a position close to the corner of a six-member ring
provided second shell scatterers at a distance that is consistent with the data. The Hg and H̃g locations were
therefore eliminated from consideration.

Because of the limited data quality, the information content of the data was quite small. This required a
highly constrained model. The distance from the Hg atom to the near neighbor N or C atom, a, was a variable
parameter. The nitrogenous base was presumed to be rigid such that the change in N–C or C–C distance
could be neglected. Consequently, the distance from the Hg absorber to scatterers in the second shell was
constrained by a standard trigonometric relation:

D(Hg–2NN) =
(a − b) cos(𝜑∕2)

cos(𝛽)
where tan(𝛽) = a + b

a − b
tan(𝜑∕2) (11.14)

and a, b, and 𝜑 are all indicated in Fig. 11.8. In the fit, b was fixed to its nominal value while a was a variable.
Thus, the distances to atoms in both the first and second coordination shells were evaluated with a single
variable. This constraint enabled a fitting model which effectively used the limited information content of the
data. In the end, the data supported the Hg atom being bound to thymidine at the location marked as Hg in
Fig. 11.8.

11.3.2 Constraints on the coordination environment

In Ref. [63], EXAFS measurements were made on suspensions of the bacterium B. subtilis which were
allowed to come to equilibrium with aqueous uranyl solutions. The point of the experiment was to understand
how the uranyl ions bind with the biomass in the solution. The authors found that the uranyl has a strong
affinity for phosphoryl ligands at very low pH with an increasing affinity for carbonyl ligands as the pH
increased.

In this analysis problem, the uranyl ions are in equilibrium with an uncharacterized biomass. There is no
obvious initial structure for this system, yet theoretical scattering factors from feff was used effectively in
the analysis. To start, the authors recognized that there are only a few plausible coordination environments
for the uranyl ion, all of which are shown schematically in Fig. 11.9. In short, the uranyl can be bound to
a phosphoryl ligand via a monodentate bridge, to a carbonyl ligand via a bidentate bridge, or to a hydroxyl
ligand (represented by the dangling equatorial oxygen atoms). The oxygen atom forming the phosphoryl
bridge is at a distance of about 2.35 Å, while the two oxygen atoms forming the carbonyl bridge are at a
distance of about 2.42 Å. The U–O distance for the hydroxyl ligand is also about 2.42 Å.

Figure 11.9 Schematic of the possible uranyl bonding environments. The uranyl ion consists of 5 or 6 equatorial
oxygen atoms and two very short axial oxygenyl ligands.
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To generate theoretical standards for the fit, feff was run on two crystalline materials, triuranyl diphosphate
tetrahydrate [64] and sodium uranyl triacetate [65]. The authors certainly did not expect to find either of those
minerals in their sample. However, the positions of the uranium, oxygen, and phosphorous atoms from the
first mineral are an effective representation of the similar configurational unit found in the biomass sample.
Similarly, the positions of the uranium, oxygen, and carbon atoms in the second mineral effectively represent
the carbonyl structure in the biomass sample.

The fitting model described in Ref. [63] uses constraints involving distances and coordination numbers. The
number of oxygen scatterers at the short distance, ∼2.35 Å, must equal the number of phosphorus scatterers.
Likewise, the number of carbon scatterers can be no more than half the number of oxygen scatterers at the
∼2.42 Å distance. Other constraints were considered in the fit. There are significant multiple scattering paths
involving the axial oxygen atoms or the nearly collinear U–O–P configuration. The 𝜎2 parameters for those
paths used the constraints given in Fig. 11.6.

Using theoretical scattering factors calculated on closely related structures and employing constraints that
encapsulate essential features of the coordination environment, the authors were able to understand the pH
dependence of the bonding of the uranyl ion to biomass.

11.3.3 Constraints and multiple data set analysis

Nanoscale manganese zinc ferrite samples are studied by EXAFS in Ref. [66]. These materials present an
interesting structural challenge due to the distribution of the three transition metals over the tetrahedral and
octahedral sites of the spinel structure. Because the x-ray scattering strength of the three metals are so similar,
determination of site occupancy using diffraction would require resonant techniques. However, because the
particles are so small, the peak broadening limits the information that can be extracted from a conventional
x-ray diffraction measurement. To address the problem of site occupancy, the authors measured EXAFS on
all three edges and performed multiple data set fitting to best use the data ensemble. With the three data
sets all providing information to the fit, a sophisticated structural model could be applied. In short, the two
coordination environments, shown schematically in Fig. 11.10, populate the spinel unit cell. The three metal
atoms are distributed among these two kinds of sites. Because the number of and distance to the neighboring
oxygen atoms is different in these two coordination environment, the EXAFS data at the three edges were
used to determine site occupancy.

Section IV.B of that paper enumerates the list of constraints applied to the fitting model. Along with
assumptions of phase and valence purity and constraints on 𝜎2 for multiple scattering contributions as in
Fig. 11.6, several interesting constraints among the data sets were applied. Distance self-consistency required
that a metal-metal distance be the same regardless of which metal is the absorber. Thus a single variable ΔR
parameter was used for corresponding metal-metal paths in different data sets. Total metal stoichiometries
were determined independently by inductively coupled plasma measurements and reported in the paper.
These stoichiometries were used to constrain the site occupancies. For example, if the numbers of zinc and
manganese scatterers on a site were used as variable parameters in the fit, the number of iron scatterers was
computed from those variables and the total stoichiometries.
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Figure 11.10 Schematic of the two coordination environments in the inverse spinel structure.
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Several aspects of Ref. [66] make it so instructive. It demonstrates how corefinement of an ensemble of
related data allows determination of structures more accurately and with greater precision than independent
refinement of the data sets. It explains with clarity the purpose and application of the constraints used in
the fitting model and their relation to prior knowledge, such as the independently measured stoichiometries.
Throughout the paper, the authors discuss how each constraint was tested with respect to the statistical quality.

11.4 Conclusion

Of the three user-oriented theory packages discussed in Sec. 11.1, feff has seen the widest adoption. gnxas
continues to be popular, with dozens of citations each year, but has never been as widely used as feff. The
use of excurve seems to have diminished in recent years. Given that all three packages were successful in
bringing real-space, multiple-scattering theory to bear on the EXAFS analysis problem in a user-oriented
manner, what accounts for their differences in popularity and deployment?

Early in its life, excurve was licensed to a company whose product was a materials measurement studio,
a common framework for managing calculation and data analysis relevant to a wide variety of materials
measurements. excurve was its XAS component. In many ways, this was a canny arrangement by the people
who developed excurve. The licensee took on the difficult chores of distribution, support, and integration
into a graphical work environment. For the end user, however, the cost of the software product was quite high.
While development continued on a less restricted branch – excurv98 became dl excurv [67], upon which
abra [35] was based – feff’s wider success is attributable in part to a lower fee for entry and less restrictive
end-user licensing terms.

gnxas presents a different story. It has always been free of cost, requiring only that its use be registered
with its developers. While a redistributable, free-of-cost version of feff6 suitable for EXAFS analysis has
been available since 2002, later versions of feff have always come with a licensing fee. Calculation of
theoretical scattering factors and analysis are tightly integrated in gnxas, coming in a single package from a
single group of developers. In contrast feff is only a theory program. It encapsulates its output in a way that
can be incorporated into an independent data analysis program. At this time, there are nearly a dozen such
efforts actively maintained by groups with no direct connection to the feff project. Encouraging third party
development has allowed a thriving ecosystem to evolve around feff.
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