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1 Introduction

Whether a universal quantum computer is sufficiently powerful to be able to perform quantum field-
theoretical computations efficiently has been a long-standing and important open question. Efficient
quantum algorithms for simulating quantum many-body systems have been developed theoretically
[1–3] and implemented experimentally [4–6], but quantum field theory presents additional technical
challenges, such as the formally infinite number of degrees of freedom per unit volume. In earlier
work [7,8], we presented and analyzed a quantum algorithm for simulating a bosonic quantum field
theory called φ4 theory. That algorithm runs in a time that is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. Hence, it
offers exponential speedup over existing classical methods at high precision or strong coupling. In
this paper, we extend our work to fermionic quantum field theories, exemplified by the massive
Gross-Neveu model, a theory in two spacetime dimensions with quartic interactions. Although our
analysis is specific to this theory, our algorithm can be adapted to other massive fermionic quantum
field theories with only minor modification while retaining polynomial complexity.

Our quantum algorithm generates scattering events: it takes (as the input) the momenta of the
incoming particles and, sampling from the probability distribution of possible outcomes, returns
(as the output) the momenta of the outgoing particles produced by the physical scattering process.
Physical quantities of interest, such as scattering cross sections, can thus be approximated by
repeated runs of the simulation, together with statistical data analysis similar to that used for
particle-accelerator experiments.

The features of fermionic field theories not present in bosonic theories pose new technical prob-
lems, the solutions to which require different techniques. Perhaps the most obvious difference is
the anticommutation, rather than commutation, of fermionic fields. This forces a change in the
representation of the state by qubits: we use an encoding method for fermionic mode occupation
numbers introduced by Bravyi and Kitaev [9]. In [8], it was shown that simulation of Hamiltonian
time evolution via Suzuki-Trotter formulae has efficiency advantages when applied to spatially local
Hamiltonians. Fermionic anticommutation makes it more difficult to gain efficiency by exploiting
spatial locality. Nevertheless, we obtain a construction that gives quasi-linear asymptotic scaling
in time and the number of lattice sites, as in the bosonic case.

In contrast with bosonic field theories, discretization of fermionic field theories leads to the
well-known “fermion doubling” problem, in which spurious fermion species not in the continuum
theory appear in the discretized theory. One solution used in lattice gauge theory is to add to the
action the so-called Wilson term, a second-derivative operator that vanishes in the naive continuum
limit. The Wilson term can also be accommodated in our quantum algorithm; in particular, we
show how it can be turned on during the preparation of the ground state.

In general, state preparation is a demanding task. The algorithm in [7, 8] uses a three-step
procedure. First, the free vacuum is prepared. For the free scalar theory, this is a multivariate
Gaussian wavefunction. Next, wavepackets are excited within the free theory. In order that only
single-particle states are created, an ancillary qubit is used, together with a particular Hamiltonian
that acts on the enlarged space. Finally, the interaction is turned on via a generalization of adiabatic
state preparation that can be applied to superpositions of eigenstates. This procedure intersperses
backwards time evolutions governed by time-independent Hamiltonians into the turn-on to undo the
different dynamical phases, which otherwise would cause undesirable propagation and broadening
of wavepackets.

The state-preparation method analyzed here differs from that of [7,8] in two main ways. Prepa-
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ration of the free vacuum requires modification because the vacuum of the free fermionic theory is
different from that of the free bosonic theory. For this purpose, we incorporate a separate adia-
batic turn-on step. Furthermore, sources are used to create particle excitations after the coupling
constant is adiabatically turned on, rather than before. (This difference is not required by the
fermionic nature of the theory.) This method has the advantage that it works when bound states
are possible, in which case the adiabatic wavepacket preparation of [7, 8] might fail. Another con-
sequence is that the procedure no longer requires the interleaving of backwards time evolutions to
undo dynamical phases. On the other hand, a disadvantage is that the preparation of each particle
has a significant probability of producing no particle. In the case of two-particle scattering, one can
perform additional repetitions of the simulation, and recognize and discard simulations in which
fewer than two particles have been created. However, the procedure is not well suited to processes
involving more than two incoming particles.

We analyze two different measurement procedures to be used as the last step of the simulation.
The first method is to return adiabatically to the free theory and then measure the number operators
of the momentum modes. For unbound states, this procedure yields complete information about
particle momenta, but is not well-suited to detecting bound states or resolving spatial information.
The second procedure is to measure charge within local regions of space. These measurements can
detect charged bound states, although they are blind to neutral ones. Which of these measurement
schemes is preferable depends on the desired application.

There is a substantial body of work on analog quantum simulation of quantum systems, in-
cluding lattice field theories. (See [10] for a recent review.) In such work, proposals are made for
the engineering of experimental systems so that they mimic systems of interest, that is, so that
the Hamiltonians of the laboratory systems approximate Hamiltonians of interest. The proposed
quantum simulators can be thought of as specialized quantum computers. In contrast, we address
digital quantum algorithms, namely, algorithms to be run on a universal, fault-tolerant, digital
quantum computer. Our work thus probes the fundamental asymptotic computational complexity
of quantum field theories.

There is also an extensive literature on the study of quantum field theories on classical computers
via lattice field theory. (See Ch. 17 of [11] for a review of its results and status.) However, classical
lattice algorithms rely on analytic continuation to imaginary time, t→ −iτ . Thus, they are useful
for computing static quantities such as mass ratios, but are unsuitable for calculating dynamical
quantities such as scattering cross sections. In contrast, our quantum algorithm simulates the
dynamics of quantum field theories, a problem that is expected to be BQP-complete and thus
impossible to solve by polynomial-time classical algorithms. Although our algorithm draws upon
some concepts from lattice field theory, new techniques are needed, particularly for state preparation
and measurement.

The work presented in this paper is another step towards the goal of obtaining an efficient
quantum algorithm for simulating the Standard Model of particle physics. Such an algorithm would
establish that, except for quantum-gravity effects, the standard quantum circuit model suffices to
capture completely the computational power of our universe.

The rest of this paper is organized as follows. Section 2 introduces the massive Gross-Neveu
model, gives an overview of our quantum algorithm for computing the theory’s scattering ampli-
tudes, and analyzes the algorithm’s complexity. Section 3 describes in detail the efficient simulation
of the Hamiltonian time evolution in the quantum circuit model. Section 4 presents our procedures
for state preparation and measurement. Finally, Section 5 addresses some field-theoretical aspects,
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namely, the effects of a non-zero lattice spacing and the renormalization of mass, which are crucial
elements in our complexity analysis.

2 Quantum Algorithm

In this section we describe the massive Gross-Neveu model (§2.1), outline the steps in our algorithm
for simulating particle scattering processes within this model (§2.2), and give an overview of the
algorithm’s complexity (§2.3). The run time is polynomial in the inverse of the desired precision
and in the momenta of the incoming particles. The detailed analysis of the steps of the algorithm
that contribute to the overall complexity stated in §2.3 is given in later sections.

2.1 The Massive Gross-Neveu Model

The theory we consider is a generalization of the Gross-Neveu model to include an explicit mass term
in the Lagrangian. The (original) Gross-Neveu model [12] is a quantum field theory in two spacetime
dimensions consisting of N fermion species with quartic interactions. It has a rich phenomenology.
Like quantum chromodynamics (QCD), the theory governing the strong interactions, it has the
remarkable property of asymptotic freedom, whereby the interaction becomes weaker at higher
energies. The theory has a discrete chiral symmetry, ψ → γ5ψ, where

γ5 =

[
1 0
0 −1

]
. (1)

This symmetry is spontaneously broken by the non-perturbative vacuum. (The related theory
known as the chiral Gross-Neveu model has a continuous chiral symmetry, ψ → eiθγ

5

ψ.) Cor-
respondingly, mass is generated dynamically, and the theory admits a topological soliton, the
Callan-Coleman-Gross-Zee (CCGZ) kink. Non-topological solitons also exist [13].

These interesting characteristics have attracted intense study and led to applications not only
in particle physics but also in condensed-matter physics, including studies of ferromagnetic super-
conductors [14], conducting polymers, and systems of strongly correlated electrons [15].

The Gross-Neveu model, together with the chiral Gross-Neveu model, was originally solved
in the limit N → ∞ [12]. Via inverse scattering methods [16], and later through a generalized
Bethe Ansatz [17], integrability was demonstrated for general values of N , a feature related to the
existence of infinitely many conserved currents [18]. The model’s S-matrix is factorizable [19, 20]:
the n-body S-matrix is expressible as the product of two-body S-matrices.

