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Abstract
This paper reports the results of theSHREC’14 track: Retrieval and classification on textured 3D models, whose
goal is to evaluate the performance of retrieval algorithms when models vary either by geometric shape or texture,
or both. The collection to search in is made of 572 textured mesh models, having a two-level classification based
on geometry and texture. Together with the dataset, a training set of 96 models was provided. The track saw
eight participants and the submission of 22 runs, to either the retrieval or the classification contest, or both. The
evaluation results show a promising scenario about textured 3D retrievalmethods, and reveal interesting insights
in dealing with texture information in the CIELab rather than in the RGB colour space.

Categories and Subject Descriptors(according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods;

Introduction

The aim of SHREC is to evaluate the performance of existing
3D shape similarity methods, by highlighting their strengths
and weaknesses, using a common test collection allowing
for a direct comparison of methods. In this report the results
of the SHREC’14 track:Retrieval and Classification on Tex-
tured 3D Modelsare presented. The aim of the track is to
assess the performance of retrieval algorithms when models
vary either by geometric shape or texture, or both. The track
extends the analogous SHREC’13 track [CBA∗13] in terms
of the number of models and the type of geometric and tex-
ture deformations considered, and also for the existence of a
training set for learning-based methods. The dataset is built

† Organizer of the track. Dataset and evaluation measures are avail-
able athttp://wwww.ge.imati.cnr.it/shrec14.

from a set of null textured models, by randomly selecting
and coupling geometric and texture perturbations. Geomet-
ric perturbations include noise and model re-sampling, non-
rigid and non-isometric deformations; texture perturbations
include non-uniform transformation of the RGB channels.

1. Data Collection and Queries

The dataset is made of 572 watertight mesh models, grouped
in 16 geometric classes. Each class but one is obtained
from 12 null models, corresponding to 4 base meshes en-
dowed with 3 different textures. Then, 2 transformations
are applied to each null shape, each one randomly com-
bining a geometric deformation (a re-sampling, the addition
of Gaussian noise, an affine deformation, a non-rigid and
a non-isometric deformations) with a texture one (lighten-
ing/darkening, topological deformations in the texture pat-
terns, affine transformations in the RGB channels), for a to-
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2 S. Biasotti et al. / Retrieval on textured models

tal of 36 models. The last class contains 32 shapes, built on
top of 8 null models by applying 3 deformations each.

An alternative dataset classification my be provided
by grouping models according to texture, resulting in 13
classes. Some samples from the dataset are given in Figure1.

The two contests.We distinguished between two contests,
retrieval and classification; participants could opt to take part
in both retrieval and classification, or only one of the two
challenges. Prior to the publication of the dataset, a training
set made of 96 models classified according to both geome-
try (16 classes) and texture (13 classes) was published. Each
participant was asked to submit up to 3 runs for each contest
(s)he intended to take part in, each run being either the result
of a different algorithm, or of a different parameter setting.
Also, the executable/source code used to produce the sub-
mitted runs was required.

Retrieval contest:Each model is used as a query against the
rest of the dataset, with the goal of retrieving the most sim-
ilar objects. In particular, two models are consideredhighly
similar if they share both geometry and texture; they are
marginally similar is they share only geometry; otherwise,
they are dissimilar. For this track, a dissimilarity matrix
(572x572) was requested, each element(i, j) being the dis-
similarity value between modelsi and j in the whole dataset;

Classification contest:The goal is to assign the query to
its class. In this case, two different classification matrices,
one for the geometric and one for the texture classification
were required, being each class one of those specified in
the training set release. In each matrix, the element(i, j) is
the probability that modeli belongs to classj. Participants
to the retrieval task could participate also to the classifica-
tion one with the nearest neighbor (1-NN) classifier derived
from their dissimilarities matrices. In this case the element
(i, j) = 1 if i is classified in classj and 0 otherwise.

2. Participants

Eight groups† took part in this Shrec track:

1. M. Abdelrahman, M. El-Melegy and A. Farag (Uni-
versity of Louisville, USA) participated with two runs
(AEF1, AEF2) in both the retrieval and the classification
task. Their method is detailed in Section3.1;

2. V. Garro and A. Giachetti (University of Verona, Italy),
participated with three runs (GG1, GG2, GG3) in both
the retrieval and the classification task. Their method is
detailed in Section3.2;

3. H. Y. Martono and M. Aono (Toyohashi University of
Technology, Japan) participated with three runs (HA1,
HA2, HA3) in the retrieval task, and with a further run

† Research groups 3 and 4 could not provide any part of the code
producing the submitted results.

