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This paper presents a stiffness-based kinematic model for analysis and control of a Micro-Electro-
Mechanical Systems (MEMS) flexure-based hexapod nanopositioner that was previously built by
the National Institute of Standards and Technology (NIST). This nanopositioner is capable of
producing high-resolution motions in 6 degrees of freedom (DOF) by actuating three planar X–Y
positioning stages. Given a large number of flexure-based nanopositioners, the modeling and
controller design has been a challenging task due to their inherent structural complexity and
difficulties in measuring 6DOF positioning accuracy. In this paper, we discuss kinematic models
for developing an open loop controller and an analytical approach routine for this
nanopositioner. These models include a novel model for calculating the nonlinear stiffness
of the X–Y positioning stage and a stiffness-based Jacobian matrix of the hexapodmechanism
for the controller. Compared with Finite Element (FE) simulations, we conclude that the
mean error of the X–Y stage control model is 1.93 % within a 55 μm range of motion. To
validate the control model, the top platform is commanded to trace a circle of diameter
20 μm. The result shows a mean error of 3.38 %.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

A nanopositioner is a high precision positioning device used in motion control with nanometer precision. Most nanopositioners are
made of flexure mechanisms [1–4] that are formed by multiple (often identical) flexure pivots, leaf springs, or their chains that are
designed to produce a definedmotion upon the application of an appropriate load. Thesemechanisms have the advantage of no backlash
and ultra-high precision. Nanopositioners [5–12] have beenwidely used in precision engineering and play an important role in emerging
nanotechnology and medicine [13–17]. However, the controller modeling and design have been challenging tasks due to their inherent
structural complexity and difficulties in measuring 6 degree-of-freedom (DOF) positioning accuracy.

In terms of actuation methods, comb drives [18–20] and thermal actuators [21,22] are commonly used force actuators in
Micro-Electro-Mechanical Systems (MEMS). A stiffness-based control model is required for deriving the control model for these
actuators, especially when position sensors are not available for feedback control. A lot of prior work by other researchers has been done
regarding the stiffness analysis of planar and spatial nanopositioners. Yao et al. [23] calculated the stiffness andderived a kinematicmodel
of a planar micropositioning stage. Ji et al. [24] designed a 6DOF nanopositioner and derived a control model based on the stiffness, the
combdrive force, and the integrated capacitive displacement sensor. Yong et al. [25] built and tested a controlmodel of thermal actuation
force and motion for a serial kinematic MEMS X–Y stage for multifinger manipulation. Gao et al. [26] did the static analysis of a
piezodriven micropositioning stage which adopts the notch flexures. Sun et al. [27] studied the beam stiffness and derived the
system spring stiffness of a silicon integrated micro nano-positioning XY-stage with comb drives. Laszczyk et al. [28] designed and
004
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Nomenclature

[K], [C] 6-by-6 stiffness and compliance matrices
[Kc] the stiffness matrix of the circular notch flexure joint
[Kb] the stiffness matrix of a beam flexure with rectangular cross section
[Kt] the stiffness matrix of the thermal actuation mechanism
[Kw] the stiffness matrix of a wire flexure
[KX] the stiffness matrix of the X stage
[Kj

XY] the stiffness matrix of each X–Y stage, j = 1, 2, 3
T̂
p

the twist representing the motion of the top platform center
T̂ j the motion twist of the X–Y stage, j = 1, 2, 3
Ŵ j the actuating wrench on the center of the ends of two wire flexures, j = 1, 2, 3
Δa a 6-by-1 vector representing the displacement of three X–Y stage centers by thermal actuation force
[Ad] a 6-by-6 adjoint transformation matrix
[R] a 3-by-3 rotation matrix
[Z(θ)] a 3-by-3 rotation matrix about z axis
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modeled an X–Y microstage for micro-opto-electro-mechanical systems (MOEMS) applications with constant beam stiffness. Shi et al.
[29] calculated the workspace of a meso-scale hexapod nanopositioner based on stiffness of flexures and inverse kinematics.

However, these simple models assume a constant stiffness matrix and neglect the nonlinear component in relatively large
deflections. Moreover, there is relatively less work done in deriving analytical models of a 6DOF stiffness matrix due to the
structural complexity. FE simulation and physical experiments are the two commonly used methods for analyzing the 6DOF
stiffness of a nanopositioner. Brouwer et al. [30] modeled and derived the stiffness of a 6DOF manipulator by using software
SPACAR.1 Yang et al. [31] developed a method to measure in-plane stiffness of a nanopositioner by using atomic force microscopy
(AFM) and measured the stiffness of the hexapod nanopositioner [32]. When being compared with the analytical models, these
methods are time consuming, costly, and inefficient in the design process.

In this paper, an analytical control model of the X–Y positioning stage is derived. It includes the derivation of constant stiffness
and nonlinear stiffness by parasitic displacement. Based on the control model of the X–Y stage and a 6DOF stiffness matrix of the
hexapod mechanism, we derived an open loop control model for the NIST hexapod nanopositioner.

The rest of the paper is organized as follows. Section 2 presents the background and basic approaches used in this paper. In
Section 3, we illustrate the derivation of the constant stiffness model of the X–Y positioning stage for loading. Section 4 presents
the nonlinear stiffness-based actuating model of the X–Y positioning stage. Section 5 presents the derivation of the control model
of the hexapod nanopositioner. In Section 6, the FE model and an example application of the controller are explained. The errors
of the analytical model with the FE model are then calculated and analyzed.
2. Background and approaches

In this section, we first illustrate the topology of the hexapod MEMS nanopositioner and then present the basic methodology
to be used in compliance and stiffness analysis of general flexure mechanisms.
2.1. The hierarchical structure of the NIST hexapod nanopositioner

The hexapod nanopositioner to be studied in this paper was built by the National Institute of Standards and Technology
(NIST), shown in Fig. 1(a). The overall footprint of this device is about 12 mm by 10 mm.

