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Abstract

This paper reports the results of tI®HREC’14 track: Retrieval and classification on textured 3D moddinse
goal is to evaluate the performance of retrieval algorithms when modejseither by geometric shape or texture,
or both. The collection to search in is made of 572 textured mesh modelsghatwo-level classification based
on geometry and texture. Together with the dataset, a training set of 9&lsnagds provided. The track saw
eight participants and the submission of 22 runs, to either the retrievalecldssification contest, or both. The
evaluation results show a promising scenario about textured 3D retrieetthods, and reveal interesting insights
in dealing with texture information in the CIELab rather than in the RGB coloucspa

Categories and Subject Descript@iscording to ACM CCS) H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods;

Introduction from a set of null textured models, by randomly selecting

and coupling geometric and texture perturbations. Geomet-
ric perturbations include noise and model re-sampling, non-
rigid and non-isometric deformations; texture perturbations
include non-uniform transformation of the RGB channels.

The aim of SHREC is to evaluate the performance of existing
3D shape similarity methods, by highlighting their strengths
and weaknesses, using a common test collection allowing
for a direct comparison of methods. In this report the results
of the SHREC'14 trackRetrieval and Classification on Tex-
tured 3D Modelsare presented. The aim of the track is to 1. Data Collection and Queries
assess the performance of retrieval algorithms when models
vary either by geometric shape or texture, or both. The track
extends the analogous SHREC'13 tra@BA*13] in terms

of the number of models and the type of geometric and tex-
ture deformations considered, and also for the existence of a
training set for learning-based methods. The dataset is built

The dataset is made of 572 watertight mesh models, grouped
in 16 geometric classes. Each class but one is obtained
from 12 null models, corresponding to 4 base meshes en-
dowed with 3 different textures. Then, 2 transformations
are applied to each null shape, each one randomly com-
bining a geometric deformation (a re-sampling, the addition
of Gaussian noise, an affine deformation, a non-rigid and
a non-isometric deformations) with a texture one (lighten-
T Organizer of the track. Dataset and evaluation measuresaite a  ing/darkening, topological deformations in the texture pat-
able atht t p: / / wwww. ge. i mati.cnr.it/shrecl4. terns, affine transformations in the RGB channels), for a to-
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tal of 36 models. The last class contains 32 shapes, builton  (HAc) in the classification task. Their method is detailed

top of 8 null models by applying 3 deformations each. in Section3.3;

4. C. Li, A. Godil (NIST, USA) and A. Ben Hamza (Con-
cordia University, Canada) participated with three runs
(LBG2,LBG3, LBG4) in the retrieval task, and with two
further runs [c1, Lc2) in the classification task. Their
method is detailed in Sectidh4;

5. A. Tatsuma, M. Aono, C. Sanada (Toyohashi University
of Technology, Japan) participated with riA in the re-
trieval task. Their method is detailed in Sect®;

6. S. Velasco-Forero (National University of Singapore,
Singapore) participated with three runge(, Ve2, Ve3)
in the retrieval task. His method is detailed in Sectdf)

7. C.-X. Xu, and Y.-J. Liu (Tsinghua University, the Peo-

ple’s Republic of China) participated with rofL in the

retrieval task. Their method is detailed in Sect®;

D. Giorgi (CNR, Italy) participated with three runSig,

Gi2 and Gi3) in both the retrieval and the classification

Retrieval contestEach model is used as a query againstthe  task. Her method is detailed in Secti8rg,

rest of the dataset, with the goal of retrieving the most sim-

ilar objects. In particular, two models are considenéghly 3. Description of the methods

similar if they share both geometry and texture; they are ) ) )

marginally similaris they share only geometry; otherwise, In this section we describe all the proposed methods.

they are dissimilar. For this track, a dissimilarity matrix

(572x572) was requested, each elemen) being the dis- 3.1. Textured 3D models Classification using Scale

similarity value between modelsindj in the whole dataset; Invariant Heat Kernels (M. Abdelrahman,

M. El-Melegy, A. Farag)

An alternative dataset classification my be provided
by grouping models according to texture, resulting in 13
classes. Some samples from the dataset are given in Rigure