(HAc) in the classification task. Their method is detailed
in Section3.3;

4. C. Li, A. Godil (NIST, USA) and A. Ben Hamza (Con-
cordia University, Canada) participated with three runs
(LBG2, LBG3, LBG4) in the retrieval task, and with two
further runs (Lc1, Lc2) in the classification task. Their
method is detailed in Section3.4;

5. A. Tatsuma, M. Aono, C. Sanada (Toyohashi University
of Technology, Japan) participated with runTA in the re-
trieval task. Their method is detailed in Section3.5;

6. S. Velasco-Forero (National University of Singapore,
Singapore) participated with three runs (Ve1, Ve2, Ve3)
in the retrieval task. His method is detailed in Section3.6;

7. C.-X. Xu, and Y.-J. Liu (Tsinghua University, the Peo-
ple’s Republic of China) participated with runXL in the
retrieval task. Their method is detailed in Section3.7;

8. D. Giorgi (CNR, Italy) participated with three runs (Gi1,
Gi2 andGi3) in both the retrieval and the classification
task. Her method is detailed in Section3.8;

3. Description of the methods

In this section we describe all the proposed methods.

3.1. Textured 3D models Classification using Scale
Invariant Heat Kernels (M. Abdelrahman,
M. El-Melegy, A. Farag)

RunsAEF1 andAEF2 rely on a combined shape description
made of a geometric and a photometric contribution.

Geometry descriptor. For shape geometry description we
present an approach based on scale invariant heat kernel sig-
nature (SI-HKS). Sun et al. [SOG09] proposed to use the
heat kernel signature as a local shape descriptor

h(x, t) = Ht(x) =
∞

∑
i=1

e−λi tϕ2
i (x),

where λi and ϕi are the eigenvalues and eigenfunctions
of the Laplace-Beltrami operator, respectively. The HKS
has several desired properties [SOG09]: it is intrinsic and
thus isometry-invariant (two isometric shapes have equal
HKS), multi-scale and thus captures both local features and
global shape structure, and also informative: under mild con-
ditions, if two shapes have equal heat kernel signatures,
they are isometric. The proposed descriptor is based on a
Bag-of-Feature representation of the HKS in frequency do-
main combined with the first 15 normalized eigenvalues of
the Laplace-Beltrami operator. These eigenvalues have been
proposed by Reuter et al. [RWSN09] as intrinsic shape de-
scriptors (shape-DNA).

Scale invariance is a desirable property of the shape de-
scriptor, which can be achieved by many ways. We propose
a local scale normalization method based on simple opera-
tions. It was shown [BBGO11] that scaling a shape by a fac-
tor β results in changingh(x, t) to β2h(x,β2t). To deal with
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Figure 1: Some models in the dataset. Null models have been processed using MeshLab [Vis] and Remesh [AF06].

this problem, we propose here to apply the Fourier trans-
form (FT) as follows: taking the amplitude of the FT, the
effect of the multiplicative constantβ2 is eliminated by nor-
malizing |H′

t (w)| by the sum of the amplitudes of the FT
components. The amplitudes of the first significant FT com-
ponents (we normally use 20) are employed to construct
the scale-invariant shape descriptor. This proposed method
eliminates the scale effect without having to use the noise-
sensitive derivative operation or the logarithmic transforma-
tion that both were used in [BBGO11]. Thus our method
is simpler, more computational-efficient and more robust to
noise. Eventually we use theL1-norm for classification.

Photometric Descriptor. The photometric descriptor is
based on colour histograms, one for colour band (RGB).
We use theL1-norm as a distance measure between colour
histograms. The query colour histogram is rotated to obtain
the minimum distance. Then we get the mean distance mea-
sure for the three bands. The photometric distance measure
is used to re-arrange the retrieval results from the geometric
descriptor to retrieve similar texture objects first.

3.2. Colour Data and (colour-weighted) Histograms of
Area Projection Transform (V. Garro, A. Giachetti)

To compute textured mesh differences we tested two ap-
proaches based on the Histograms of the Multiscale Area
Projection Transform (MAPT) [GL12]. The method is based
on a spatial map that encodes the likelihood of the points in-
side the shape of being centers of spherical symmetry. For
each radius of interestσ, this map is computed as follows:

APT(~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n))),

whereS is the surface of interest,TR(S,~n) is the parallel sur-
face ofS shifted along the normal vector (only in the inner
direction) andkσ(~x) is a sphere of radiusσ centered in the
generic point~x where the map is computed. Values at dif-
ferent radii are normalized in order to have a scale-invariant
behavior, creating the Multiscale APT (MAPT):

MAPT(x,y,z,R,S) = α(R) APT(x,y,z,S,R,σ(R)),

with α(R) = 1/4πR2 andσ(R) = c ·R (0 < c < 1). A dis-
cretized MAPT is easily computed, for selected values of
R, on a voxelized grid including the surface mesh, with the
procedure described in [GL12]. The map is computed in a
grid of voxels with sides on a set of corresponding sam-
pled radius valuesR1, ...,Rn. In the paper it is also shown

that histograms of MAPT computed inside the objects are
very good global shape descriptors, performing very good
results on the SHREC 2011 non-rigid watertight contest data
[LGB∗11]. For that recognition task, discrete MAPT maps
were quantized in 12 bins and histograms computed at the
different scales (radii) were concatenated creating an unique
descriptor. Voxel side and sampled radii were chosen dif-
ferently for each model, proportionally to the cubic root of
the object volume, in order to have the same descriptor for
scaled versions of the same geometry.c was always taken
equal to 0.5. To compare textured meshes we modified the
method in two ways as follows.