The hierarchical structure of the nanopositioner basically follows a top-bottom process. In the top level, the positioner is
composed of three main parts: three X–Y positioning stages [25], six struts, and one top platform, see Fig. 1(b). Three X–Y
positioning stages, which can generate two orthogonal motions, are symmetrically laid out on the base plane. The moving plate of
each X–Y stage supports two struts, which are firmly attached to the plate at one end and to the top platform at the other end both
via the wire flexure joints. This design allows 6DOF motion of the top platform through elastic deformation of these flexures and
thus eliminates backlash and increases repeatability. The top platform, which is considered as rigid, is the load-carrying part or
the end-effector of the device. Those flexure joints and rigid parts form the bottom level of the positioner. For convenience, we call
the combination of the six struts and the top platform as the “hexapod mechanism”.
1 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the purpose.
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Fig. 1. The NIST hexapod nanopositioner. (a) The physical prototype. (b) The schematic view of the hexapod nanopositioner. Each spring symbol represents a
general compliant element whose stiffness can be mathematically represented by a six by six stiffness matrix [K].
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2.2. Compliance and stiffness analysis of flexure mechanisms

One important step toward the design and control of flexure mechanisms is compliance analysis or mapping of which the goal
is to determine the relationship between deformation and load applied to the device. Here, we apply the screw theory approach
to analyze the stiffness and the motion of the hexapod nanopositioner. This method has been well studied by a number of authors,
e.g. [33]. For convenience, a brief description of this approach is given below.

We denote the deformation of a flexure mechanism by a general twist T̂ ¼ θx; θy; θz; δx; δy; δz
� �

and the load is denoted by a
wrench Ŵ ¼ Fx; Fy; Fz;Mx;My;Mz

� �
. They are related by,
where
Ŵ ¼ K½ �T̂; T̂ ¼ C½ �Ŵ; C½ � K½ � ¼ I½ �;

[K] and [C] are six by six stiffness and compliance matrices, respectively. Depending on how flexure elements are
where
connected, we can have serial flexure chains or parallel flexure chains. Mathematically, the overall compliance matrix of a serial
flexure chain is calculated as,
C½ � ¼
Xm
i¼1

Adi½ � Ci½ � Adi½ �−1
; ð1Þ

m is the number of flexure elements and [Adi] is the so-called 6-by-6 adjoint transformation matrix,

Adi½ � ¼ R 0
DR R

� �
: ð2Þ

R] is a 3-by-3 rotation matrix. When rotating about the single x, y, and z axis, [R] can be written as [X(⋅)], [Y(⋅)], [Z(⋅)],
Here [
respectively. [D] is the skew-symmetric matrix defined by a translational vector d. In a similar way, the overall stiffness matrix of a
parallel flexure chain is calculated as
K½ � ¼
Xm
i¼1

Adi½ � Ki½ � Adi½ �−1
: ð3Þ
In the remainder of this paper, we use superscripts and subscripts in [K] and [C] for various components of the positioner. For
instance, subscripts j = 1, 2, 3 are used for each of three X–Y positioning stages and superscripts “t, b,w, X, XY” are for the thermal
actuator, beam flexure, wire flexure, X stage, and X–Y stage, respectively.
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2.3. General analysis procedure

According to the dimensions of the different parts of the mechanism, we divide them into two types: rigid components and
compliant components. In our analysis, we are working from the assumption that there is no deformation in the rigid components
in order to simplify the analytical model. With regard to compliant components, we assume that the primary deformation that
would occur is elastic deformation and the failure of the material occurs when deformation reaches plastic deformation.

In contrast to the hierarchical analysis, the stiffness analysis follows a bottom-up procedure. The kinematic model of the
hexapod positioner is shown in Fig. 1(b) in which the spring symbols represent main compliant components such as flexure joints
and simplified stage. Mathematically these compliant components are represented by the 6-by-6 stiffness matrices [K]. The global
coordinate frame is built at the top center of the top moving platform in the home (undeformed) position.

When the base stages are actuated by the X–Y positioning stages to move in x and y directions, the top platform can position
and orient in 3D space through elastic deformation of the compliant components. Given the target position of the top platform
center, we build this model and calculate the required force as the input. As shown in Fig. 1(b), the bottom X–Y positioning stage
is a serial connection of two components, X stage and Y stage, whose stiffnesses are noted as [KX] and [KY]. The next step in the
procedure will be analysis of the hexapod mechanism. As described earlier, the mechanism consists of six struts that are
connected in parallel. Each strut is modeled as a serial chain of two wire flexures and one long compliant rod. The compliance
matrix of each wire flexure is denoted by [Cw]. The matrix [Cw] is calculated in the Appendix A. The compliance matrix of each
strut is calculated as [Cs] by formulation (1). By a series of serial and parallel combinations of individual building blocks, we can
finally calculate the motion of the top platform, denoted by a twist T̂

p
.

3. Stiffness model of the X–Y positioning stage

In this section, we will derive the stiffness of the X–Y stages for loading, as shown in Fig. 2. The X–Y positioning stage is a
kinematic chain of two stages: inside X stage and outside Y stage. Each consists of three main parts: thermal actuator, lever
amplifiers, and guiding mechanisms. The coordinate frame is built at the center of the center stage. In what follows, we calculate
the stiffness matrix of each of these parts and combine them to obtain the stiffness model of the X–Y stages.

3.1. Thermal actuator

Thermal actuators are widely used in MEMS mechanisms for producing large forces owing to their scaling capability using
multiple parallel beams. The thermal actuator used in this device consists of 15 beams on each side connected in parallel, as
shown in Fig. 3. There is an electrical pad on each side for interfacing with a power supply circuit. When the current goes through
the thermal actuator beams, the resistance of the beams will increase the temperature of the beams, and this phenomenon is
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Fig. 2. The layout of X–Y positioning stage.