In contrast, the massive Gross-Neveu model, in which there is an explicit bare mass, is thought
not to be integrable for arbitrary values of N . This theory still exhibits asymptotic freedom, but
it does not admit solitons: for any non-zero mass, the CCGZ kink becomes infinitely massive and
disappears [21]. The asymptotic freedom and non-zero bare mass make a rigorous perturbative
construction of the theory satisfying the Osterwalder-Schrader axioms possible [22,23].

The massive N -component Gross-Neveu model is given by the following Lagrangian in two
spacetime dimensions:

L =
N∑

j=1

ψ̄j(iγ
µ∂µ −m)ψj +

g2

2

( N∑

j=1

ψ̄jψj

)2

, (2)
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where each field ψj(x) has two components, γµ is a two-dimensional representation of the Dirac
algebra, and ψ̄ = ψ†γ0.1 We use the Majorana representation, namely,

γ0 =

[
0 −i
i 0

]
, γ1 = −

[
0 i
i 0

]
. (3)

The components of the field operator associated with the particle species j ∈ {1, 2, . . . , N} will be
denoted by ψj,α, α ∈ {0, 1}. In units where ~ = c = 1, any quantity has units of some power of
mass, referred to as the mass dimension. We shall use bold-face to represent spatial vectors, such
as p and x, to distinguish them from spacetime vectors xµ = (t,x) and pµ = (E,p). Note, however,
that we are considering 1+1 dimensions; thus, spatial vectors have only one component.

The dimensionless parameter g determines the strength of the interaction. When g = 0, the ψj

are free fields obeying the Dirac equation, (iγµ∂µ −m0)ψj(x) = 0. Then one can write

ψj(x) =

∫
dp

2π

1√
2Ep

(
aj(p)u(p)e

−ip·x + b†j(p)v(p)e
ip·x
)
, (4)

where

Ep =
√

p2 +m2
0 , (5)

aj(p), b
†
j(p) are creation and annihilation operators, and u, v satisfy

(m0γ
0 + pγ0γ1)u(p) = Epu(p) , (6)

(m0γ
0 − pγ0γ1)v(p) = −Epv(p) , (7)

u†(p)u(p) = v†(p)v(p) = 2Ep , (8)

u(p)†v(−p) = 0 , (9)

ū(p)u(p) = −v̄(p)v(p) = 2m0 , (10)

ū(p)v(p) = v̄(p)u(p) = 0 . (11)

In the Majorana representation (3), one has the following concrete solution:

u(p) =

[ √
Ep − p

i
√
Ep + p

]
, v(p) =

[ √
Ep − p

−i
√
Ep + p

]
. (12)

2.2 Description of Algorithm

To represent the field using qubits, we first discretize the quantum field theory, putting it on
a spatial lattice. (Discretization errors are analyzed in §5.1.) Having done that, our algorithm
consists of six main steps, which we analyze in subsequent sections.

1. Prepare the ground state of the Hamiltonian with both the interaction term (g20) and the
nearest-neighbor lattice-site interactions turned off. This can be done efficiently because the
ground state is a tensor product of the ground states of the individual lattice sites.

2. Simulate, via Suzuki-Trotter formulae, the adiabatic turn-on of the nearest-neighbor lattice-
site interactions, thereby obtaining the ground state of the non-interacting theory.

1 The Dirac matrices satisfy {γµ, γν} ≡ γµγν + γνγµ = 2gµν1, and ψj(x) is a spinor, that is, its Lorentz
transformation is such that (2) is Lorentz-invariant. We use the metric gµ,ν = diag(+1,−1).
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3. Adiabatically turn on the interaction term, while adjusting the parameter m0 to compensate
for the renormalization of the physical mass.

4. Excite particle wavepackets, by introducing a source term in the Hamiltonian. The source
term is chosen to be sinusoidally varying in time and space so as to select the desired mass
and momentum of particle excitations by resonance.

5. Evolve in time, via Suzuki-Trotter formulae, according to the full massive Gross-Neveu Hamil-
tonian. It is during this time evolution that scattering may occur.

6. Either use phase estimation to measure local charge observables, or adiabatically return to
the free theory and then use phase estimation to measure number operators of momentum
modes. (The choice between these forms of measurement depends on the application.)

2.3 Complexity

In this section we bound the asymptotic scaling of the number of gates needed to simulate scattering
processes as a function of the momentum p of the incoming particles and the precision ǫ to which
the final results are desired. The effect of discretization, via a lattice of spacing a, is captured
by (infinitely many) terms in the effective Hamiltonian that are not present in the continuum
massive Gross-Neveu theory (§5.1). Truncation of these terms, which make contributions of O(a)
to scattering cross sections, therefore constitutes an error. Thus, to ensure any cross section σ′ in
the discretized quantum field theory matches the continuum value σ to within

(1− ǫ)σ ≤ σ′ ≤ (1 + ǫ)σ, (13)

one must choose the scaling a ∼ ǫ in the high-precision limit, that is, the limit ǫ → 0. Similarly,
in the large-momentum limit, one must choose the scaling a ∼ p−1 in order to ensure that the
wavelength of each particle is large compared with the lattice spacing.

It suffices to use an adiabatic process of duration

T = O

(
L2

a4m3ǫ

)
(14)

(where L is the length of the spatial dimension and m is the physical mass) to prepare a state
within a distance ǫ of the free vacuum (§4.1). Using Suzuki-Trotter decompositions of the form
described in §3.3, we can simulate this adiabatic time evolution using a number of quantum gates
scaling as

Gprep = O

((
TL

a2

)1+o(1)

ǫ−o(1)

)
(15)

= O

((
L3

a6m3ǫ

)1+o(1)
)
. (16)

The next state-preparation step is to simulate adiabatic turn-on of the coupling, thereby ob-
taining the interacting vacuum. This can be achieved in a time (§4.2)

Tturn−on = O

(
L2

a4m3ǫ

)
. (17)
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Applying Suzuki-Trotter formulae, one obtains a gate count of

Gturn−on = O

((
L3

a6m3ǫ

)1+o(1)
)
. (18)

The final state-preparation step is to excite particle wavepackets. We do this by applying a
time-dependent perturbation λW (t) for time τ . It is necessary to choose τ large enough and λ
small enough to suppress the production of particle pairs. The choice of small λ means that there
will be a substantial probability that no particle is produced. Let p1 denote the probability that
exactly one particle is produced. In a typical simulation one wishes to produce an initial state of
two spatially separated incoming particles. The probability that both of these are produced is p21.
The simulations in which one or both initial particles has failed to be created can be detected at
the final measurement stage of the simulation and discarded. This comes at the cost of a factor
of 1/p21 more repetitions of the simulation. The probability p1 is independent of momentum and
scales with precision as p1 ∼ ǫ (§4.3). Also, in §4.3 one finds that the total number of quantum
gates needed for the excitation step is

Gexcite =

{
ǫ−4−o(1) , as ǫ→ 0 ,

p3+o(1) , as p→ ∞ .
(19)

In both the high-momentum and high-precision limits, the dominant costs in the algorithm are
the two adiabatic state preparation steps, whose complexity is given in (16) and (18). In the high-
precision limit, to compute physical quantities such as scattering cross sections to within a factor of
(1+ ǫ), one must choose a to scale as ǫ (§5.1). Also, in this limit, the complexity contains a further
factor of 1/ǫ owing to postselection of simulations in which both wavepacket excitations have been
successful (§4.3). Substituting a ∼ ǫ into (16) and including this extra factor of 1/ǫ yield a total
complexity of O(ǫ−8−o(1)). In the high-momentum limit, a must scale as 1/p to ensure that the
particle wavelength is long compared to the lattice spacing, and L must scale as p to accommodate
the excitation step (§4.3). In summary, we obtain

Gtotal =

{
O(ǫ−8−o(1)) , as ǫ → 0 ,

O(p9+o(1)) , as p→ ∞ .
(20)

Note that these are only upper bounds on the complexity, and it may be possible to improve them
by using more detailed analysis, such as more specialized adiabatic theorems.

3 Qubits and Quantum Gates

We divide the problem of simulating Hamiltonian time evolutions in the massive Gross-Neveu model
into three subproblems. The first subproblem is to represent the state of the field with qubits. We
do this by choosing a complete set of commuting observables and encoding their eigenvalues with
strings of bits (§3.1). The second subproblem is to simulate local fermionic gates on the degrees of
freedom defined by the commuting observables. Achieving this in an efficient manner is non-trivial
because of the fermionic statistics. For this purpose, we employ a technique due to Bravyi and
Kitaev [9], which implements fermionic statistics with only logarithmic overhead in the number
of lattice sites (§3.2). The third subproblem is to decompose the time evolution governed by the
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massive Gross-Neveu Hamiltonian into a product of local fermionic gates. We do this using high-
order Suzuki-Trotter formulae [24] with optimizations tailored to the fermionic statistics and the
spatially local nature of the Hamiltonian (§3.3). The local unitary transformations act on at most
22N -dimensional Hilbert spaces and can therefore be efficiently decomposed into elementary gates
for any constant number of particle species, N , via the Solovay-Kitaev algorithm [25,26].