Histograms of Area Projection Transform and colour
Data. We computed the MAPT histograms with the same
radii and sampling grids values as in [GL12]: the isotropic
sampling grid is taken as being proportional to the cubic root
of the volume of each model (s= cbrt(V)/30), and the sam-
pled radii are integer multiples ofs (10 values from 2s to
11s). The radiusσ is taken, as in the original paper, equal
to R/2 for all the sampledR. Furthermore, we computed for
each mesh the histograms of colour components in CIELab
space. The colour quantization is set to 4 bins for the light-
ness componentL∗ and 8 bins for both the cromaticity val-
uesa∗ andb∗, obtaining for each shape a histogram of size
4×8×8. With this procedure each mesh is described by two
histograms, the first one representing the geometric informa-
tion and the second one representing the texture information.
The total dissimilarity between two meshes is computed us-
ing a convex combination of the two histogram distances:

D(mi ,mj ) = γ d j (mi ,mj )+(1− γ)dc(mi ,mj )

where 0≤ γ ≤ 1, d j (mi ,mj ) is the normalized Jeffrey di-
vergence between the two MAPT histograms of meshesmi
and mj and dc(mi ,mj ) corresponds to the normalizedχ2-
distance of the two CIELab colour histograms. The runs
GG1 andGG2 are obtained withγ set to 0.4 and 0.6, re-
spectively.

Colour-weighted Histograms of Area Projection Trans-
form. To get runGG3, a new descriptor is constructed by
concatenating to the standard MAPT histograms, other three
similar histograms obtained from colour-weighted MAPT
maps, simply computed multiplying the area contribution
of the surface elements by the red, green and blue compo-
nents respectively (scaled in the range[0,1]). In this way
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also the texture information should be encoded in the de-
scriptor. We set the same radii and sampling parameters as
the method described above, for each radius we now have
4 histograms (1 standard MAPT histogram and 3 colour-
weighted MAPT histograms ) with these choices the final
descriptors of shapes are vectors composed by 480 elements.
The dissimilarity between two meshes is obtained with the
normalized Jeffrey divergence between the two correspond-
ing descriptors.

A weakness of the proposed method, that is common to
the original method, is that histograms do not encode infor-
mation on the relative position of the symmetric parts and on
their number.

3.3. Local texture descriptors(H. Y. Martono, M. Aono)

In our aproach, we have investigated a good combination
of Histogram of Oriented Gradients (HOG) [DT05], Local
Binary Pattern (LBP) [OPM02], Local Ternary Pattern (LTP)
[ZJHM13], and Weber Local Descriptor (WLD) [CSH∗10].

As pre-processing, we apply pose normalization [TA09]
and generate multiple colour shaded images for texture fea-
tures by using jrman [jrm], where we take the rotation an-
gles of -90, -45, +45, +90 on each axisx, y, z plus original
pose to obtain shade images from 13 different views in total.
On the other hand, for shape features we generate Fourier
spectra from MFSD [TA09] for each 3D object. After pre-
processing, we apply Gabor filters to the images, attempting
to sharpen the texture difference. RGB channels are sepa-
rated after filtering. For each colour channel, we extract fea-
tures based on LPB, LTP, WLD, and HOG respectively.

In this event 3 run methods are proposed: HOG is com-
bined in turn with LPB (runHA1), LTP (runHA2) and WLD
(runHA3). All methods are sketched in Figure2.

off

p
o
s
e
 n

o
rm

a
liz

a
ti
o
n
,

re
n
d
e

ri
n
g

Gabor filter

LBP LTP

WLD HOG

P
C

A

(d
im

e
n
s
io

n
 r

e
d
u
c
ti
o
n
)

1
3
 i
m

a
g

e
s

fr
o
m

 1
3
 v

ie
w

s

..
.

..
.

LBP based 

LTP based

WLD based

HOG based

features:

Figure 2: Flow feature extraction process.

LBP is a powerful feature for texture classification. The
basic idea for developing the LBP operator was that 2-
dimensional surface textures can be described by two com-
plementary measures: local spatial patterns and colour con-
trast. The original LBP operator form labels for the image
pixels by thresholding the 3×3 neighborhood of each pixel
with the center value and considering the result as a binary
number. At this time, we use another extension of the orig-
inal operator called LBP uniform pattern. In this method,

there are a total of 256 patterns, 58 of which are uniform,
which yield in 59 different labels.

LTP is an extension of LBP. Unlike LBP, it does not
threshold the pixels into 0 and 1, rather it uses a threshold
constant to threshold pixels into three values.

WLD is also a very powerful and robust local descrip-
tor, consisting of two components: differential excitation and
orientation. It is computed based on the ratio between the
two terms: one is the relative intensity differences of a cur-
rent pixel against its neighbor (3×3); the other is the inten-
sity of the current pixel.