Actuator beamElectrical pad Actuator bar

1w

2w

3w

x

y

Fig. 3. Thermal actuator.

250 H. Shi et al. / Mechanism and Machine Theory 80 (2014) 246–264
called “joule heating”. And then the increased temperature will cause thermal expansion of each beam. Finally, the actuator
produces an output force F exerting on the actuation bar, calculated as
Table 1
Design

Symb

h
e1
e2
e3
e4
e5
e6
e7
e8
θt

lbt

w1

w2

w3

r
w4

w5

n
E
Y
v
α
T

a Dat
F ¼ 2αnTEw1hsinθ
t
; ð4Þ

α, n, T , E, w1, h, and θt are physical or material geometric parameters of the thermal actuators defined in Table 1.
where
Now, we calculate and analyze the stiffness and motion of the X–Y stage by following the approach described in Section 2.2.

The thermal actuator is composed of 30 long beams with a rectangular cross section of h thick and w1 wide. According to the
wrench and twist defined in Section 2, the compliance matrix of beams is written as [Cb] in the Appendix A, when the coordinate
frame is placed at the center of the free end of a cantilever beam. By substituting parameters in Table 1 and inverting the
compliance matrix, we obtain the stiffness matrix of one actuator beam as
Ktb
h i

¼

0 0 0 8:70� 10−2 0 0
0 0 −2:16� 10−2 0 4:32� 10−5 0
0 3:91� 10−2 0 0 0 7:83� 10−5

3:06 0 0 0 0 0
0 26:1 0 0 0 3:91� 10−2

0 0 14:4 0 −0:22 0

2
6666664

3
7777775

ð5Þ
parameters and values of the X–Y positioning stage.

ol Design parameter Values

Out of plane thickness of the MEMS device 30 μm
Vertical distance between thermal actuator bar and notch 667.4 μm
Horizontal distance between thermal actuator bar and notch 300 μm
Short horizontal distance between two notches 100 μm
Long horizontal distance between two notches 1000 μm
Horizontal distance between thermal actuator bar and top notch 1400 μm
Vertical distance between notch and X stage center 415 μm
Horizontal distance between notch and Y stage center 1958.5 μm
Vertical distance between X stage center and Y stage center 468.5 μm
Angle of thermal actuator beam 0.068 rad
Length of thermal actuator beam 1000 μm
Width of thermal actuator beam 22.3 μm
Distance between two thermal actuator beams 23 μm
Width of thermal actuator beam along actuator bar 22.3 μm
Radius of the circular flexure hinges 40 μm
Flexure hinge neck width 7 μm
Amplifier beam width 100 μm
Number of thermal actuator beams on each side 15
Young's module 130 GPa
Yield strength 7 GPa
Poisson's ratio 0.28
Coefficient of thermal expansion 3 × 10−9T + 3 × 10−6(oC−1)a

Actuator average temperature b 550∘C

a source [25]
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each element has a specific physicalmeaning andunit. For instance, the element in row6 and column5of thematrix,−0.22, gives
where
the required moment in unit Nμm about the z axis to produce a 1 μm translation in y direction.

The coordinate transformations of each beam relative to the frame shown in Fig. 3, are given by
Ri
1

h i
¼ Z

π
2
þ θt

� �h i
di
1 ¼ − w2 þ

w3

2

� �
i;−50;0

� �
;

Ri
2

h i
¼ Z

3π
2

−θt
� 	� �

di
2 ¼ − w2 þ

w3

2

� �
i;50;0

� �
;

i = 1, …, 15. The subscript 1 and 2 represent the two sides of the actuator. After applying coordinate transformation for
where
thirty beams which are parallel connected to the center actuator bar, the stiffness of the thermal actuator is calculated as,
Kt
h i

¼
X15
i¼1

Adi1
h i

Ktb
h i

Adi1
h i−1 þ Adi2

h i
Ktb
h i

Adi2
h i−1

� 	
¼

0 0 0 1:33� 10−2 0 0
0 0 −498:0 0 2:60 0
0 0:368 0 0 0 2:35� 10−3

827:0 0 0 0 0 0
0 174:0 0 0 0 0:368
0 0 1:23� 105 0 −498 0

2
6666664

3
7777775
:

ð6Þ
In this matrix, the maximum value of 1.23 × 105 Nμm/rad represents the moment about the z axis, Mz, required to produce a
rotation of θz = 1 rad. This value indicates that the device has a very high in-plane stiffness. The value of 2.35 × 10−3 N/μm
indicates that it is relatively easier for the mechanism to translate out of the plane, i.e., it has a low out-of-plane stiffness. This
result motivates the study of 6DOF stiffness of the X–Y stage.

3.2. Compliance of the circular notch flexure

All of the notch flexures in our device have an identical geometry with a half circle of radius r = 40 μm, minimum neck
thickness w4 = 7 μm, as shown in Fig. 4(a). Although several analytical models for calculating the stiffness of notch flexures
[34,35] exist, the error is too large (N5 % [36]). Thus, we choose to use the FE method to obtain the 6-by-6 compliance matrix of
the notch flexure.

As shown in the FE model in Fig. 4(a), one end of the flexure is fixed and a coordinate frame is built at the free end of the
flexure. The facets of both ends are considered to be constrained in two planes with kinematic constraints of 6 DOFs. This is
equivalent to attaching two rigid plates at both ends so that there is no stress concentration along the edges of the ends. With
these defined boundary conditions, a bending moment Mz is applied to the free end. Let us denote the bending angle of the free
end by θz.