The two contests. We distinguished between two contests,
retrieval and classification; participants could opt to take part
in both retrieval and classification, or only one of the two
challenges. Prior to the publication of the dataset, a training
set made of 96 models classified according to both geome-
try (16 classes) and texture (13 classes) was published. Each
participant was asked to submit up to 3 runs for each contest
(s)he intended to take part in, each run being either the result
of a different algorithm, or of a different parameter setting.
Also, the executable/source code used to produce the sub-8
mitted runs was required. '

Classification contestThe goal is to assign the query to
its class. In this case, two different classification matrices, RunsAEF1 andAEF2 rely on a combined shape description
one for the geometric and one for the texture classification made of a geometric and a photometric contribution.
were required, being each class one of those specified in
the training set release. In each matrix, the elenfen) is Geometry descriptor. For shape geometry description we
the probability that modeil belongs to clasg. Participants ~ present an approach based on scale invariant heat kernel sig-
to the retrieval task could participate also to the classifica- nature (SI-HKS). Sun et alS[OG09 proposed to use the
tion one with the nearest neighbor (1-NN) classifier derived heat kernel signature as a local shape descriptor
from their dissimilarities matrices. In this case the element 00
(i,j) = 1ifiis classified in clas§ and O otherwise. h(x,t) = H(x) = Z\e_)\itq’iz(x)v

1=
where Aj and ¢; are the eigenvalues and eigenfunctions
of the Laplace-Beltrami operator, respectively. The HKS
Eightgroup§ took part in this Shrec track: has several desired propertie3JGO09: it is intrinsic and

. thus isometry-invariant (two isometric shapes have equal
1. M. Abdelrahman, M. El-Melegy and A. Farag (Uni- xs) multi-scale and thus captures both local features and
versity of Louisville, USA) participated with two runs

: ¢ S global shape structure, and also informative: under mild con-
(AEFL, AEF2) in both the retrieval and the classification  gitions, if two shapes have equal heat kernel signatures,
task. Their method is detailed in Sectidri;

i ’ ) i they are isometric. The proposed descriptor is based on a
2.V G_a_rro and A Giachetti (University of Vero_na, Italy), Bag-of-Feature representation of the HKS in frequency do-
part|C|pf'ated with three r“”.‘?(G% GG2, GGS), in both . main combined with the first 15 normalized eigenvalues of
the retrieval and the classification task. Their method is e | apjace-Beltrami operator. These eigenvalues have been
detailed in Sectior3.2;

L ) proposed by Reuter et aRWSNO9 as intrinsic shape de-
3. H. Y. Martono and M. Aono (Toyohashi University of

. . scriptors (shape-DNA).
Technology, Japan) participated with three ruR\(,

HA2, HA3) in the retrieval task, and with a further run Scale invariance is a desirable property of the shape de-
scriptor, which can be achieved by many ways. We propose

a local scale normalization method based on simple opera-
T Research groups 3 and 4 could not provide any part of the code tions. It was shownBBGO1] that scaling a shape by a fac-
producing the submitted results. tor B results in changing(x,t) to B?h(x, 3t). To deal with

2. Participants
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Figure 1: Some models in the dataset. Null models have been processed usingaMpél] and RemeshAF06].

this problem, we propose here to apply the Fourier trans-
form (FT) as follows: taking the amplitude of the FT, the
effect of the multiplicative constar]ﬁ?l2 is eliminated by nor-
malizing [H{ (w)| by the sum of the amplitudes of the FT
components. The amplitudes of the first significant FT com-
ponents (we normally use 20) are employed to construct

that histograms of MAPT computed inside the objects are
very good global shape descriptors, performing very good
results on the SHREC 2011 non-rigid watertight contest data
[LGB*11]. For that recognition task, discrete MAPT maps

were quantized in 12 bins and histograms computed at the
different scales (radii) were concatenated creating an unique

the scale-invariant shape descriptor. This proposed method descriptor. Voxel side and sampled radii were chosen dif-

eliminates the scale effect without having to use the noise-
sensitive derivative operation or the logarithmic transforma-
tion that both were used irBBGO11. Thus our method

is simpler, more computational-efficient and more robust to
noise. Eventually we use thg-norm for classification.

Photometric Descriptor. The photometric descriptor is

based on colour histograms, one for colour band (RGB).
We use thd_;-norm as a distance measure between colour
histograms. The query colour histogram is rotated to obtain

the minimum distance. Then we get the mean distance mea-
sure for the three bands. The photometric distance measure,

is used to re-arrange the retrieval results from the geometric
descriptor to retrieve similar texture objects first.