3.1 Representation by Qubits

First, we put the massive Gross-Neveu model on a spatial lattice

Ω = aZL̂ . (21)

For simplicity, we impose periodic boundary conditions, so that Ω can be considered a circle of
circumference L = aL̂. The Hamiltonian is

H = H0 +Hg +HW , (22)

where

H0 =
∑

x∈Ω
a

N∑

j=1

ψ̄j(x)

[
−iγ1ψj(x+ a)− ψj(x− a)

2a
+m0ψj(x)

]
, (23)

Hg = −g
2
0

2

∑

x∈Ω
a

( N∑

j=1

ψ̄j(x)ψj(x)

)2

, (24)

HW =
∑

x∈Ω
a

N∑

j=1

[
− r

2a
ψ̄j(x) (ψj(x+ a)− 2ψj(x) + ψj(x− a))

]
. (25)

Here, Hg is the interaction term, and HW is the Wilson term, used to prevent fermion doubling
[27]. Correspondingly, 0 < r ≤ 1 is called the Wilson parameter. H is spatially local in the sense
that it consists only of single-site and nearest-neighbor terms on the lattice.

Let Γ denote the momentum-space lattice corresponding to Ω, namely,

Γ =
2π

L
ZL̂ . (26)

We can deduce the spectrum H0 +HW using

ψj(x) =
∑

p∈Γ

1

L

1√
2Ep

(
aj(p)u(p)e

ip·x + b†j(p)v(p)e
−ip·x

)
, (27)

ψ̄j(x) =
∑

p∈Γ

1

L

1√
2Ep

(
a†j(p)ū(p)e

−ip·x + bj(p)v̄(p)e
ip·x
)
. (28)

The inverse transformation is

aj(p) =
1√
2Ep

u†(p)
∑

x∈Ω
ae−ip·xψj(x) , (29)

b†j(p) =
1√
2Ep

v†(p)
∑

x∈Ω
aeip·xψj(x) . (30)
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Substituting (27) and (28) into (23) and (25) and neglecting the vacuum energy, we obtain

H0 +HW =
N∑

j=1

∑

p∈Γ

1

L
E

(a)
p (m0)

(
a†j(p)aj(p) + b†j(p)bj(p)

)
, (31)

where

E
(a)
p (m0) =

√(
m0 +

2r

a
sin2

(pa
2

))2

+
1

a2
sin2(pa) . (32)

From the canonical fermionic anticommutation relations

{ψj,α(x), ψ
†
k,β(y)} = a−1δx,yδj,kδα,β1 , (33)

{ψ†
j,α(x), ψ

†
k,β(y)} = {ψj,α(x), ψk,β(y)} = 0 , (34)

it follows that

{aj(p), a†k(q)} = Lδp,qδj,k1 , (35)

{bj(p), b†k(q)} = Lδp,qδj,k1 , (36)

with all other anticommutators involving a and b operators equal to zero. We thus have the
following interpretation: there are N independent fermion species, created (with momentum p)

by a†1(p), . . . , a
†
N (p) and annihilated by a1(p), . . . , aN (p). Similarly, for each species j, b†j(p) and

bj(p) are the creation and annihilation operators for a corresponding antifermion. Thus, H acts

on a Hilbert space of dimension 22NL̂.

We can specify a basis for the Hilbert space of field states by choosing a complete set of
commuting observables. The basis is then indexed by the set of eigenvalues of these observables.
The fermionic anticommutation relations {a, a†} = 1, {a, a} = 0 imply that the algebra generated

by a and a† has the irreducible representation a →
[
0 1
0 0

]
, a† →

[
0 0
1 0

]
, which is unique up

to the choice of basis. Hence, the eigenvalues of a†a are 0 and 1. The two basis vectors for the
space on which a and a† act are interpreted as the presence or absence of a fermion.

Thus, by (33) and (34),

Sx = {aψ†
j,α(x)ψj,α(x)|j = 1, . . . , N ; α = 0, 1; x ∈ Ω} (37)

is a set of 2NL̂ commuting observables, each of which has eigenvalues zero and one. Similarly, by
(35) and (36),

Sp = {L−1a†j(p)aj(p)|j = 1, . . . , N ; p ∈ Γ} ∪ {L−1b†j(p)bj(p)|j = 1, . . . , N ; p ∈ Γ} (38)

is a set of 2NL̂ commuting observables, each with eigenvalues zero and one. In the non-interacting
theory, the eigenvalues of the elements of Sp are interpreted as the fermionic occupation numbers
of different momentum modes.

The Hamiltonian H0 +HW is called the free theory. The eigenstates of the number operators
in Sp are eigenstates of H0 +HW , and thus the particles do not interact. The rest mass of these

non-interacting particles is E
(a)
0 (m0) = m0. It is not known how to solve for the spectrum of
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H0+HW +Hg analytically, but the eigenvalue spectrum of H0+HW +Hg can still be characterized
in terms of particles. The rest mass m of the particles in H0 +HW +Hg is equal to the eigenvalue
gap between the ground state (also called the vacuum) and the first excited state. In the interacting
theory, it is no longer true that m = m0. Rather, m depends in a non-trivial way on m0, g0, and
a; the mass is said to be renormalized. A quantitative analysis of this effect contributes to our
analysis of adiabatic state preparation and is given in §5.2.

One can represent the quantum state of the fermionic fields using 2NL̂ qubits to store the
eigenvalues of the elements of either Sx or Sp. The ground state of the free theory in the Sp
representation is thus |000 . . .〉. However, the ground state of the interacting theory is non-trivial
in both representations. We define our qubit basis in terms of the elements of Sx, because the
Gross-Neveu Hamiltonian is local in this basis, which improves the scaling of the Suzuki-Trotter
formulae used to implement time evolution. However, we do not simply store the eigenvalues of
the elements of Sx directly as the values of the qubits. This representation would be somewhat
inefficient to act upon, because direct implementation of the fermionic minus signs requires O(L̂)
gates. Instead, we apply the method of [9] to reduce this overhead to O(log L̂), as described next.

3.2 Simulating Fermionic Gates

The implementation of fermionic gates using qubits can present a technical challenge [9]. As an

example, consider the unitary transformation Uj,α(x) =
√
a
(
ψj,α(x) + ψ†

j,α(x)
)
. This toggles the

eigenvalue of aψj,α(x)ψ
†
j,α(x) between zero and one. Such a toggling can be implemented on qubits

with the NOT gate. However, to satisfy the fermionic anticommutation relations (33) and (34) the
sign of the transition amplitude between the zero and one state must depend on the occupation of
other modes. A well-known way to satisfy (33) and (34) is to use a Jordan-Wigner transformation,
in which the modes are given an ordering and Uj,α(x) is represented by the operator σx⊗σz⊗. . .⊗σz,
where the σz operators apply to all preceding modes2 [28]. Unfortunately, this method clearly has
an O(L̂) overhead. In [9], Bravyi and Kitaev give a method with only O(log L̂) overhead, which we
briefly review here.

Let ni be the occupation number of the ith fermionic mode according to some chosen numbering
of the modes from 1 to 2NL̂. To implement the minus signs in Uj,α(x), one needs to know

∑
i ni,

where the sum is over all preceding modes. Thus, a natural encoding of fermionic mode occupation
numbers is to store the quantities ti =

∑i
j=1 nj instead of the quantities ni. This encoding has the

advantage that calculating the relevant signs has an O(1) cost. However, it has the disadvantage
that, if the occupation number of the ith mode changes, then i−1 of the ti values must be updated.
Thus, updates have an O(L̂) cost. The Bravyi-Kitaev encoding uses the following compromise, in
which the calculation of the relevant signs and the update steps can both be performed in time
O(log L̂).

The mode index i ∈ {1, . . . , 2NL̂} can be represented by a bit string of length l = ⌈log2(2NL̂)⌉.
One can define the following partial order on these bit strings. Consider two bit strings x =
xlxl−1 . . . x1 and y = ylyl−1 . . . y1. Then x � y if, for some r, xj = yj for j > r and yr−1 = yr−2 =
. . . = y1 = 1. Now, let kj =

∑
s�j ns. Any total occupation number ti can be computed from the

kj quantities in O(log L̂) time and changing the occcupation of any mode nj requires updating only
O(log L̂) of the kj quantities [9].