We run FE simulations in Abaqus. A linear function is used to fit the simulation data θz vs. Mz, shown in Fig. 4(b). The slope
0.178 rad/Nμm gives the rotational compliance θz/Mz. We also obtain the translational compliance in the y direction by a moment
along the z direction as δy/Mz = 7.11 μm/Nμm. Therefore, we obtain the last column of the compliance matrix shown in Eq. (7).
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Similarly, we can separately apply a force andmoment along x, y, and z directions and we obtain the other compliant elements.
Eventually, the following compliance matrix is obtained,
Cc
 � ¼
0 0 0 9:12� 10−2 0 0
0 0 −0:802 0 2:01� 10−2 0
0 7:10 0 0 0 0:178

1:51 0 0 0 0 0
0 301:0 0 0 0 7:11
0 0 42:6 0 −0:801 0

2
6666664

3
7777775
: ð7Þ
3.3. Displacement of the amplifier and guiding beams

The lever amplifier is used to produce a larger translational displacement at the sacrifice of output force. The displacement
amplification ratio of the lever mechanism is calculated as e4/e3 = 10, where e4 and e3 are shown in Fig. 5(a) and defined in
Table 1.

As shown in Fig. 2, the lever amplifier mechanism has two symmetrical parts and each part consists of three notch flexure
joints and a middle Z-shaped amplifier beam. When the thermal actuation force is exerted, the translational and rotational
displacements in the opposite direction are canceled due to the geometric symmetry. Thus, only translational displacement in the
same direction remains to move the connected stage. Note that the stroke of the amplifier is constrained by the allowable
rotational angle of the notch flexure. Although the stiffness of single crystal silicon is quite low, the FE simulations show a
maximum rotation angle of 5° with a safety factor of 3.5.

The guiding mechanism also has two symmetrical parts and each consists of two notch flexure joints and a middle Z-shaped
guiding beam. The purpose of the guiding mechanism is to increase the out-of-plane stiffness. The parallel design of the guiding
mechanism is also used to ensure the X stage and the Y stage move in pure translation upon exerting the thermal actuation force.

Since the amplifier and guiding beams have the same structures, we use the same model, shown in Fig. 5(a), to simplify the
stiffness calculation. In this model, the amplifier beam and the guiding beam are both considered as a combination of three
deformable gray beams and blue rigid segments. Point Pk (k = 1, …, 4) is located at the cross section center on one end of the
deformable notch flexure or the gray beam at the home position. We serially connect the beams according to the positions of Pk
and derive the stiffness at the home position as [Kal]. As shown in Fig. 5(b), the amplifier beam reaches a new position as the X–Y
stage is moving. In the model, we first assume the amplifier beam does a rigid body motion and rotates around P0. Then, we
denote the new position of point Pk (k = 1, …, 4) by Pk′ and derive the stiffness at the new position as [Kan].
a b
Fig. 5. Model of lever amplifier. (a) Amplifier beam at original position. (b) Amplifier beam at deformed position.



253H. Shi et al. / Mechanism and Machine Theory 80 (2014) 246–264
3.4. Stiffness of X–Y positioning stage

In this section, we derive the stiffness of the X–Y positioning stage which is subject to a loading on the stage center. As shown
in Fig. 2, the X stage and Y stage have the same topology. Therefore, we will only show the derivation of the stiffness matrix of the
X stage, [KX]. The stiffness of the Y stage, [KY], can be derived similarly.

Fig. 6(a) shows the CAD drawing of the X stage and we build the coordinate frame in the stage center. A schematic view of the
topology of the X stage is shown in Fig. 6(b), where [Kt] is the stiffness of thermal actuator and [Kc] is the stiffness of notch
flexures. In order to derive the stiffness of the X stage, we developed a model that divides the stage into four building blocks
shown as the dotted line in Fig. 6(c). These four blocks are connected to the center stage in parallel. Due to symmetry, blocks 1
and 2 have an identical topology and dimensions. Furthermore, block 3 and 4 are also identical. The derivation of the stiffness
matrix of the X–Y positioning stage is given below:

1. Calculate the stiffness in blocks 1 and 2 as [Kb1] = [Kb2]. Both blocks 1 and 2 are formed by three notch flexures, a half thermal
actuator, and one amplifier beam. The half thermal actuator [Kt]/2 is firstly serially connected to a notch flexure and secondly
connected to another notch flexure in parallel. Thirdly, they are serially connected to the amplifier beam [Kal] and another
notch flexure. The other end of this flexure is attached to the center stage which is considered as a rigid body.

2. Calculate the stiffness in blocks 3 and 4 as [Kb3] = [Kb4]. Both blocks 3 and 4 are a serial chain of two notch flexures and a
guiding beam [Kal]. Following the formulation of serial flexure chains given in Eq. (1), we calculate [Kb3] and [Kb4].

3. Calculate the stiffness of each independent X and Y positioning stage as [KX] and [KY]. As shown in Fig. 6(c), blocks 1–4 are
connected to the center stage in parallel. Therefore the stiffness of the X positioning stage is calculated as
Fig. 6. T
symbol
The sch
KX
h i

¼
X4
i¼1

Kbi
h i

;

ere we assume that appropriate coordinate transformations have been applied. Following a similar procedure, we can
wh
obtain the stiffness matrix of the Y stage, [KY]. Their compliance matrices are calculated as the inverse of their stiffness matrix,
i.e.,
CX
h i

¼ KX
h i−1

; CY
h i

¼ KY
h i−1

:

4. Calculate the compliance matrix of each of the three X–Y positioning stages [CjXY]. The X stage is serially connected with a Y
stage to form an X–Y positioning stage shown in Fig. 1(b). The compliance matrix of each X–Y positioning stage is calculated
as
CXY
j

h i
¼ AdXj

h i
CX
h i

AdXj
h i−1 þ AdYj

h i
CY
h i

AdYj
h i−1

; j ¼ 1;…;3; ð8Þ

ere [AdjX] and [AdjY] are the 6-by-6 adjoint matrix representing the coordinate transformations of the X or Y stage to each X–
wh
Y stage center, respectively, according to the layout of the X–Y stages in Fig. 1(b).
1
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4

cK
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he models of the X positioning stage. Except the amplifying and guiding beams, the shaded blue segments are considered rigid bodies while spring
s represent compliant segments. (a) The CAD drawing of the X positioning stage. (b) The schematic view of the X stage showing various components. (c)
ematic view of the model for calculating the stiffness.
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4. Actuation force of X–Y positioning stage

In this section, we derive the model for actuating the X–Y positioning stage which is composed of two components: linear
component Fl and nonlinear component Fn.