HOG is a feature descriptor counting the occurrences of
gradient orientation in localized portions of an image. By us-
ing this descriptor, local object appearance and shape within
an image can be described by the distribution of intensity
gradients or edge direction. The implementation of these de-
scriptors can be achieved by dividing the image into small
connected regions called cells, and for each cell compiling a
histogram of gradient directions or edge orientation for the
pixels within the cells.

3.4. Spectral geometry based methods for textured 3D
shape retrieval(C. Li, A. Godil, A. Ben Hamza)

We use the spectral geometry based framework in [Li13] for
textured 3D shape representation and retrieval. This frame-
work is based on the eigendecomposition of the Laplace-
Beltrami operator (LBO), which provides a rich set of eigen-
bases that are invariant to isometric transformations. It con-
sists of two main stages: (1) feature extraction. We use spec-
tral graph wavelet signature [LH13b] to capture geometry in-
formation, and colour histogram for texture information; (2)
spatial sensitive shape comparison via intrinsic spatial pyra-
mid matching [LH13a]. The cotangent weight scheme was
used to discretize LBO. The eigenvaluesλi and associated
eigenfunctionsϕi can be computed by solving the general-
ized problemCϕi = λiAϕi , i = 1,2, . . . ,m, whereA is a
positive-definite diagonal area matrix andC is a sparse sym-
metric weight matrix. We setm= 200 in our experiments.

Feature extraction. The first stage consists of the compu-
tation of an informative descriptorh(x) at each vertex of the
triangle meshed shapeX. We use spectral graph wavelet sig-
nature [LH13b] to capture geomtery information, and colour
histogram for texture information.

Geometry information.In general, any one of spectral
descriptors with the eigenfunction-squared form reviewed
in [LH13c] can be used in our spatial partition context for
isometric invariant representation. We used the recently pro-
posed spectral graph wavelet signature (SGWS) as the lo-
cal descriptor; it provided a general and flexible interpre-
tation for the analysis and design of spectral descriptors
SX(t,x) = ∑m

i=1 g(t,λi)ϕ2
i (x). In a bid to capture the global

and local geometry, a multi-resolution shape descriptor was
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obtained by settingg(t,λi) as a cubic spline wavelet generat-
ing kernel and considering the scaling function (cf. [LH13b,
Eq. (20)] for a precise formulation ofg). The resolution level
is set as 2. With a dictionary learned byk-means, the de-
scriptorS= {st , t = 1,2, . . . ,T} at each point of the shape
is replaced by the Gaussian kernel based soft assignment
Q= {qk, k= 1,2, . . . ,K}. k= 100 in our experiment.

Texture information.We simply choose colour histogram
(CH) to characterize texture information on the surface.
Each channel is discretized into 5 bins.

Intrinsic spatial pyramid matching. Any function f on X
can be written as the linear combination of the eigenfunc-
tions. Using the variational characterizations of the eigenval-
ues in terms of the Rayleigh-Ritz quotient, the second eigen-
value is given by

λ2 = inf
f⊥ϕ1

f ′C f
f ′A f

.

We use the isocontours of the second eigenfunction (Fig-
ure3) to cut the shape intoR patches, thus the shape descrip-
tion is the concatenation ofR sub-histograms of SGWS and
CH along eigenfunction value in the real line. To consider
the two-sign possibilities in the concatenation, we invert the
histogram order, and consider the scheme with the minimum
cost as a better matching. The second eigenfunction is the
smoothest mapping from the manifold to the real line, re-
sulting in this intrinsic partition quite stable. It provably ex-
tends the property of popular SPM in image domain to cap-
ture spatial information for meshed surfaces, so is referred
as intrinsic spatial pyramid matching (ISPM) in [LH13a].

Figure 3: The isocontours of the second eigenfunction.

The partition resolution level is set as 5 (R= 16 patches) in
this contest. Therefore, the description power of SGWS and
CH is enhanced by incorporating this spatial information. Fi-
nally, we get ISPM induced histograms for shape represen-
tation. The dissimilarity between two shapes is computed as
theL2 distance. We manipulate geometry and texture infor-
mation seperately to obtain one dissimilarity matrix for each.
RunLBG3 represents spatial partition level 1 (1 patch), runs
LBG2 andLBG4 represents spatial partition level 5 (the lat-
ter is a weighted sum of geometric and texture contribution,
with coefficients 0.8 and 0.2, respectively). In classification,
the distance between query and class is represented as the
minimum distance between the query and instances in the
class. The distance is then transformed to similarity via an

exponential kernel. The label probability is obtained by nor-
malizing the similarity withL1 norm (RunLc1 andLc2 rep-
resents spatial partition levels 1 and 5, respectively).

Running time. The method is implemented in MATLAB.
The time consuming steps are the computation of LBO and
k-means dictionary learning. For a mesh with 14,000 ver-
tices, it takes 7.7 seconds to compute the LBO. To learn a
dictionary with 100 geometric words, it takes 14 minutes.

3.5. Multiresolution Representation Local Binary
Pattern Histograms (A. Tatsuma, M. Aono, C. Sanada)

RunTA is based on the Multiresolution Representation Lo-
cal Binary Pattern Histograms (MRLBPH), a new 3D model
feature that captures textured features of rendered images
from 3D model by analyzing multiresolution representations
using Local Binary Pattern (LBP) [OPH96].