2Note that one can apply both the Jordan-Wigner and Bravyi-Kitaev methods for implementing fermionic oper-
ators on quantum computers in any number of spatial dimensions, using an arbitrary numbering of modes.
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In fact, the Bravyi-Kitaev construction is relevant only to the excitation of wavepackets (§4.3).
In all other parts of our algorithm, we simulate a Hamiltonian in which every term is a product of
an even number of fermionic field operators, all acting on the same site or on nearest-neighbor sites
in one dimension. In this case, traditional Jordan-Wigner techniques incur only O(1) overhead.

3.3 Application of Suzuki-Trotter Formulae to Fermionic systems

In this section, we describe how to construct efficient quantum circuits that simulate time evolution
induced by the Hamiltonian H defined in (22), (23), (24), and (25). We present the case in which
H is time-independent. By the results of [29], the same analysis applies to the simulation of the
time-dependent Hamiltonians that we use in adiabatic state preparation. (See also [30].)

Using a kth-order Suzuki-Trotter formula, one can implement Hamiltonian time evolution of
duration t using a number of quantum gates that scales as t1+

1

2k [24, 31]. Generally, applying a
Suzuki-Trotter formula directly to a Hamiltonian of the form

H =
m∑

i=1

Hi (39)

yields an algorithm with O(m1+o(1)) timesteps, and hence O(m2+o(1)) gates, if the Hi are not
mutually commuting. Thus, it is often advantageous to group terms in a Hamiltonian like (39) into
as small a collection as possible of sets of mutually commuting terms [8, 32].

Consider the problem of simulating the Hamiltonian H defined in (22), (23), (24), and (25). By
(33) and (34), one sees that

[ψ̄j(x)ψj(x), ψ̄k(y)ψk(y)] = 0 , (40)

regardless of whether j = k or x = y. Thus, we start by decomposing H as a sum of two parts,
the single-site terms and the terms that couple nearest neighbors:

H = Hss +Hnn , (41)

where

Hss =
∑

x∈Ω
a

[
N∑

j=1

(
m0ψ̄j(x)ψj(x) +

r

a
ψ̄j(x)ψj(x)

)
+
g20
2

( N∑

j=1

ψ̄j(x)ψj(x)

)2
]
. (42)

By (40), e−iHssδt decomposes into a product of local unitary transformations.
All terms in Hnn are of the form

ψ†
j,α(x)ψj,β(y) + ψ†

j,β(y)ψj,α(x) , (43)

for x = y± a. Terms with α = β and terms with α 6= β are both present in Hnn.
Given an operator of the form (43), let us refer to the subset of {1, . . . , N}×{0, 1}×Ω on which

it acts as its support. Because they consist of a product of an even number of fermionic operators,
any two operators of the form (43) commute provided they have disjoint support. Thus, we next
decompose Hnn as

Hnn = H1 +H2 +H3 +H4 , (44)

where each of H1, . . . ,H4 consists of a sum of terms with non-intersecting support.

11
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Figure 1: Vertices represent elements of {0, 1}×Ω two vertices are connected by an edge if Hnn couples these
sites. (Different species are never coupled by Hnn, so the full graph with vertices corresponding to elements
of {1, . . . , N} × {0, 1} × Ω would consist of N disconnected copies of the graph shown.) The edges can be
colored with four colors such that each node has no more than one incident edge of each color. One can
obtain the decomposition Hnn = H1 +H2 +H3 +H4 by choosing H1 to be the sum of all interaction terms
along the edges labeled 1 (which are blue), H2 to be the sum of all the interaction terms along edges labeled
2 (which are red), and so on.

In Hnn there is no coupling between different species, that is, no products of ψj and ψk for
j 6= k. Thus, we can ignore the index j. We now construct a graph whose vertices correspond to
the elements of {0, 1} × Ω. We draw an edge between two vertices if there exists a term in Hnn

with the corresponding support. One sees that this graph is as shown in Fig. 1. The graph is
edge-colorable with four colors, and therefore Hnn is correspondingly decomposable as in (44) with
each of H1,H2,H3,H4 consisting of a sum of commuting terms. (Because of the periodic boundary
conditions, this works only if L̂ is even, which we assume henceforth.)

The unitary time evolution induced by H = Hss +H1 +H2 +H3 +H4 can be approximately
decomposed via high-order Suzuki-Trotter formulae into a sequence of

nS−T = O
(
(t/a)1+o(1)L̂o(1)ǫ−o(1)

)
(45)

time evolutions induced by individual members of {Hss,H1,H2,H3,H4}. The scaling with t follows
from [24,29]. The scaling with L̂ is a consequence of the spatial locality of H (see §4.3 of [8]), that
is, the property that only nearest-neighbor sites are coupled. The scaling with a is a consequence
of the fact that the individual terms in the Hamiltonian each have norm at most of order a−1. This
affects the magnitude of the error term in the Suzuki-Trotter decomposition, which arises from
commutators of these terms.

Each member of {Hss,H1,H2,H3,H4} is a sum of O(L̂) commuting terms. The time evolution
e−i

∑
i Mit induced by commuting terms Mi decomposes as e−i

∑
i Mit =

∏
i e

−iMit. If each Hi acts
on only a constant number of qubits, then the individual factors e−iHit in this product can each
be simulated in Õ(1) time, by the Solovay-Kitaev theorem [25, 26]. Thus, including a logarithmic
overhead for fermionic statistics, the cost of implementing e−iJt for any J ∈ {Hss,H1,H2,H3,H4}
is Õ(L̂). By (45), the total cost of time evolution is O

( (
tL
a2

)1+o(1)
ǫ−o(1)

)
quantum gates.

4 State Preparation and Measurement

We divide the problem of state preparation into three steps, described in §4.1–§4.3: preparing the
free vacuum, transforming the free vacuum into the interacting vacuum, and exciting wavepackets
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on the background of the interacting vacuum. Two possible measurement procedures are described
in §4.4 and §4.5.

4.1 Preparing the Free Vacuum

Although the free Hamiltonian H0 +HW is exactly solvable, preparing its ground state in the Sx
representation on a quantum computer is non-trivial. We do so using adiabatic state preparation,
as follows. Let

H(s) =
∑

x∈Ω
a

N∑

j=1

ψ̄j(x)

[
−siγ1ψj(x+ a)− ψj(x− a)

2a
+mψj(x)

]
+ sHW . (46)

The energy gap of this Hamiltonian is equal to the parameter m for all s. We set this equal to the
physical mass of the particles whose scattering we ultimately wish to simulate.

H(0) is a sum of separate Hamiltonians acting on each lattice site and each species of parti-
cle. Its ground state is therefore the tensor product of the ground states of the four-dimensional
Hilbert spaces associated with each pair (x, j) ∈ Ω × {1, . . . , N}. (Specifically, the ground state
for a given site is 1√

2
(|01〉+ i|10〉), where |b0b1〉 with b0, b1 ∈ {0, 1} denotes the state satisfying

aψ†
j,0(x)ψj,0(x)|b0b1〉 = b0|b0b1〉 and aψ†

j,1(x)ψj,1(x)|b0b1〉 = b1|b0b1〉.) The cost of producing this

tensor product of NL̂ local states, including the cost of fermionic antisymmetrization via the en-
coding of [9], is O(NL̂ log(NL̂)).

After the ground state of H0 has been prepared, the complexity of the remaining adiabatic state
preparation is determined by the adiabatic theorem [33,34].