4.1. Linear force analysis

In order to apply the formulation of serial and parallel flexure chains, we divide the center stage into two identical pieces, each
connecting with block 3 or 4 shown in Fig. 6(c). This leads us to a topology with blocks 5, 6, and 7 shown in Fig. 7. Block 5 is the
thermal actuator. Block 6 and 7 are identical.

We follow a similar process and derive the stiffness for the thermal actuation force with the following steps.

1. Calculate [Kb34], the parallel stiffness of blocks 3 and 4 in Fig. 6(c).
2. Calculate [Kb6] = [Kb7], the stiffness of blocks 6 and 7. Block 6 is mainly a serial chain of the amplifier beam [Kal] in block 1 and

half of the stiffness of blocks 3 and 4, [Kb34]/2. Block 7 is mainly a serial chain of the amplifier beam [Kal] in block 2 and [Kb34].
3. Let [Kb5] = [Kt] as the block 5. Recall [Kt] is given in Eq. (6).
4. Calculate the entire stiffness of the positioning stage as a parallel chain of blocks 5, 6, and 7, i.e.,
where
Kl
h i

¼
X7
i¼5

Kbi
h i

;

ere we assume appropriate coordinate transformations have been applied. The terminal component of this parallel
wh
connection is the thermal actuator bar, on which thermal actuation force is exerted.

By taking the row 1 and column 4 element of the matrix [Kl], we can calculate the linear component of the thermal
actuation force as
Fl δcx
� � ¼ δcx 1 0 0 0 0 0½ � Kl

h i
0
0
0
1
0
0

2
6666664

3
7777775
; ð9Þ

δxc is the translational displacement of the stage center in the x direction according to the coordinate frame of Fig. 6(a).
4.2. Nonlinear force analysis

In the linear force analysis, the actuation force is a linear function of the displacement δxc. As shown in the error analysis (to be
discussed later), this linear force may generate a significant error. Furthermore, in linear analysis, blocks 6 and 7 are two
5 6
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Fig. 7. The schematic view of the model for calculating the linear actuation force.
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independent components. Under external loading, these two blocks may separate or overlap with each other. To correct this, we
now propose a nonlinear force model. This model takes into account the nonlinear kinematics of the X and Y stages.

In Fig. 8, the red lines represent the new position deformed from the previous position (shaded in blue). The intersection
of two center lines is the home position of the stage center. In Fig. 8(a), the blue position illustrates the home position of the
center stage, amplifier, and guiding beams. Pc is the position of stage center in the blue position, while Pc′ is the stage center
in the new red position. Thus, stage center Pc coincides with the intersection of the stage centerlines. The red position shows
the deformed mechanism by the thermal actuation force. Pc and Pc′ are located along the horizontal center line. There is no
vertical movement since the thermal actuation force is along the horizontal centerline and the structures are symmetrical to
this line.

In Fig. 8(b), we treat the notch flexures as revolute joints and the other parts as rigid components denoted with lines.
Essentially, we obtain a parallelogram four bar linkage which only allows translation in x and y direction. We cut the stage center
along the horizontal center line so that the center stage is divided into the top and bottom sections. The free end of the center
stage introduces an extra DOF in vertical translation, which is originally constrained by the symmetrical structure about the
horizontal center line. The blue position represents the home position as in Fig. 8(a). In the red position, the amplifier beam and
guiding beam rotate around P0. Given the main horizontal displacement δxc, we can derive the corresponding rotation angle of the
amplifier and guiding beams as ϕ = arcsin(δxc/e4). The parasitic vertical displacement can be calculated as
δcy ¼ e4 1−cosϕð Þ ¼ e4−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e24− δcxð Þ2

q
: ð10Þ
In Fig. 8(c), we use the compliant model to substitute the kinematic model of the red position in Fig. 8(b). The topology of
block 8 and 9 are similar to block 1 and 3 in Fig. 6. We first substitute [Kal] in block 1 and 3 as [Kan] and calculate the stiffness at the
new position as [Kb8] and [Kb9]. Secondly, we calculate the stiffness of the mechanism at Pc as [Kn], where block 8 and 9 are
connected in parallel to the center stage, shown in Fig. 8(c). Finally, we calculate the required wrench R̂ to vertically move Pc to Pc′.
Note this brings the top and bottom pieces aligned vertically, i.e., δyc = 0.

The first element of R̂denotes the required force Fx in the x direction. By the principle of virtual work, the required force on the
thermal actuator bar equals to Fxe4/e3, where e4/e3 = 10 is the amplifier ratio. Therefore, we can derive the nonlinear component
of actuation force Fn as
Fn δcx
� � ¼ 2

e4
e3

1 0 0 0 0 0½ � Kn
 �
0
0
0
0

e4−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e24− δcxð Þ2

q
0

2
6666664

3
7777775
: ð11Þ
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At last, we calculated the required thermal actuation force as the sum of the linear force Fl(δxc) and the nonlinear component
Fn(δxc), i.e.,
Accord
F δcx
� � ¼ Fl δcx

� �þ Fn δcx
� �

: ð12Þ

ing to the different geometrical parameters of X and Y position, F(δxc) in Eq. (12) can be denoted as FX and FY.
5. Derivation of the control model of the hexapod mechanism

In this section, we will discuss the calculation of the stiffness of the hexapod mechanism. Based on the derived stiffness and
the control model of the X–Y stage, we calculate the Jacobian matrix and finally derive the control model of the hexapod.