3.2. Colour Data and (colour-weighted) Histograms of
Area Projection Transform (V. Garro, A. Giachetti)

To compute textured mesh differences we tested two ap-
proaches based on the Histograms of the Multiscale Area
Projection Transform (MAPT)GL12]. The method is based

on a spatial map that encodes the likelihood of the points in-
side the shape of being centers of spherical symmetry. For
each radius of interest, this map is computed as follows:

APT(%,S R,0) = AreaTg (ks (X) C TR(S 1)),

whereSis the surface of interesir(S ni) is the parallel sur-
face ofS shifted along the normal vector (only in the inner
direction) andks(X) is a sphere of radius centered in the
generic pointX where the map is computed. Values at dif-
ferent radii are normalized in order to have a scale-invariant
behavior, creating the Multiscale APT (MAPT):

with a(R) = 1/4mR? ando(R) = ¢-R (0 < ¢ < 1). A dis-
cretized MAPT is easily computed, for selected values of
R, on a voxelized grid including the surface mesh, with the
procedure described ifGL12]. The map is computed in a
grid of voxels with sides on a set of corresponding sam-
pled radius value®y, ..., Rn. In the paper it is also shown
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ferently for each model, proportionally to the cubic root of
the object volume, in order to have the same descriptor for
scaled versions of the same geometryvas always taken
equal to 05. To compare textured meshes we modified the
method in two ways as follows.

Histograms of Area Projection Transform and colour
Data. We computed the MAPT histograms with the same
radii and sampling grids values as iBl[12]: the isotropic
sampling grid is taken as being proportional to the cubic root
of the volume of each modes & cbrt(V)/30), and the sam-
pled radii are integer multiples af (10 values from 2to
11s). The radiuso is taken, as in the original paper, equal
to R/2 for all the sampledR. Furthermore, we computed for
each mesh the histograms of colour components in CIELab
space. The colour quantization is set to 4 bins for the light-
ness componert™ and 8 bins for both the cromaticity val-
uesa* andb®, obtaining for each shape a histogram of size
4 x 8x 8. With this procedure each mesh is described by two
histograms, the first one representing the geometric informa-
tion and the second one representing the texture information.
The total dissimilarity between two meshes is computed us-
ing a convex combination of the two histogram distances:

D(m,mj) = ydj(m, mj) + (1 —y)de(m, m;)

where 0< y < 1, dj(mj,m;) is the normalized Jeffrey di-
vergence between the two MAPT histograms of meshes
andm; and dc(m,m;) corresponds to the normalized-
distance of the two CIELab colour histograms. The runs
GG1 and GG2 are obtained withy set to 04 and 06, re-
spectively.

Colour-weighted Histograms of Area Projection Trans-
form. To get runGGS3, a new descriptor is constructed by
concatenating to the standard MAPT histograms, other three
similar histograms obtained from colour-weighted MAPT
maps, simply computed multiplying the area contribution
of the surface elements by the red, green and blue compo-
nents respectively (scaled in the ran@el]). In this way
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also the texture information should be encoded in the de-
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there are a total of 256 patterns, 58 of which are uniform,

scriptor. We set the same radii and sampling parameters aswhich yield in 59 different labels.

the method described above, for each radius we now have

4 histograms (1 standard MAPT histogram and 3 colour-
weighted MAPT histograms ) with these choices the final

descriptors of shapes are vectors composed by 480 elements.

The dissimilarity between two meshes is obtained with the
normalized Jeffrey divergence between the two correspond-
ing descriptors.

A weakness of the proposed method, that is common to
the original method, is that histograms do not encode infor-
mation on the relative position of the symmetric parts and on
their number.

3.3. Local texture descriptors(H. Y. Martono, M. Aono)

In our aproach, we have investigated a good combination
of Histogram of Oriented Gradients (HOG)T05], Local
Binary Pattern (LBP)PPMO03Z, Local Ternary Pattern (LTP)
[ZIJHM13], and Weber Local Descriptor (WLDXSH"10].

As pre-processing, we apply pose normalizatibA(9]
and generate multiple colour shaded images for texture fea-
tures by using jrmanjim], where we take the rotation an-
gles of -90, -45, +45, +90 on each axisy, z plus original
pose to obtain shade images from 13 different views in total.