Theorem 1. Let H(s) be a finite-dimensional twice differentiable Hamiltonian on 0 ≤ s ≤ 1 with
a non-degenerate ground state |φ0(s)〉 separated by an energy gap γ(s). Let |ψ(t)〉 be the state
obtained by Schrödinger time evolution according to the Hamiltonian H(t/T ) from the state |φ0(0)〉
at t = 0. Then, with an appropriate choice of phase for |φ0(t)〉, the error ∆ ≡ ‖ |ψ(T )〉 − |φ0(1)〉 ‖
satisfies

∆ ≤ 1

T

[
1

γ(0)2

∥∥∥∥
dH

ds

∥∥∥∥
s=0

+
1

γ(1)2

∥∥∥∥
dH

ds

∥∥∥∥
s=1

+

∫ 1

0
ds

(
5

γ3

∥∥∥∥
dH

ds

∥∥∥∥
2

+
1

γ2

∥∥∥∥
d2H

ds2

∥∥∥∥

)]
. (47)

Analyzing the adiabaticity of this process is relatively easy, because (27) and (28) diagonalize
H(s) (and dH

ds ) for all s. One finds that the eigenvalue gap of H(s) throughout the adiabatic path
0 ≤ s ≤ 1 is always precisely m. Furthermore,

dH

ds
=

N∑

j=1

∑

p∈Γ

1

L
E

(a)
p (0)

(
a†j(p)aj(p) + b†j(p)bj(p)

)
. (48)

Thus, ∥∥∥∥
dH

ds

∥∥∥∥ = 2N
∑

p∈Γ
E

(a)
p (0) . (49)
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For large L,
∑

p∈Γ
1
L becomes well approximated by the integral

∫ 2π/a
0 dp. Thus, using (32), we

obtain
∥∥∥∥
dH

ds

∥∥∥∥ ≃ 2NL

∫ 2π/a

0
dpE

(a)
p (0) (50)

= 2NL

∫ 2π/a

0
dp

√
4r2

a2
sin4

(pa
2

)
+

1

a2
sin2(pa) (51)

=
2NL

a2
η(r) , (52)

where

η(r) =

∫ 2π

0
dp̂

√
4r2 sin4

( p̂
2

)
+ sin2 (p̂) . (53)

We can therefore substitute d2H
ds2

= 0,
∥∥dH

ds

∥∥ = O(La−2) and γ = m into (47). Theorem 1 then
shows that we can prepare a state with distance no more than ǫprep from the exact state using

T = O

(
L2

a4m3ǫprep

)
. (54)

Note that the adiabatic theorem applied here, though convenient because of its generality, may not
yield a tight upper bound on the run time.

4.2 Preparing the Interacting Vacuum

Given the ground state of the free theory, we can prepare the ground state of the interacting
theory by adiabatically varying the parameters g20 andm0 in the massive Gross-Neveu Hamiltonian,
starting from g20 = 0. For adiabaticity to be maintained, the physical mass must not vanish at any
point in the adiabatic path. By §5.2, the physical mass varies with g20 according to

m = m0 − c1g
2
0 − c2g

4
0 +O(g60) , (55)

where c1, c2 > 0 are given by

c1 =
m

2π
log
( 1

ma

)
+ · · · , (56)

c2 ≃ m

16π3
(
9.3N − 0.07

)
log2(ma) + · · · . (57)

(The coefficients in (57) were determined numerically.) The vanishing of the physical mass marks
the location of a quantum phase transition, which cannot be adiabatically crossed. Equation (55)
indicates that the phase diagram takes the schematic form as shown in Fig. 2.

As in §4.1, we parametrize our adiabatic state preparation by a quantity s, which increases over
time from 0 to 1. In this second adiabatic process, the Hamiltonian is the full massive Gross-Neveu
Hamiltonian with s-dependent parameters g20(s) andm0(s). We choose g20(0) = 0 andm0(0) = m so
that the initial Hamiltonian of this adiabatic process matches the final Hamiltonian of the preceding
adiabatic step. Thus, the ground state at s = 0 is the free vacuum prepared in the previous step
of the algorithm. To keep our analysis simple, we choose a linear adiabatic path, namely,

g20(s) = sg20 ,

m0(s) = m+ sδm . (58)
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g
2

0

m0

Figure 2: Our perturbative calculations of the physical mass in the massive Gross-Neveu model indicate a
phase diagram with the qualitative features illustrated above. The phase above the dashed curve is accessible
adiabatically from the free theory but the phase below is not. The arrow depicts our linear adiabatic path,
described in (59). Our perturbative analysis shows that the first two derivatives of the phase transition curve
with respect to g20 are both positive and diverge only as poly(log(m0a)) in the limit a→ 0.

We choose δm so that the physical mass at s = 1 is equal to the physical mass at s = 0. To second
order in g20 ,

δm = c1g
2
0 + c2g

4
0 + · · · , (59)

as illustrated in Fig. 2.
By (58), d2H

ds2
= 0 and

dH

ds
=
∑

x∈Ω
a

[
δmψ̄j(x)ψj(x) +

g20
2

( N∑

j=1

ψ̄j(x)ψj(x)

)2
]
. (60)

Furthermore, the minimal eigenvalue gaps occur at s = 0 and s = 1 and are equal to the final
physical mass m. Thus, to apply Theorem 1 we need only bound

∥∥dH
ds

∥∥.
We can deduce the spectrum of dH

ds by the following transformation:

aj(x) =
1√
2

(
ψj,0(x)− iψj,1(x)

)
, (61)

b†j(x) =
1√
2

(
ψj,0(x) + iψj,1(x)

)
. (62)

This corresponds to

ψj(x) =
1√
2m0

(
aj(x)u(0) + b†j(x)v(0)

)
, (63)

where u, v are defined in (12). Using (33) and (34), one can verify that

{aj(x), a†k(y)} = {bj(x), b†k(y)} = a−1δj,kδx,y1 , (64)

{aj(x), ak(y)} = {bj(x), bk(y)} = 0 , (65)

{aj(x), bk(y)} = {a†j(x), bk(y)} = 0 . (66)

Thus, aj(x), a
†
j(x), bj(x), b

†
j(x) are creation and annihilation operators for 2N species of fermions

localized on the spatial lattice. By (63),

ψ̄j(x)ψj(x) = a†j(x)aj(x)− bj(x)b
†
j(x) , (67)
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from which we obtain ∥∥∥∥∥

N∑

j=1

ψ̄j(x)ψj(x)

∥∥∥∥∥ = 2Na−1, (68)

and hence ∥∥∥∥
dH

ds

∥∥∥∥ = δm2NL̂+
2L̂g20N

2

a
. (69)

By the results of §5.2, we find that δm = O(log2(ma)). Hence, recalling that L̂ = L/a, we
obtain ∥∥∥∥

dH

ds

∥∥∥∥ = O

(
L

a2

)
. (70)

Therefore, by Theorem 1 the diabatic error is at most

ǫ = O

(
1

Tturn−on

∥∥dH
ds

∥∥2

γ3

)
(71)

= O

(
L2

Tturn−ona4m3

)
. (72)

It thus suffices to choose

Tturn−on = O

(
L2

a4ǫm3

)
. (73)

In the above procedure, we choose our adiabatic path so that the initial and final physical masses
equal some user-specified value m. To achieve this, one needs to tune the quantity δm in accordance
with (58) and (59). For sufficiently weak coupling, the proper choice of δm can be determined by
the perturbative calculations performed in §5.2. In the strongly coupled case, these perturbative
calculations no longer provide precise guidance as to a choice of δm. Instead, as previously discussed
in [8], the adiabatic path can be determined by the quantum computer. Specifically, one can
measure the physical mass at a given coupling strength g0 by exciting a particle and measuring
energy via phase estimation. This measurement guides the choice of a suitable adiabatic path to
a slightly larger coupling strength, at which point the mass can be measured again. Iterating this
process, one can reach any coupling strength for which the corresponding vacuum is in the same
quantum phase as the free vacuum.

4.3 Exciting Wavepackets

After preparing the interacting vacuum, |vac〉, we excite wavepackets by simulating a source that
varies sinusoidally in space and time so as to induce excitations of some particular total energy and
momentum by resonance. Given the physical rest massm of the particles, we can choose this energy
and momentum so that the only corresponding state is a single-particle state. (For a given total
momentum, an unbound state of two particles will have greater energy than the corresponding state
of one particle. In the ultrarelativistic limit, p≫ m, this energy difference scales as m2/p.) In the
remainder of this section, we show that, using a source of spatial extent l and duration τ , one can
ensure that excitations off resonance are suppressed as ∼ exp

[
−1

4

(
l2(p− p0)

2 + τ2(E − E0)
2
)]
.

Hence, by simulating a process of duration τ ∼ p/m2 and spatial extent l ∼ p/m2, one can control
the incoming momentum and ensure that the probability of obtaining more than one particle is
small.
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The creation of two incoming particles has only an O(ǫ) success probability, which can be
compensated for by repeated attempts. (See the discussion following (82).) The total complexity
of preparing two particles is the cost of simulating the time evolution given in (75) a total of 1/ǫ

times. Thus, by the results of §3.3, the complexity is
(

τl
a2ǫ

)1+o(1)
. Thus, since p ∼ a−1 for fixed ǫ

and a ∼ ǫ for fixed p, the number of quantum gates Gexcite needed to excite the two initial particles
is

Gexcite ∼
{
ǫ−3−o(1) , as ǫ→ 0 ,

p4+o(1) , as p→ ∞ .
(74)

Note also that for the initial wavepackets to be well separated, L must be larger than 2l. Hence,
in the high-momentum limit L ∼ p, which affects the complexity of other steps of the algorithm.