5.1. Geometric description

For convenience, we define the following parameters for describing the geometry of the kinematic model. As shown in
Fig. 9(a), the struts have a total length L and diameter D, and have a short flexure joint of length l and diameter d at each end
(L ≫ l). As shown in Fig. 9(b), the distance between the neighboring intersecting points of the struts at the top platform is c3. The
distance between the non-neighbor intersecting points of the struts at the top platform is c4. For the base stages, the distance
between the neighboring intersecting points of the struts is c1 The distance between the non-neighboring intersecting points of
the struts at the base is c2.

Fig. 9(b) shows the geometrical relationship of the twelve points. We denote the position of the six points at the top platform
and the six at the base stages by Ai and by Bi respectively. The points on the moving platform can be described in the global
coordinate frame as
A0
i ¼ Z αið Þ½ �

ra
0
−t

8<
:

9=
;; B0

i ¼ Z βið Þ½ �
rb
0

−H

8<
:

9=
;; i ¼ 1;…;6; ð13Þ

[Z(⋅)] is the 3-by-3 rotation matrix about the z axis. ra and rb are the radii of the strut attachment points (bottom plates in
where
home position). H is the height of the hexapod mechanism at the original undeformed position and it is derived as the unknown
by solving equation (a10 − b1

0)T(a10 − b1
0) − L2 = 0. t is the thickness of the top platform. Angles αi and βi are tabulated in Table 2.

All struts are made of tungsten material with Young's modulus of elasticity E = 411 GPa, yield stress σY = 550 MPa, and
Poisson's ratio ν = 0.28.
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Fig. 9. Geometrical description of the hexapod mechanism. (a) The strut. (b) The layout of the top platform and the bottom stages.



Table 2
Geometric dimensions of the hexapod mechanism.

l = 0.08 mm, d = 0.015 mm, D = 0.075 mm, t = 0.432 mm, H = 4.127 mm, L = 5.4 mm
c1 = 0.4 mm, c2 = 7.2 mm, c3 = 0.4 mm, c4 = 2.5 mm, ra = 1.572 mm, rb = 4.277 mm
α1 = 187.3∘, α2 = 172.7∘, α3 = 67.3∘, α4 = 52.7∘, α5 = −52.7∘, α6 = −67.3∘

β1 = 237.3∘, β2 = 122.7∘, β3 = 117.3∘, β4 = 2.7∘, β5 = −2.7∘, β6 = −117.3∘
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5.2. Stiffness of the hexapod mechanism

Let us first calculate the stiffness of the hexapod mechanism. As shown in Fig. 9, the strut is modeled as a serial chain of a
cylindrical rod (diameter D) and two wire flexure joints (diameter d) at both ends. The compliance matrix of the rod and the
wire flexures are derived from the matrix [Cw] in the Appendix A by substituting the parameters in Table 2.

By following the formulation for serial chains, we obtain the compliance matrix of the strut as [Cs] and we show the stiffness
[Ks] in Fig. 10. In blocks 2 and 3 of Fig. 10, two [Ks] are connected in parallel and then serially connected to an X–Y positioning
stage. As shown in Fig. 11, the coordinate transformation of no. 4 strut to the center of the top platform is calculated by three
steps, where γ1 = arcsin((c4 − c1)/2L) and γ2 = arccos(H/Lcosγ1). We build the coordinate frame at the center of the top
platform and calculate the compliance by parallel connecting blocks 2 and 3 as [C1T]. In block 1, two [Ks] are parallel connected
without an X–Y stage. By serially connecting [C1T] with block 1 and locating the coordinate frame at the x1y1 in Fig. 10, we can
calculate the compliance [C1Hex].

5.3. The control models of the hexapod mechanism

When separating the connection between the bottom X–Y stage and the end of the wire flexure shown in Fig. 10, we use the
free body diagram approach to analyze the hexapod. We denote the actuating wrench on the center of the two ends by Ŵ j and
the displacement by twist T̂ j . As the movement of the end of the wire equals the movement of the bottom center stage, we
have
T̂ j ¼ T̂ t
j þ T̂ 0

j; ð14Þ
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1Ŵ ′
1x

1y

1x

1y

x

sK

x1δ

y1δ
x3δ

y3δ
x2δ

y2δ

3x

3y

2x

2y

Ŵ1

Fig. 10. The schematic view and free body diagram of the hexapod nanopositioner.
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T̂
t
j is the motion twist caused by thermal actuation force and Tj′ is the displacement caused by the reacting wrench on the
where

center stage. With Eq. (8) and previously derived [CjHex] to derive the following equations
T̂ j ¼ CHex
j

h i
Ŵ j; T̂

0
j ¼ − CXY

j

h i
Ŵ j; T̂

t
j ¼ Mj

h i
Δa

; ð15Þ

M1½ � ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775
; M2½ � ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

2
6666664

3
7777775
; M3½ � ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

2
6666664

3
7777775
:

6-by-1 displacement vector of the actuating stages, written as

Δa ¼

δ1x
δ1y
δ2x
δ2y
δ3x
δ3y

2
6666664

3
7777775
:

Substituting Eq. (15) into Eq. (14) yields the wrench exerted on the center of two wire flexures for a given Δa as
Ŵ j ¼ CHex
j

h i
þ CXY

j

h i� �−1
Mj

h i
Δa

: ð16Þ
By the coordinate transformation matrix [Adj], we translate the wrench from the local coordinate frame xjyj in Fig. 10 to the
global coordinate frame xy at the center of top platform. Applying the law of superposition, i.e., adding the displacement caused
by the wrenches on each of the three bottom stages, we can derive the movement of the top platform center as
T̂p ¼
X3
j¼1

CT
j

h i
Adj

h i
Ŵ j: ð17Þ
When we substitute Eq. (16) into Eq. (17), we can derive the required actuating displacement for a target position of the
center of top platform as
Δa ¼
X3
j¼1

CT
j

h i
Adj

h i
CHex

j

h i
þ CXY

j

h i� �−1
Mj

h i0
@

1
A

−1

T̂p
: ð18Þ
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The terms in the parentheses of the above equation can be considered as a Jacobian matrix that relates the input actuator
displacement and the output displacement of the top platform. If we have positional sensors for the thermal actuator, we may use
Eq. (18) for our kinematic controller.