On the other hand, for shape features we generate Fourier

spectra from MFSDTA09] for each 3D object. After pre-
processing, we apply Gabor filters to the images, attempting

to sharpen the texture difference. RGB channels are sepa-

rated after filtering. For each colour channel, we extract fea-
tures based on LPB, LTP, WLD, and HOG respectively.

In this event 3 run methods are proposed: HOG is com-
bined in turn with LPB (rurHA1), LTP (runHA2) and WLD
(runHA3). All methods are sketched in Figu2e

Iovff' >/ - features:
4 g
c ) 4 B
2 N/ %3 Gabor filter 2 LBP based
8o = < @
E g AR EQR Qs LTP based
£ 0 ™ £ 7]
g5 T8 5 | |[wLDbased
[0} =
g ':"é:\\\ < 21 |[HOG based

Figure 2: Flow feature extraction process.

LBP is a powerful feature for texture classification. The

LTP is an extension of LBP. Unlike LBP, it does not
threshold the pixels into 0 and 1, rather it uses a threshold
constant to threshold pixels into three values.

WLD is also a very powerful and robust local descrip-
tor, consisting of two components: differential excitation and
orientation. It is computed based on the ratio between the
two terms: one is the relative intensity differences of a cur-
rent pixel against its neighbor ¢33); the other is the inten-
sity of the current pixel.

HOG is a feature descriptor counting the occurrences of
gradient orientation in localized portions of an image. By us-
ing this descriptor, local object appearance and shape within
an image can be described by the distribution of intensity
gradients or edge direction. The implementation of these de-
scriptors can be achieved by dividing the image into small
connected regions called cells, and for each cell compiling a
histogram of gradient directions or edge orientation for the
pixels within the cells.

3.4. Spectral geometry based methods for textured 3D
shape retrieval(C. Li, A. Godil, A. Ben Hamza)

We use the spectral geometry based frameworkiitd] for
textured 3D shape representation and retrieval. This frame-
work is based on the eigendecomposition of the Laplace-
Beltrami operator (LBO), which provides a rich set of eigen-
bases that are invariant to isometric transformations. It con-
sists of two main stages: (1) feature extraction. We use spec-
tral graph wavelet signaturei13b] to capture geometry in-
formation, and colour histogram for texture information; (2)
spatial sensitive shape comparison via intrinsic spatial pyra-
mid matching [H134. The cotangent weight scheme was
used to discretize LBO. The eigenvalugsand associated
eigenfunctionsp; can be computed by solving the general-
ized problemC¢; = AjAd;, i=1,2,...,m whereAis a
positive-definite diagonal area matrix a@ds a sparse sym-
metric weight matrix. We seh = 200 in our experiments.

Feature extraction. The first stage consists of the compu-
tation of an informative descriptdr(x) at each vertex of the
triangle meshed shape We use spectral graph wavelet sig-
nature LH13b] to capture geomtery information, and colour
histogram for texture information.

Geometry informationln general, any one of spectral

basic idea for developing the LBP operator was that 2- descriptors with the eigenfunction-squared form reviewed
dimensional surface textures can be described by two com- in [LH13c] can be used in our spatial partition context for
plementary measures: local spatial patterns and colour con-isometric invariant representation. We used the recently pro-
trast. The original LBP operator form labels for the image posed spectral graph wavelet signature (SGWS) as the lo-
pixels by thresholding the 8 3 neighborhood of each pixel  cal descriptor; it provided a general and flexible interpre-
with the center value and considering the result as a binary tation for the analysis and design of spectral descriptors
number. At this time, we use another extension of the orig- Sx(t,x) = 3", g(t,Ai)$2(x). In a bid to capture the global
inal operator called LBP uniform pattern. In this method, and local geometry, a multi-resolution shape descriptor was
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obtained by setting(t,A;j) as a cubic spline wavelet generat- exponential kernel. The label probability is obtained by nor-

ing kernel and considering the scaling function (&H[L3b, malizing the similarity withL; norm (RunLcl andLc2 rep-

Eq. (20)] for a precise formulation @j. The resolution level resents spatial partition levels 1 and 5, respectively).

is set as 2. With a dictionary learned Bymeans, the de-

scriptorS={s, t =1,2,...,T} at each point of the shape  Running time. The method is implemented in MATLAB.

is replaced by the Gaussian kernel based soft assignmentThe time consuming steps are the computation of LBO and
Q={a k=1,2,...,K}. k=100 in our experiment. k-means dictionary learning. For a mesh with 14,000 ver-

tices, it takes 7.7 seconds to compute the LBO. To learn a

Texture informationWe simply choose colour histogram o ) . . .
Py 9 dictionary with 100 geometric words, it takes 14 minutes.