Perturbative Expansion

The resonant excitation can be analyzed with time-dependent perturbation theory. Let

R = T

{
exp

[
−i
∫ τ

0
dt (H + λW (t))

]}
, (75)

where T{·} denotes the time-ordered product, H is given by (22),

W (t) =

∫
dx
(
f(t,x)ψi,α(x) + f∗(t,x)ψ†

i,α(x)
)
, (76)

i and α are chosen according to the desired type of particle, and f(t,x) is an oscillatory function
whose form we optimize in the next subsection. The end product of the excitation process is R|vac〉.
One can expand this quantity using the Dyson series, as follows:

R = 1− iλ

∫ τ

0
dt1WI(t1) + (−iλ)2

∫ τ

0
dt1

∫ t1

0
dt2WI(t1)WI(t2) + · · · , (77)

where
WI(t) = eiHtW (t)e−iHt (78)

and the nth-order term in λ is

(−iλ)n
∫ τ

0
dt1 . . .

∫ tn−1

0
dtnWI(t1) . . . WI(tn) . (79)

The total contribution from orders λ2 and higher is bounded by
∥∥∥∥∥

∞∑

n=2

(−iλ)n
∫ τ

0
dt1 . . .

∫ tn−1

0
dtnWI(t1) . . .WI(tn)

∥∥∥∥∥ ≤
∞∑

n=2

λnτn

n!
wn (80)

= exp[λτw]− 1− λτw , (81)

where
w = max

0≤t≤τ
‖W (t)‖ . (82)

From the above analysis, one sees that the Dyson series converges rapidly. The single-particle
excitation amplitude is of order λ, and the dominant error, other than non-excitation, is the two-
particle excitation amplitude, which is of order λ2. Setting the two-particle excitation probability
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to ǫ, one obtains a single-particle excitation with probability p1 ∼ √
ǫ, and non-excitation with

probability on the order of 1 − √
ǫ. In a standard scattering simulation, one wishes to prepare

as an initial state single-particle excitations at two spatially separated locations. The fraction of
simulations in which this is achieved (rather than one or both particles failing to be produced) is
thus of order p21 ∼ ǫ. One can detect such instances and compensate by repeating the simulation
O(1/p21) times and postselecting the instances in which both particles were produced.

Next, we consider the first-order excitation amplitude in more detail. Let |E,p〉 be any state
with total momentum p and energy E above the vacuum energy, so that P |E,p〉 = p|E,p〉 and
H|E,p〉 = E|E,p〉, where P is the total momentum operator. (Here, we rely on the fact that
[H,P ] = 0.) Then, to first order in λ, by (77) and (78),

〈E,p|R|vac〉 ≃ −iλ
∫ τ

0
dt〈E,p|WI(t)|vac〉 (83)

= −iλ
∫ τ

0
dt e−iEt〈E,p|W (t)|vac〉 . (84)

Recalling that the momentum operator is the generator of spatial translations, one has ψi,α(x) =
eiPxψi,α(0)e

−iPx. Thus, to first order in λ,

〈E,p|R|vac〉 ≃ −iλ
∫ τ

0
dt

∫
dxe−i(Et+px)

[
f(t,x)〈E,p|ψi,α(0)|vac〉+ f∗(t,x)〈E,p|ψ†

i,α(0)|vac〉
]
.

(85)
(Here we have used P |vac〉 = 0.) Defining f(t,x) = 0 for t /∈ [0, τ ], we can extend the time
integration to infinity and express 〈E,p|R|vac〉 in terms of f̃ , the Fourier transform of f . For our
choice of f , given in the next subsection, f̃ is real, and therefore

〈E,p|R|vac〉 = −iλ
[
f̃(E,p)〈E,p|ψi,α(0)|vac〉+ f̃(−E,−p)〈E,p|ψ†

i,α(0)|vac〉
]
+O(λ2). (86)

Wavepacket Shaping

We now show that a Gaussian wavepacket is a good choice for f(t,x). Specifically, for chosen
constants α, β > 0, let

f(t,x) =

{
η exp

[
−(αt)2 − (βx)2 − iE0t+ ip0x

]
, −τ/2 ≤ t ≤ τ/2,−l/2 ≤ x ≤ l/2 ,

0 , otherwise .
(87)

(For convenience, we have shifted the origin of the coordinate system.) Here η is a normalization
factor3 with mass dimension 3/2. With this choice of f ,

f̃(E,p) = ηqβ,l(p− p0)qα,τ (E − E0) , (88)

where

qρ,r(d) =

∫ r/2

−r/2
dx eidx−(ρx)2 . (89)

3It is reasonable to choose η so that
∫ τ

0
dtWI(t)|vac〉 is a normalized state. In the ultrarelativistic limit this implies

that η ∼
(

α2β4 + α4β2
)1/4

.
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In the limit r → ∞, the function qρ,r(d) converges to a Gaussian peak of width ∼ 1/ρ. Since E

must be positive, the f̃(−E,−p)〈E,p|ψ†
i,α(0)|vac〉 term in (86) is exponentially small. Hence, one

obtains
〈E,p|R|vac〉 ≃ −iλf̃(E,p)〈E,p|ψi,α(0)|vac〉. (90)

for E ≫ 1/τ and λ ≪ 1. By (90) and (27), one sees that R|vac〉 is a antifermion wavepacket with
momentum centered around p. To create a fermion, one interchanges ψ and ψ† in (76).

Using the asymptotics of error functions, we can furthermore bound the contributions due to r
being finite. One finds that

∣∣qρ,r(d)− qρ,∞(d)
∣∣ ≤ 2

rρ2
e−(ρr)2/4. (91)

4.4 Measuring Number Operators

Recall from §3.1 that the free theory (g20 = 0) is exactly solvable, with the number operators

L−1a†j(p)aj(p) counting fermions of species j in momentum-mode p and L−1b†j(p)bj(p) similarly
counting antifermions. Thus, as one possible set of measurements to perform on the final state of
the simulation, we propose, as in [8], adiabatically returning to the free theory and then measuring
number operators via the phase-estimation algorithm. We analyze this measurement procedure
in this section. An alternative set of measurements that is more suitable when bound states are
present is analyzed in §4.5.

The adiabatic return to the free theory is performed in the presence of particle wavepackets, so
the state being adiabatically transformed is not an energy eigenstate. Different energy eigenstates
in the superposition will acquire different dynamical phases during the adiabatic process and thus,
in physical terms, the simulated particles will propagate. Such propagation is undesirable because
we do not want any scattering to occur while the interaction is being turned off.

Hence, we apply the same technique proposed in [8] to suppress particle propagation: we inter-
leave (simulated) backwards time evolutions governed by time-independent Hamiltonians into the
adiabatic process. By an analysis similar to that performed in [8], one finds that, to ensure that a
particle propagates no further than a distance D, it suffices to use

J = Õ

(√
τ

pD

)
(92)

backwards evolutions, where τ is the duration of the original adiabatic process and p is the mo-
mentum of the particle. Further, one finds that the total probability of diabatically exciting one or
more particles is4

Pdiabatic = O

(
J2Lp2

τ2

)
. (93)

Hence, setting D to a constant Pdiabatic to ǫ, one obtains

τ = Õ

(
L

ǫ

)
. (94)

4This result is based on the adiabatic criterion of [35] which appears to be applicable [8] to our Hamiltonian
although it may not apply to all Hamiltonians.
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A process of this duration can be implemented with (§3.3)

Gturn−off = O

((
L2

aǫ

)1+o(1)
)

(95)

quantum gates.
The phase-estimation algorithm [36] enables one to measure in the eigenbasis of L−1a†j(p)aj(p),

provided one can efficiently implement e−iL−1a†j(p)aj (p)t for various t using quantum circuits. By

(29) and (30), one sees that the problems of simulating e−iL−1a†j(p)aj (p)t and its antifermionic
counterpart are largely similar to the problem of simulating the time evolution e−iHt, which was
analyzed in detail in §3.3. However, these number operators are spatially nonlocal, which means
that the methods of §3.3 do not perform well as a function of L̂. Instead, it is more efficient to use
recent techniques from [37].

In [37], a method is described for simulating sparse Hamiltonians in which the matrix elements
are given by an oracle. As discussed on pg. 2 of [37], in the case where the sparse Hamiltonian
consists of a sum of d terms each acting on O(1) qubits, the number of oracle queries and non-oracle-
related quantum gates both scale as O(d). A number operator for a momentum mode consists of
O(L̂2) terms, acting between all pairs of spatial lattice sites. Thus, if one ignored the fermionic
statistics, the number of non-oracle-related gates needed to simulate the time-evolution induced
by a number operator would be O(L̂2n) = O(L̂3). The number of gates needed to implement one
oracle query to the sparse matrix defined by the number operator would be O(n), and number of
quantum gates needed to implement all of the oracle queries would be O(L̂3). Using the Bravyi-
Kitaev encoding for fermionic statistics adds a logarithmic factor to the complexity. Measuring all
2NL̂ of the number operators thus has total complexity Õ(L̂4) = Õ(L4/a4).