However when position sensors are not available, we would need an open loop control model that depends on the thermal
force model described earlier. To derive this model, if we substitute the value from Eq. (18) into δxc in Eq. (12), we can derive the
equation for actuation forces,
F

Ŵa ¼

FX1
FY1
FX2
FY2
FX3
FY3

2
666666664

3
777777775
¼

FX δ1xð Þ
FY δ1y

� �
FX δ2xð Þ
FY δ2y

� �
FX δ3xð Þ
FY δ3y

� �

2
66666666664

3
77777777775
;

FX δ1xð Þ≤0
FY δ1y

� �
≤0

FX δ2xð Þ≤0
FY δ2y

� �
≥0

FX δ3xð Þ≥0
FY δ3y

� �
≥0

; ð19Þ

the inequality equations indicate the direction of thermal expansion. Note that the force control model in Eq. (19) is a
where
nonlinear function of the displacement of X and Y positioning stages.

6. Error analysis and case studies

In this section, FE models of the hexapod and the X–Y positioning stage are built to analyze the errors of the control models.
We study two cases on how to use the control model of the hexapod nanopositioner.

6.1. Finite element modeling

Firstly, we use Abaqus to build a FE model of the hexapod nanopositioner in Fig. 12(a), which is meshed into 400 600
tetrahedral elements in four components: the hexapod mechanism with 72823 elements and three X–Y positioning stages. Each
X–Y positioning stage has 109259 elements. As shown in Fig. 12(b), the flexures joints are meshed with more elements. The local
size of the elements of the wire flexures and notch flexure is 5 μm while the global size of the elements of the X–Y positioning
stage and the hexapod mechanism are 100 μm and 260 μm, respectively. Based on Eq. (19), a set of actuation force data is
calculated as the concentrated forces in the Abaqus model.

We set the Abaqus model with static steps and apply the full-Newton solution technique while activating nonlinear geometry.
Ten 2.4 GHz processors are used in parallelizing calculation to finish the analysis. It takes more than 14 min for running a
simulation. In the test of the X–Y positioning stage control model, we disassemble the X–Y positioning stage from the hexapod FE
model with the same settings and boundary conditions. By comparing the analytical model with the FE model, we can calculate
the error by
Error ¼ j analytical value − FE value
FE value

j � 100 %: ð20Þ
a b
ig. 12. The Finite Element model of the hexapod nanopositioner. (a) Modeling of the hexapod nanopositioner. (b) The modeling of the flexures.
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6.2. Error analysis of the model for the X–Y positioning stage

In the analysis of the actuating model for the X–Y stage, we compare the linear model given in Eq. (9) and the nonlinear model
in Eq. (12). After we apply the calculated force in the FE simulation, we record the data of the displacement and calculate the
errors by Eq. (20). In Fig. (13), the red lines represent the derived force by the linear actuating model and the nonlinear model
according to the left vertical axis with unit N. The blue lines represent the errors in percentage comparing with FE simulations.
From Fig. (13), we can draw the following conclusions.

1. Under small deflections, the nonlinear model is very close to the linear model. The stiffness of the nonlinear model increases
when the stages undergo a large deflection.

2. As the target displacement increases, the forces of the twomodels differ significantly. When the displacement equals to 55 μm,
the force calculated by the linear model is 0.104 N, while it is 0.19 N for the nonlinear model. This represents almost a 90 %
difference, hence justifies the nonlinear model.

3. Since the nonlinear model consists of the linear model and a nonlinear component, the error of the nonlinear model is also a
combination of their errors. The error 5.33 % at the beginning of the blue lines shows that the majority of error is due to the
linear model, which overestimates the displacement. The linear model began to underestimate the displacement around
13 μm and the error increases quickly. As the displacement increases, the nonlinear component becomes more dominant and
this cancels the increasing error caused by the linear model. As a result, the total error of the nonlinear control model is going
down.

4. The mean error is 1.93 % for the nonlinear control model within a 55 μm range of motion, which is significantly lower than
16.19 % for the linear model.

6.3. Case studies

Case 1: tracing a circle with a 20 μm diameter. As an example of the control model, the hexapod is commanded to trace a circle
with a 20 μm diameter in the plane δz = 20 μmwith θx, θy, θz = 0 as shown in Fig. 14(a). Fig. 14(b) shows the calculated thermal
actuation forces for each position by Eq. (19). We also need to check if the calculated forces are within the range of inequality
constraint equations of (19). Fig. 14(c) and (d) show the hexapod model errors of drawing the circle. Based on these tests, we can
draw the following conclusions.

1. In Fig. 14(c), the difference of the absolute value between the analytical model and the FE model becomes larger as δx and δy
increase. However, the percentage errors decrease as δx and δy increase. Thus, the maximum percentage errors of δx and δy are
located at the positions near δx = 0 and δy = 0, respectively. The mean percentage errors of the translational displacements in
x, y, and z directions are 3.94 %, 3.65 %, and 2.55 %, respectively. Thus, the mean error of the translational displacements in three
directions is 3.38%.

2. Fig. 14(d) shows the parasitic rotation angles along three axes. The absolute mean values are respectively 5.28 × 10−6 rad,
1.395 × 10−5 rad, and 4.23 × 10−6 rad. The max values are 1.45 × 10−5 rad, 3.09 × 10−5 rad, and 1.11 × 10−5 rad. Thus, we can
conclude that the parasitic rotation angles are very small.