(CH) to characterize texture information on the surface.
Each channel is discretized into 5 bins.
3.5. Multiresolution Representation Local Binary

Intrinsic spatial pyramid matching. Any function f onX Pattern Histograms (A. Tatsuma, M. Aono, C. Sanada)
can be written as the linear combination of the eigenfunc-
tions. Using the variational characterizations of the eigenval-
ues in terms of the Rayleigh-Ritz quotient, the second eigen-
value is given by

RunTA is based on the Multiresolution Representation Lo-
cal Binary Pattern Histograms (MRLBPH), a new 3D model
feature that captures textured features of rendered images
from 3D model by analyzing multiresolution representations
f'Cf using Local Binary Pattern (LBPYPHO4.

A= inf ——.
2 fL(Ll f'Af . . .

) _ _ ) Figure 4 illustrates the generation of our proposed
We use the isocontours of the second eigenfunction (Fig- MRLBPH feature. We enclose the 3D model within a unit
ure3) to cut the shape intb patches, thus the shape descrip-  geodesic sphere after normalizing the 3D model via Point
tion is the concatenation &f sub-histograms of SGWS and  gyp [TA09]. From each vertex of the unit geodesic sphere,
CH along eigenfunction value in the real line. To consider e render depth and colour buffer images with 25856
the two-sign possibilities in the concatenation, we invert the resolution; a total of 38 viewpoints are defined. We process
histogram order, and consider the scheme with the minimum g depth channel and each channel of the RGB colour space as
cost as a better matching. The second eigenfunction is the described below.To obtain multiresolution representations,
smoothest mapping from the manifold to the real line, re- e apply a Gaussian filter with varying scale parameters to
sulting in this intrinsic partition quite stable. It provably ex-  gn image. In our implementation, we select 3, 7, 11, 19, and

tends the property of popular SPM in image domain to cap- 43 for the scale parameters. For each scale image, we cal-
ture spatial information for meshed surfaces, so is referred

as intrinsic spatial pyramid matching (ISPM) inH134.
d a R e |
3D model |RGB images ;B : : Max | |ham
MRLBP
& | 5 | Lo histogram
o |l | Lo

Depth images  Multiresolution  Local binary pattern
Representations histograms

Figure 3: The isocontours of the second eigenfunction. ~ Figure 4: Overview of our Multiresolution Representation
Local Binary Pattern Histograms (MRLBPH)

The partition resolution level is set astb=£ 16 patches) in
this contest. Therefore, the description power of SGWS and culate an LBP histogram. Lek denote the image value at
CH is enhanced by incorporating this spatial information. Fi- arbitrary pixel(x,y), and letgy, ..., gg be the image values
na"y, we get ISPM induced histograms for Shape represen- of each of the elght neighborhood piXelS. The LBP value is
tation. The dissimilarity between two shapes is computed as then calculated as
theL, distance. We manipulate geometry and texture infor- 8 .
mation seperately to obtain one dissimilarity matrix for each. LBP(x,y) = _le(t’ 60274
RunLBG3 represents spatial partition level 1 (1 patch), runs =
LBG2 andLBG4 represents spatial partition level 5 (the lat-  wheres(t,g) is a threshold function defined as 0gf< t
ter is a weighted sum of geometric and texture contribution, and 1 otherwise. In our implementation, we set the threshold
with coefficients 0.8 and 0.2, respectively). In classification, valuet to 0, and quantize LBP values into 64 bins. To incor-
the distance between query and class is represented as theorate spatial location information, we partition the image
minimum distance between the query and instances in the into 2 x 2 blocks and calculate the LBP histogram at each
class. The distance is then transformed to similarity via an block. The LBP histogram of each scale image is obtained
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by concatenating the histograms of these blocks. We merge
the histograms of the scale images by selecting the maxi-
mum value of each histogram bin.

For each viewpoint, an MRLBP histogram is obtained by
concatenating the histograms of depth and colour buffer im-
ages and then normalized by normalization.