Figure 4 illustrates the generation of our proposed
MRLBPH feature. We enclose the 3D model within a unit
geodesic sphere after normalizing the 3D model via Point
SVD [TA09]. From each vertex of the unit geodesic sphere,
we render depth and colour buffer images with 256× 256
resolution; a total of 38 viewpoints are defined. We process
a depth channel and each channel of the RGB colour space as
described below.To obtain multiresolution representations,
we apply a Gaussian filter with varying scale parameters to
an image. In our implementation, we select 3, 7, 11, 19, and
43 for the scale parameters. For each scale image, we cal-

R

G

B Max3D model

Depth images Local binary pattern 

histograms

Multiresolution

Representations

MRLBP

histogram

...

...

...

...

RGB images

Figure 4: Overview of our Multiresolution Representation
Local Binary Pattern Histograms (MRLBPH)

culate an LBP histogram. Letgc denote the image value at
arbitrary pixel(x,y), and letg1, . . . ,g8 be the image values
of each of the eight neighborhood pixels. The LBP value is
then calculated as

LBP(x,y) =
8

∑
i=1

s(t,gi −gc) ·2
i−1,

wheres(t,g) is a threshold function defined as 0 ifg < t
and 1 otherwise. In our implementation, we set the threshold
valuet to 0, and quantize LBP values into 64 bins. To incor-
porate spatial location information, we partition the image
into 2× 2 blocks and calculate the LBP histogram at each
block. The LBP histogram of each scale image is obtained
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by concatenating the histograms of these blocks. We merge
the histograms of the scale images by selecting the maxi-
mum value of each histogram bin.

For each viewpoint, an MRLBP histogram is obtained by
concatenating the histograms of depth and colour buffer im-
ages and then normalized byL1 normalization.

To compare two 3D models, we apply the Hungarian
method [Kuh55] to all pair dissimilarities between their
MRLBP histograms. To calculate the dissimilarity between
two histogramsa andb with n bins, we use Jeffrey’s diver-
gence defined as

d(a,b) =
n

∑
i=1

(

ai log
ai

mi
+bi log

bi

mi

)

,

wheremi = (ai +bi)/2.

3.6. Colour + Shape descriptors(S. Velasco-Forero)

The proposed method is a modification of the 3D Shape +
colour descriptor proposed in [CBA∗13]. We make use of
two main components of the textured shape.

1. First, we compute the geodesic distance matrix in the
mesh information [SSK∗05], denoted byG. Following
the same intuition than in [SFH∗09] we use a spec-
tral representation of the geodesic distance as descrip-
tor. However, we have used a centralised geodesic matrix
[MSS∗99], defined as follows,D = G− 1NG−G1N +
1NG1N where1N denotes aN by N matrix that for each
component takes value 1/N andN is the number of ver-
tices in the mesh. As in [CBA∗13], the first 40 eigenvalue
are used as shape descriptor. This vector of eigenvalues is
denoted byλ(D). Many distances can be computed from
two shapes fromλ(Di) andλ(Dj ) [SFH∗09]. However,
we have followed the recommendation on [SFH∗09] by
using themean normalized Manhattan distance, i.e.,

Deig(Si ,Sj )) =
40

∑
k=1

2|λk(Di)−λk(Dj )|

λk(Di)+λk(Dj )
.

2. Second, we incorporate texture information in the shape
descriptor. From [CBA∗13], histograms of colour infor-
mation in RGB space have shown good performance as
texture descriptor. Accordingly, we define the distance
from the colour representation by

DRGB(Si ,Sj )) = ∑
k=R,G,B

EMD(hist(Sk
i ),hist(S

k
j ))

3
,

whereEMD denotes the Earth mover’s distance between
the histogram in the colour space. In our experiments, we
have used the fast implementation provided by [PW09].

3. Finally, for a given couple of textured shapes, the pro-
posed distance is computed as follows:

D(Si ,Sj ) = (DRGB(Si ,Sj ))
1−p+(Deig(Si ,Sj ))

p,

wherep is a parameter to control the trade-off between

Mesh information
Geodesic distance

G

Eigenvalues

Original textured mesh
S

Colour information RGB Histogram
hist (S)

(D)λk

Figure 5: Proposed method includes a shape descriptor
from the geodesic distance matrix and a colour descriptor
from the histogram representation of RGB colour informa-
tion. Details are included in section3.6.

colour and shape information. In the experiment,p =
0.7 (run Ve1), 0.8 (run Ve2), 0.95 (run Ve3), in accor-
dance with the intuition that geometry is more important
than colour in how humans interpret shape similarity. A
scheme of the proposed descriptors is shown in Fig.5.

3.7. Measuring Distance between 3D Models Based on
Geometry and colour Features(C.-X. Xu, Y.-J. Liu)

There are serveral categories of retrieval methods based on
the input, including keywords, 2D images and 3D models
[LZL∗12]. [LLJ∗13] and [LFLF12] propose a sketch-based
method, which belongs to the 2D image manners but applies
to some specific cases such as 3D CAD design process.