Case 2: Specified single and coupled motion of the platform. In order to verify the control model, the hexapod is proposed to
realize the multi DOFs motions of the top platform. As shown in Table 3, the hexapod is first commanded to perform 30 μm
translation in the z direction which is treated as a base for further movement. Then, the hexapod is commanded to perform 2DOF
Table 3
The hexapod nanopositioner is actuated to reach coupled DOFs.

δx δy δz θx(rad) θy(rad) θz(rad)

T̂FE −1.62E−2 6.31E−4 3.07E+1 4.00E−7 −2.23E−5 −8.23E−7
T̂A 0 0 3.0E+1 0 0 0
T̂FE −1.04E+1 6.83E−4 3.08E+1 2.20E−7 −4.65E−5 −7.20E−7
T̂A −1.0E+1 0 3.0E+1 0 0 0
T̂FE −1.03E−2 −1.04E+1 3.07E+1 9.13E−6 −1.89E−5 7.44E−6
T̂A 0 −1.0E+1 3.0E+1 0 0 0
T̂FE 4.10E−2 −6.64E−2 3.07E+1 −4.10E−3 −2.19E−5 1.43E−5
T̂A 0 0 3.0E+1 −4.0E−3 0 0
T̂FE −8.43E−2 9.53E−4 3.07E+1 9.85E−7 −4.20E−3 −7.33E−7
T̂A 0 0 3.0E+1 0 −4.0E−3 0
T̂FE 4.41E−2 1.37E−1 3.07E+1 1.64E−6 −2.50E−5 −4.19E−3
T̂A 0 0 3.0E+1 0 0 −4.00E−3
Error (%) 4.12 4.25 2.39 2.34 4.69 4.56
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movements, which consist of the base movement coupled with −10 μm of translation or −0.004 rad of rotation. Based on these
tests, we can draw the following conclusions.

1. Some single DOF displacements cannot be achieved and the device must be actuated for coupled motion with a nonzero δz.
Again this is because the thermal actuators can only move in one direction.

2. Table 3 shows the twist values in coupled DOFs movements and the corresponding errors in single DOF movements. The results
of the analytical model are very close to the FE model. The maximum error is 4.69 % for coupled motion θy = −0.004 rad
with δz = 30 μm. The maximum parasitic value of the movement is 0.137 μm in translation and 4.65 × 10−5 rad in rotation.

3. Due to the inequality constraints in Eq. (19), the workspace is limited. More specifically, the workspace will be limited by the
stress of the wire flexures and the workspace of the X–Y positioning stage, which depends on the maximum allowed
temperature and stress distribution. Clearly this motivates the future work of optimizing workspace of this device.

7. Conclusions

Amethod for calculating the in-plane nonlinear stiffness is proposed for building the actuating equation of the X–Y positioning
stage. This method can be applied to the stiffness derivation and analysis of various in-plane parallel mechanisms. The analytical
models for calculating the 6DOF stiffness matrix of the X–Y positioning stage and the hexapod nanopositioner are derived. The
derivation process can be applied to the stiffness analysis of other compliant mechanisms in three dimensions. Based on the
Jacobian matrix derived from constant stiffness of the hexapod mechanism and the nonlinear control model of the X–Y stage, an
open loop control model of the hexapod nanopositioner is derived. An example of drawing a circle is presented to show the
application of the control model. FE simulations of the X–Y positioning stage and the hexapod nanopositioner are built for
analyzing the errors of the analytical model. Future work will be to derive the workspace of the nanopositioner and to reduce the
modeling error by kinematic calibration via physical experiments.
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Appendix A. Compliant matrix of blade flexures

The compliance matrix of a blade flexure shown in Supplementary Fig. 1 about its free end can be written as
where
Cb
h i

¼ l
EIz

0 0 0
1
χβ

0 0

0 0 − lκ
2

0 κ 0

0
l
2

0 0 0 1

l2η
12

0 0 0 0 0

0
l2

3
0 0 0

l
2

0 0
l2κ
3

0 − lκ
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2
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; ð21Þ

κ ¼ Iz
Iy

¼ t2

w2 ; β ¼ J
Iz
; η ¼ t2

l2
; χ ¼ G

E
¼ 1

2 1þ νð Þ ; ð22Þ

n-dimensional constants determined by geometries and material properties. Iy, Iz are the area moments of inertia about y
are no
and z axis. J is the polar moment inertia about x axis. E and G are Young's modulus and shear modulus, respectively, and v is the
poisson's ratio. β is the ratio of torsion constant over moment of inertia. For a rectangular cross section, β is defined by
β ¼ 12
1
3
−0:21

t
w

1− 1
12

t
w

� 	4� 	� 	
: ð23Þ
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Compliant matrix of circular wire flexures

The compliance and stiffness matrices of a wire flexure with a circular cross section shown in Supplementary Fig. 2 has the
same form as that of a wire flexure with a rectangular cross section. The compliance matrix given by Eq. (21) can be simplified by
substituting cross sectional area, A = πd2/4, area moments of inertia about axes y and z, Iy = Iz = πd4/64 and second moment of
area about axis x, J = 2Iz, written as,
Cw
 � ¼ l
EIz

0 0 0
1
2χ

0 0

0 0 − l
2

0 1 0

0
l
2

0 0 0 1

l2η
16

0 0 0 0 0

0
l2

3
0 0 0

l
2

0 0
l2

3
0 − l

2
0

2
6666666666666666664

3
7777777777777777775

; ð24Þ

η = d2/l2. The stiffness matrix of a wire flexure is the inverse of its compliance matrix, i.e., [Kw] = [Cw]−1.
where
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mechmachtheory.2014.05.004.
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