4.5 Measuring Local Charge

In previous work [8], we proposed measuring local energy observables as an alternative to returning
to the free theory and measuring number operators. This procedure has the advantage that it can
detect bound states. It has the disadvantage that the local energy observables have ultraviolet-
divergent vacuum fluctuations that represent a noise background above which particle excitations
must be discerned. In this paper, we instead measure simpler local observables, namely charges,
whose vacuum fluctuations are less difficult to control. These observables can thus detect charged
bound states, although they are blind to neutral ones.

From the equation of motion of the massive Gross-Neveu model, one finds that for each j ∈
{1, 2, . . . , N} the quantity

Jµ
j (x) = ψ̄j(x)γ

µψj(x) (96)

obeys
∂µJ

µ
j = 0. (97)

Hence,

Q̃j ≡
∑

x

J0
j (x) =

∑

x

ψ̄j(x)γ
0ψj(x) (98)

is a conserved charge. Note that, for any b, c ∈ R, Qj = bQ̃j + c is also conserved. We can calibrate
the charge observable by demanding that the vacuum have zero charge and that particle creation
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change the charge by ±1. One satisfies these criteria with the following definition:

Qj =
∑

x∈Ω
aψ̄j(x)γ

0ψj(x)− L̂1 . (99)

By (27), (28), and (36), one finds that

Qj =
1

L

∑

p∈Γ

(
a†j(p)aj(p)− b†j(p)bj(p)

)
. (100)

For any envelope function f : Ω → [0, 1], one can similarly define

Q
(f)
j =

∑

x∈Ω
f(x)

(
aψ̄j(x)γ

0ψj(x)− 1
)
. (101)

If f has support only in some region R ⊂ Ω, then Q
(f)
j can be thought of as an observable for the

charge in that region.
The most obvious choice of f is a square function that is equal to one inside R and zero

elsewhere. However, a better signal-to-noise ratio can be obtained by choosing f to decay from one
to zero more smoothly at the boundary of R. Specifically, calculations (in Appendix A) show that,

when f is chosen to be a Gaussian of width R, the variance of the observable Q
(f)
j in the vacuum

state is O(1/mR), independent of the lattice spacing a. Hence the noise background above which
particle excitations are to be detected is nondivergent in a and can be brought to an arbitrarily
low level at the cost of increasing the detector size. In practice, one will use a truncated Gaussian,
replacing the exponentially small tails with zero at distances greater than some constant multiple
of R. This modified f then has support on a region of size O(R), but the corresponding operator
is exponentially close to the Gaussian case treated by our analysis.

Q
(f)
j has eigenvalues with O(1) separations. Thus, measuring Q

(f)
j by phase estimation entails

simulating the unitary transformation exp
[
iQ

(f)
j t
]
for t of order one. Because Q

(f)
j is the sum of

local terms, these unitary transformations can be implemented by techniques similar to those in
§3.3 with complexity O(a−1−o(1)ǫ−o(1)).

5 Some Field-Theoretical Aspects

This section describes some quantum field-theoretical calculations: analysis of the effect of discretiz-
ing the spatial dimension of the massive Gross-Neveu model, and the perturbative renormalization
of the mass in the discretized theory.

In our complexity analysis (§2.3), our criterion for choosing the lattice spacing a is that the
scattering cross sections for processes at a momentum scale p in the discretized theory should differ
from their continuum values by at most a factor of (1 + ǫ). The results of §5.1 show that one
can satisfy this criterion by choosing a ∼ ǫ/p. This choice then affects the overall scaling of the
algorithm in the large-momentum and high-precision limits. As one would expect, higher energies
and greater precision require a smaller lattice spacing and thus a larger number of lattice sites
(for fixed L). Consequently, the number of quantum gates needed to simulate time evolutions via
Suzuki-Trotter formulae is larger.

In §5.2, we perturbatively calculate the relationship between the bare mass m0, which is a
parameter in the lattice Hamiltonian (see (22) and (23)), and the physical mass m of the particles
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in the theory. We need to know the behavior of m in order to design and analyze the procedure
for preparing the interacting vacuum (§4.2). In particular, a suitable adiabatic path must maintain
a non-zero mass, the magnitude of which affects the algorithmic complexity, as indicated by the
adiabatic theorem.

5.1 Effects of Non-zero Lattice Spacing

The effects of a non-zero lattice spacing can be analyzed via effective field theory. The discretized
Lagrangian can be thought of as the leading contribution to an effective field theory, neglected
terms of which correspond to discretization errors. Hence, the scaling of the error with the lattice
spacing is given by the scaling of the coefficients of those terms.

The symmetries of the continuum theory restrict the possible operators in the effective field
theory. Consider the discrete transformations parity (denoted P ), time reversal (T ), and charge
conjugation (C). Parity changes the handedness of space and hence reverses the momentum. Thus,

Pa(p)P = a(−p) , P b(p)P = −b(−p) . (102)

Using (4) and (102), we then obtain

Pψ(t,x)P = γ0ψ(t,−x) , P ψ̄(t,x)P = ψ̄(t,−x)γ0 . (103)

Likewise,
Ta(p)T = a(−p) , T b(p)T = −b(−p) . (104)

It turns out that time reversal needs to be an antilinear operator. Then

Tψ(t,x)T = γ1ψ(−t,x) , T ψ̄(t,x)T = −ψ̄(−t,x)γ1 . (105)

Finally, charge conjugation interchanges particles and antiparticles. Thus,

Ca(p)C = b(p) , Cb(p)C = a(p) , (106)

and
Cψ(t,x)C = ψ∗(t,x) , Cψ̄(t,x)C = ψT (t,x)γ0 . (107)

One can verify that the Lagrangian (2) is invariant under each of the transformations P , T and C.
Now consider the operator ψ†

Mψ, where M is Hermitian. Invariance under P , T and C requires

M = γ0Mγ0 , (108)

M = −γ1M∗γ1 , (109)

M = −M
T . (110)

These conditions imply that
M = cγ0 , c ∈ R . (111)

Likewise, for iψ†
M∂µψ, where M is Hermitian, P , T and C invariance requires

M = (−1)µγ0Mγ0 , (112)

M = −(−1)µγ1M∗γ1 , (113)

M = M
T . (114)
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These conditions imply that, for µ = 0,

M = c1 = c(γ0)2 , c ∈ R , (115)

while, for µ = 1,
M = cγ5 = −cγ0γ1 , c ∈ R . (116)

Thus, the only P -, T - and C-invariant bilinears of Dirac fields are ψ̄ψ and iψ̄γµ∂µψ (µ = 0 or 1).
Now consider four-fermion operators, namely, products of two bilinears. The set {1, σi} forms

a complete basis, elements of which satisfy the identity

δαβδγδ =
1

2

(
δαδδγβ +

3∑

i=1

σiαδσ
i
γβ

)
. (117)

For γ0 = σ2, γ1 = −iσ1, γ5 = σ3, this is equivalent to

δαβδγδ =
1

2
(δαδδγβ + (γµ)αδ(γµ)γβ + (γ5)αδ(γ

5)γβ) . (118)

Equation (118) can be used to obtain Fierz identities. For example,

ψ̄iψjψ̄jψi = (ψ̄i)α(ψj)β(ψ̄j)γ(ψi)δδαβδγδ

= −1

2

(
ψ̄iψiψ̄jψj + ψ̄iγ

µψiψ̄jγµψj + ψ̄iγ
5ψiψ̄jγ

5ψj

)
, (119)

where the minus sign comes from fermion anticommutation. Thus, any operator of the form
ψ̄iΓ̃1ψjψ̄jΓ̃2ψi can be rewritten as a sum of operators of the form ψ̄iΓ1ψiψ̄jΓ2ψj, with Γ1,2 ∈
{1, γµ, γ5}.

If Γ1 6= Γ2, then ψ̄iΓ1ψiψ̄jΓ2ψj will violate at least one of the discrete symmetries. Furthermore,
the O(N) symmetry5 associated with the N fermion species restricts the allowed form of operators
to functions of

∑N
i=1 ψ̄iΓψi. For i 6= j, ψ̄iγ

5ψiψ̄jγ
5ψj is ruled out by invariance under P (or C)

of any single field ψi, and thus
(∑N

i=1 ψ̄iγ
5ψi

)2
is ruled out. Likewise, ψ̄iγ

µψiψ̄jγµψj (i 6= j) and

consequently
(∑N

i=1 ψ̄iγ
5ψi

)2
are ruled out.