Since the input here is 3D models, we use a method simi-
lar with the one proposed in [LZL∗12], using geodesic dis-
tance to replace simple Euclidean distance. We sample the
model on its surface inN-dimensional space(N > 3), which
includes both geometric and textural information, then these
sampling points are optimally clustered. A generally defined
geodesic distance is computed among the points, and we
can get the shape distribution of the model. By comparing
the shape distributions we get the dissimilarity between two
models, resulting in runXL .

Extend Geodesic toN-dimension. We extend the con-
cept of geodesic toN-dimension(N > 3) by constructing
the model as follows: if a model is constructed in aN-
dimensional space(N ≥ 1) where the metric between any
two points are defined (such asL2 norm), then the edge
lengths follows the metric definition while other topologi-
cal relationships (such as connections between vertices) are
kept the same.

In this case, a tuple(x,y,z, r,g,b,a) is used to represent
a vertex wherex, y z are its 3D coordinates andr, g, b, a
are its colour components. For each edge, theL2 norm dis-
tance between the two endpoints (vertices) are calculated as
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its length. Thus we get a model which has the same connec-
tions between vertices in a higher dimension(N = 7).

We use a window-propagation based method to calculate
the geodesic distance between any two points on the surface
of a model, see [Liu13] for details. Since this algorithm is
based on the unfolding of faces, the calculation of geodesic
remains mostly the same with colour information included
in a high dimension space.

Construct and Compare Shape Distribution. The main
procedure of our method is as follows: We sample points
on the surface of the model in the constructed 7-dimensional
space. These sampling points are clustered using a modified
ISODATA algorithm. Lastly, we calculate the feature his-
togram of each model using these clustered sampling points,
and we can get a shape distribution for each model. See more
details in [LZL∗12].

Suppose that for a model there arec clusters andFi is
the set of feature points in theith cluster withni points. For
each pointfip ∈ Fi and f jq ∈ Fj , we compute the geodesic
distancedip jq = ‖ fip − fiq‖, where i 6= j, i, j = 1,2, ...,c,
p = 1,2, ...,ni , q = 1,2, ...,n j , and store all the distances in
an arrayD. Then we convert the normalized arrayD into a
histogram and a shape distribution for each model is con-
structed.

There are some ways mentioned in [OFCD01] to mea-
sure the difference between shape distributions. In our ex-
periment, we choose the MinkowskiL2 norm of the proba-
bility density functions to measure the shape distributions,
i.e.D( f ,g) =

√∫
| f −g|2, which is obviously a metric.

Since the probability density function is represented by
the shape distribution generated above (combined with an-
other parameter to create different levels of approaching,
see details in [OFCD01]), the function is piecewise linear,
which leads to a direct calculation of a second (or first) de-
gree polynomial and is easy to implement.

3.8. Textured shape distribution, joint histograms and
persistence(D. Giorgi)

Run Gi1. The Textured Shape Distribution (TSD) de-
scriptor is a variant on classical Shape Distributions (SD)
[OFCD01]. TSD consists of the distribution of colour-aware
geodesic distances computed between points sampled over
the surface mesh representing the 3D model.

First, the surface mesh is embedded in the three-
dimensional CIELab colour space, so that the coordinates
of the vertices are (L,a,b), where L specifies luminosity
and a, b specify colour. The length of an edge is the dis-
tance between its endpoints, namely, the CIE94 distance
defined for CIELab coordinates [Fai05]. Then, the colour-
aware geodesic distances are computed in the embedding
space with the metric induced by the CIE94 distance. The

use of the CIELab space rather than the RGB space for rep-
resenting colour is suggested by the fact that CIELab is a
perceptually uniform space, that is, uniform changes of coor-
dinates in the CIELab space correspond to uniform changes
in the colour perceived by the human eye. The use of the
CIE94 distance instead of a classical Euclidean distance is
also aimed at respecting perceptual uniformity.

TSD encodes the distribution of colour distances, yet it
also takes into account the connectivity of the underlying
model, as distances are computed by walking on the surface
model. In this sense, TSD can be considered as an hybrid
descriptor, taking into account both colorimetric and geo-
metric information. In the current implementation, a set of
1024 points was sampled over each surface model follow-
ing a farthest-point criterion. The colorimetric geodesic dis-
tances between pairs of samples were computed following
the Dijkstra algorithm . The distribution of these distances
was discretized using a histogram of 64 bins. Histograms
were compared using theL2 norm.

Run Gi2. Since TSD does not take into account the length
of edges in the Euclidean space, it loses part of the geometric
information. This information can be added through a joint
distribution of colorimetric geodesic distances and classical
geodesic distances computed on the surface embedded in the
Euclidean space. In this run, a 16×16 bi-dimensional, joint
histogram (JH) was computed for each 3D model. TheL2
norm was used for comparison. The distance matrix is the
sum of the distance matrix obtained using the TSD descrip-
tor and the distance matrix obtained using the JH descriptor.

Run Gi3. AS TSD can be seen as an hybrid descriptor, it
makes sense to combine it with a purely geometric descrip-
tor and a purely colorimetric descriptor, in line with what
proposed in [BCGS13]. Hence Run Gi3 combines TSD with
the popular Spherical Harmonic (SH) descriptor [KFR03],
and the persistence-based purely colorimetric descriptor of
the PHOG signature in [BCGS13], which computes persis-
tence spaces based on the coordinates in the CIELab colour
space. The distance matrix corresponding to this run is the
sum of the three distance matrices obtained using the TSD
descriptor, the SH descriptor, and the persistence-based de-
scriptor of PHOG, respectively.

4. Evaluation measures and results

Retrieval performance measures.The retrieval perfor-
mance of each submitted run has been evaluated according
to the following relevance scale: If a retrieved object shares
both shape and texture with the query, then it is highly rele-
vant; if it shares only shape, it is considered marginally rel-
evant; otherwise, it is not relevant. The evaluation process
has been based on the following evaluation measures: Av-
erage precision-recall curves, Nearest Neighbor (NN), First
Tier (FT), Second Tier (ST), Normalized Discounted Cumu-
lated Gain (NDCG) and Average Dynamic Recall (ADR).
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Note that, because of the multi-level relevance assessment
of each query, most of the evaluation measures have been
split up as well. “Highly relevant” evaluation measures re-
late to the highly relevant items only, while “relevant” eval-
uation measures are based on all the relevant items (highly
relevant items + marginally relevant items). We provide a
brief explanation of each evaluation measure, together with
the associated evaluation results. The runs of all the track’s
participants are labeled as specified in Section2.

Average precision-recall curves.Precision is the fraction
of retrieved items that are relevant to the query. Recall is the
fraction of the items relevant to the query that are success-
fully retrieved. BeingA the set of all the relevant objects and
B the set of all the retrieved object,

Precision=
|A∩B|
|B|

, Recall=
|A∩B|
|A|

.

Plotting the two quantities in the reference frame recall vs.
precision, we get a curve: The larger the area below such a
curve, the better the performance under examination. In par-
ticular, the precision-recall curve of an ideal retrieval system
would result in a constant curve equal to 1. For each query,
we thus have a precision-recall curve. By taking the aver-
age on all the queries, we get the average precision-recall
curve. Figure6 shows the performances of the best run for
each participant with respect to the average precision-recall
curve, both “relevant” and “highly relevant”.

Nearest Neighbor, First tier and Second tier.These eval-
uation measures aim at checking the fraction of models in
the query’s class also appearing within the topk retrievals.
Specifically, for a class with|C| members,k= 1 for the near-
est neighbor (NN),k = |C| − 1 for the first tier (FT), and
k = 2(|C| −1) for the second tier (ST). The final score, al-
ways ranging in[0,1], is an average over all the models in the
database. Table1 reports the performances for all the runs
according to these measures, with respect to the “relevant”
and “highly relevant” classifications.

Average dynamic recall.The idea is to measure how many
of the items that should have appeared before or at a given
position in the result list actually have appeared. The average
dynamic recall (ADR) at a given position averages this mea-
sure up to that position. Precisely, for a given query letA be
the set of highly relevant classified items, and letB be the set
of relevant items. ObviouslyA ⊆ B. The ADR is computed
as:

ADR =
1
|B|

|B|

∑
i=1

r i

i
,

wherer i is defined as

r i =

{

|{highly relevant items in the firsti retrieved items}|
i , if i ≤ |A|;

|{relevant items in the firsti retrieved items}|
i , if i > |A|.

For all participants, the last column of Table1 reports the
ADR measure averaged on all queries.

Relevant Highly Relevant
Run NN FT ST NN FT ST ADR

AEF1 0.732 0.408 0.521 0.098 0.226 0.350 0.205

AEF2 0.735 0.408 0.521 0.123 0.228 0.351 0.207

GG1 0.711 0.240 0.324 0.696 0.404 0.530 0.349

GG2 0.740 0.265 0.365 0.722 0.432 0.557 0.368

GG3 0.822 0.344 0.469 0.665 0.384 0.504 0.336

HA1 0.721 0.271 0.382 0.424 0.265 0.350 0.249

HA2 0.736 0.282 0.387 0.468 0.278 0.362 0.260

HA3 0.737 0.277 0.386 0.462 0.272 0.358 0.257

LBG2 0.841 0.402 0.553 0.676 0.412 0.565 0.353

LNG3 0.804 0.374 0.512 0.512 0.306 0.406 0.280

LBG4 0.909 0.430 0.559 0.394 0.325 0.437 0.284

TA 0.963 0.436 0.562 0.563 0.336 0.456 0.294

Ve1 0.902 0.404 0.512 0.735 0.396 0.540 0.342

Ve2 0.918 0.398 0.499 0.593 0.338 0.469 0.300

Ve3 0.909 0.372 0.469 0.336 0.275 0.369 0.248

XL 0.348 0.175 0.272 0.108 0.149 0.192 0.159

Gi1 0.895 0.259 0.374 0.890 0.324 0.401 0.313

Gi2 0.906 0.280 0.388 0.894 0.366 0.448 0.340

Gi3 0.958 0.383 0.504 0.814 0.455 0.590 0.383

Table 1: Retrieval performances on the whole dataset. For
each evaluation measure, best results are in bold text.