We conclude that the only four-fermion operator (without derivatives) in the effective field
theory is (

∑N
i=1 ψ̄iψi)

2.
Each extra derivative or factor of ψ̄Γψ in an operator will increase its mass dimension by one;

correspondingly, it will be suppressed by an extra power of a. We therefore conclude that no
new unsuppressed operators are induced in the effective field theory. The spatial derivative in the
continuum theory is approximated by a difference operator, with an error of order a, and the Wilson
term is also formally of order a. Spatial discretization errors are hence of order a.

5.2 Mass Renormalization

In this subsection, we calculate the renormalized (or physical) mass of the discretized theory, using
second-order perturbation theory. A convenient way to obtain a suitable expression is to use a
partially renormalized form of perturbation theory (as was done in [8]), in which one uses the bare
coupling but the renormalized mass.

5In fact, the massive Gross-Neveu model has an O(2N) symmetry.
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To perform perturbative calculations, we need the Feynman rules for the discretized theory.
The propagator is

=
γµp̃µ + m̃(p)

p̃2 − m̃(p)2
, (120)

where

p̃µ =

(
p0,

1

a
sin(ap1)

)
, m̃(p) = m+

2r

a
sin2

(
ap1

2

)
. (121)

For convenience, we use the standard technique of introducing an auxiliary field σ and rewrite the
Lagrangian as

L = L0 + Lσ , (122)

where L0 is the discretized free Lagrangian and

Lσ = −1

2
σ2 − gσψ̄jψj . (123)

The corresponding Feynman rules are

= −i , = −ig . (124)

At one-loop order,

− iM(p) = + , (125)

where the second diagram is the counterterm.
The first diagram gives

= −g20
∫ ∞

−∞

dk0

2π

∫ π/a

−π/a

dk1

2π

γµk̃µ + m̃(k)

k̃2 − m̃(k)2
(126)

=
ig20
4πa

∫ π

−π
dk1

ma+ 2r sin2
(
k1

2

)
√

sin2 k1 +
(
ma+ 2r sin2

(
k1

2

))2 . (127)

The term in (127) proportional to r scales as 1/a and gives the mass correction to the doubler
(spurious fermion). The term proportional to m gives the following:

m0 = m− g20m

2π
log(ma) + · · · . (128)

At two-loop order, the 1PI amplitude has the additional contributions

+ + + .

The renormalization condition satisfied at first order implies that the first two diagrams cancel.
The last two diagrams give

= − ig40
16π3

(
mI

(a)
1 +

1

a
I
(b)
1

)
(129)
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and

=
ig40N

16π3

(
mI

(a)
2 +

1

a
I
(b)
2

)
, (130)

where I
(a)
1 , I

(b)
1 , I

(a)
2 and I

(b)
2 are given in Appendix B. Numerical evaluation of these integrals

reveals the forms

I
(b)
i = c(b1) − c(b2)ma+ · · · , (131)

I
(a)
i = c

(a1)
i log2(ma)− c

(a2)
i log(ma) + c

(a3)
i + · · · , (132)

with c
(j)
i > 0. We thus obtain

m = m(1) − g40m
(1)

16π3
(
Nc

(a1)
2 − c

(a1)
1

)
log2(m(1)a) + · · · , (133)

where m(1) denotes the physical mass at one-loop order.
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A Variance of Local Charge

Consider Q̃
(f)
j in the continuum limit:

Q̃
(f)
j =

∫
dxJ

(0)
j (x)f(x) . (134)

We wish to compute its variance, which is given by

〈(
Q̃

(f)
j −

〈
Q̃

(f)
j

〉)2〉
=

∫
dxdyf(x)f(y)

(
〈J (0)

j (x)J
(0)
j (y)〉 − 〈J (0)

j (x)〉〈J (0)
j (y)〉

)
(135)

=

∫
d2k

(2π)2
|f̃(k)|2G̃c(k) , (136)

where Gc is the connected Green’s function. By standard quantum field-theoretical methods, we
obtain

G̃c(k
0, k1) = 2i

∫ 1

0
dx

∫
d2pE
(2π)2

m2 − x(1− x)((k0)2 + (k1)2)

[p2E +m2 − x(1− x)((k0)2 − (k1)2)]2
, (137)

=
i

2π

∫ 1

0
dx

m2 − x(1− x)((k0)2 + (k1)2)

m2 − x(1− x)((k0)2 − (k1)2)
. (138)

Substituting G̃c into (136) and using an ultraviolet regulator, we obtain

〈(
Q̃

(f)
j −

〈
Q̃

(f)
j

〉)2〉
=

1

(2π)2

∫
dk1|f̃(k1)|2

∫ 1

0
dx

(k1)2√
(k1)2 + m2

x(1−x)

. (139)

For the square window function f(x) = θ(R/2− |x|), the charge fluctuation diverges, but only
logarithmically, with

〈(
Q̃

(f)
j −

〈
Q̃

(f)
j

〉)2〉 ≤ 2

π2
(
log(2π) − 1− log(ma)

)
+O((ma)2) . (140)

For f(x) = exp(−x2/R2),

〈(
Q̃

(f)
j −

〈
Q̃

(f)
j

〉)2〉
=

√
2π3/2

32

1

mR
+ . . . . (141)
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B Integrals for Mass Renormalization

For i = 1, 2,

I
(a)
i =

∫∫∫ 1

0
dx dy dz

δ(x + y + z − 1)√
xy + xz + yz

∫ π

−π
dk

∫ π

−π
dq

(
N

(a1)
i

2(xy + xz + yz)2D
+
N

(a2)
i

D2

)
, (142)

I
(b)
i = r

∫∫∫ 1

0
dx dy dz

δ(x+ y + z − 1)√
xy + xz + yz

∫ π

−π
dk

∫ π

−π
dq

(
N

(b1)
i

2(xy + xz + yz)2D
+
N

(b2)
i

D2

)
, (143)

where

D = x
[
sin2(k) +

(
ma+ 2r sin2

(k
2

))2]
+ y
[
sin2(q) +

(
ma+ 2r sin2

(q
2

))2]
(144)

+z
[
sin2(q − k) +

(
ma+ 2r sin2

(q − k

2

))2]
− xyz

xy + xz + yz
(ma)2 ,

N
(a1)
1 = x2y − xy2 + x2z + 4xyz − y2z + xz2 + yz2 , (145)

N
(a2)
1 = 4f3r

2 sin2
(k
2

)
sin2

(k − q

2

)
+ f3 sin(k) sin(k − q) + 4f2r

2 sin2
(k
2

)
sin2

(q
2

)
(146)

+4f1r
2 sin2

(k − q

2

)
sin2

(q
2

)
− f2 sin(k) sin(q) + f1 sin(k − q) sin(q)

+2(ma)r
(
f2f3 sin

2
(k
2

)
+ f1f3 sin

2
(k − q

2

)
+ f1f2 sin

2
(q
2

))
+ (ma)2f1f2f3 ,

f1 =
xy + xz + 2yz

xy + xz + yz
, f2 =

2xy + xz + yz

xy + xz + yz
, f3 =

xy + xz

xy + xz + yz
,

N
(b1)
1 = x2y − xy2 + x2z + xyz − y2z + xz2 + yz2 (147)

−(xy + xz + yz)(x cos(k)− y cos(q) + z cos(k − q)) ,

N
(b2)
1 = 8r2 sin2

(k
2

)
sin2

(k − q

2

)
sin2

(q
2

)
+ 2 sin(k) sin(k − q) sin2

(q
2

)
(148)

−2 sin(k) sin2
(k − q

2

)
sin(q) + 2 sin2

(k
2

)
sin(k − q) sin(q) ,

N
(a1)
2 = 4z(xy + xz + yz) , (149)

N
(a2)
2 = −(ma)2

(xyz)2

(xy + xz + yz)3
− (ma)

xyz2
(
ma+ 2r sin2

(
k−q
2

))

(xy + xz + yz)2
(150)

+
2xy + xz + yz

xy + xz + yz

((
ma+ 2r sin2

(k
2

))(
ma+ 2r sin2

(q
2

))
− sin(k) sin(q)

)

+2r sin2
(k − q

2

)(
ma+ 2r

(
sin2

(k
2

)
+ sin2

(q
2

)))
,

N
(b1)
2 = 2z(xy + xz + yz) sin2

(k − q

2

)
, (151)

N
(b2)
2 = 2 sin2

(k − q

2

)(
4r2 sin2

(k
2

)
sin2

(q
2

)
− sin(k) sin(q)

)
. (152)
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