Normalized discounted cumulated gain.It is first conve-
nient to introduce thediscounted cumulated gain (DCG). Its
definition is based on two assumptions. First, highly relevant
items are more useful if appearing earlier in a search engine
result list (have higher ranks); Second, highly relevant items
are more useful than marginally relevant items, which are in
turn more useful than irrelevant items. Precisely, the DCG at
a positionp is defined as:

DCGp = rel1+
p

∑
i=2

reli
log2(i)

,

with reli the graded relevance of the result at positioni. Ob-
viously, the DCG is query-dependent. Therefore, we nor-
malize the DCG to get thenormalized discounted cumulated
gain (NDCG). This is done by sorting elements of a retrieval
list by relevance, producing the maximum possible DCG till
position p, also calledideal DCG (IDCG)till that position.
For a query, the NDCG is computed as

NDCGp =
DCGp

IDCGp
.

In the present evaluation, the NDCG values for all queries
are then averaged to obtain a measure of the average perfor-
mance for each submitted run. Note that for an ideal run, we
would have DCGp = IDCGp and hence NDCG= 1.

Figure 7 shows the performance evaluation for all runs
according to the NDCG measure as a function of the rankp.

Classification performance measures.In the classifica-
tion task, the participants were asked to submit a classi-
fication matrixC, both for geometry and texture: the ele-
mentC(i, j) is the probability that modeli belongs to the
class j. As a performance measure, we consider theclas-
sification rate(CR), i.e. the percentage of models correctly
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Figure 6: Performances of the best run for each participant w.r.t to the averageprecision-recall curve, both relevant and highly
relevant.
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Figure 7: Performances of all the runs w.r.t. the NDCG mea-
sure (runLBG2 is almost totally covered by runGi3).

classified, either for geometry or texture. A score 1.0 means
that every item is correctly classified. For a percentage ma-
trix C, each row is normalized so that maxj C(i, j) = 1. In
caseC is obtained with the 1-NN classifier,C(i, j) is 1 if
model i is classified as belonging to the classj, and 0 oth-
erwise. Then, we consider as classification rate the num-
ber R= 1

N ∑N
i=1C(i,ground(i)), with N the number of ele-

ments in the dataset, andC(i,ground(i)) the “probability”
that modeli is recognized as belonging to its correct class.
Table2 reports the performances of those methods involved
in the classification task.

Run
GCR

GG1
0.710

GG2
0.740

GG3
0.822

TCR 0.937 0.934 0.734

HAc
0.524

Gi1
0.895

Gi2
0.906

Gi3
0.968

0.661 0.906 0.916 0.843

AEF1
0.733

AEF2
0.736

Lc1
0.792

Lc2
0.915

0.128 0.149 0.854 0.911

Table 2: For each involved method, the geometric classifica-
tion rate (GCR) and the texture classification rate (TCR) are
displayed. Best results are in bold text.

5. Discussion and conclusions

In this paper, the SHREC’14 track onRetrieval and Classifi-
cation on Textured 3D Modelsis introduced, whose aim was
to evaluate retrieval algorithms dealing with an emerging
type of content, namely textured 3D objects, which we be-
lieve deserve attention from the research community. Indeed,
the abundance of textured models in Computer Graphics, the
advance in 3D shape acquisition technology which makes it
possible to obtain textured 3D shapes of even moving ob-
jects, the importance of colour features in 3D Shape Anal-
ysis applications, together call for shape descriptors which
take into consideration colorimetric information. This track
extends the SHREC’13 track [CBA∗13] in terms of num-
ber of models considered, of type of deformations (both in
geometry and texture) and performance evaluation (retrieval
and classification).

We believe that the success of this track on textured 3D
model retrieval, which saw the participation of eight research
groups, demonstrated that this field of research is drawing in-
creasing attention. Also, the experimental results offer sev-
eral hints for discussion.

NDCG and ADR provide anoverallevaluation of the pro-
posed methods in interpreting the 2-level classification of
the dataset. On the one hand, the NDCG results in Figure7
show encouraging results from almost all the runs submitted
to the track. On the other hand, the ADR results in Table1
emphasize that the dataset was challenging: even if we ar-
gue that this is in part due to the intrinsic dataset structure,
characterized by highly populated classes, such result also
reveals that there is still a long road ahead in the challeng-
ing field of textured shape analysis. An interesting insight is
offered by the “highly relevant” analysis shown in Tables1
and 2, and Figure6: indeed, very good results were achieved
by those methods dealing with texture information in the
CIELab rather than in the RGB colour space, allowing for
a representation of colour that is more robust to the texture
deformations proposed in this track.
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Finally, we hope this new benchmark may help other re-
searchers improve their techniques, as well as promote fur-
ther investigation on the benchmarking of algorithms dealing
with textured shapes.
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