To compare two 3D models, we apply the Hungarian
method Kuh55 to all pair dissimilarities between their
MRLBP histograms. To calculate the dissimilarity between
two histograms andb with n bins, we use Jeffrey’s diver-
gence defined as

n

d(a,b) = ZL

= (g +byj)/2.

aj bi
jlog— +bjlog— |,
(a| gm i gm)
wherem

3.6. Colour + Shape descriptorgS. Velasco-Forero)

The proposed method is a modification of the 3D Shape +
colour descriptor proposed i€CBA*13]. We make use of
two main components of the textured shape.

1. First, we compute the geodesic distance matrix in the
mesh information $SK*05], denoted byG. Following
the same intuition than ingFH*09] we use a spec-
tral representation of the geodesic distance as descrip-
tor. However, we have used a centralised geodesic matrix
[MSS*99], defined as followsp = G — 1yG — G1y +
1nG1y wherely denotes aN by N matrix that for each
component takes valug/ll andN is the number of ver-
tices in the mesh. As ifJBA* 13], the first 40 eigenvalue

S. Biasotti et al. / Retrieval on textured models

Aesh information

G (D)

Geodesic distance  Eigenvalues

o > e i Iltl.mn L.‘ L\..;;l., 1
hist(S)

Original textured mesh  Colour information RGB Histogram
Figure 5: Proposed method includes a shape descriptor
from the geodesic distance matrix and a colour descriptor
from the histogram representation of RGB colour informa-
tion. Details are included in sectio®6.

colour and shape information. In the experimept=
0.7 (runVel), 0.8 (runVe2), 0.95 (runVe3), in accor-
dance with the intuition that geometry is more important
than colour in how humans interpret shape similarity. A
scheme of the proposed descriptors is shown inF:ig.

3.7. Measuring Distance between 3D Models Based on
Geometry and colour FeaturegC.-X. Xu, Y.-J. Liu)

There are serveral categories of retrieval methods based on
the input, including keywords, 2D images and 3D models
[LZL*12]. [LLJ*13] and [LFLF12] propose a sketch-based
method, which belongs to the 2D image manners but applies

are used as shape descriptor. This vector of eigenvalues isto some specific cases such as 3D CAD design process.

denoted by\(D). Many distances can be computed from
two shapes from\(D;) and\(D;) [SFH"09]. However,
we have followed the recommendation &FH"09] by
using themean normalized Manhattan distance.,

z 0 2|A(Di) — A(D))]

)\k DI +)\k(DJ) .

. Second, we incorporate texture information in the shape
descriptor. From€BA*13], histograms of colour infor-
mation in RGB space have shown good performance as
texture descriptor. Accordingly, we define the distance
from the colour representation by

EMD(hi st (), hi st (Sf))
3 )

Deig(S,Sj))

Drea(S: §j)) =

k=RG.,B

whereEMD denotes the Earth mover’s distance between
the histogram in the colour space. In our experiments, we
have used the fast implementation provided BW09.

. Finally, for a given couple of textured shapes, the pro-
posed distance is computed as follows:

D(S.S)) = (Dree(S. S))" P + (Deg(S.5)",
wherep is a parameter to control the trade-off between

Since the input here is 3D models, we use a method simi-
lar with the one proposed inLZL *12], using geodesic dis-
tance to replace simple Euclidean distance. We sample the
model on its surface iN-dimensional spacéN > 3), which
includes both geometric and textural information, then these
sampling points are optimally clustered. A generally defined
geodesic distance is computed among the points, and we
can get the shape distribution of the model. By comparing
the shape distributions we get the dissimilarity between two
models, resulting in ruxL .

Extend Geodesic toN-dimension. We extend the con-
cept of geodesic ttN-dimension(N > 3) by constructing

the model as follows: if a model is constructed inNa
dimensional spaceéN > 1) where the metric between any
two points are defined (such &s norm), then the edge
lengths follows the metric definition while other topologi-
cal relationships (such as connections between vertices) are
kept the same.

In this case, a tupléx,y,zr,g,b,a) is used to represent
a vertex wherex, y z are its 3D coordinates and g, b, a
are its colour components. For each edge,ltheorm dis-
tance between the two endpoints (vertices) are calculated as

submitted taEurographics Workshop on 3D Object Retrieval (2014
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its length. Thus we get a model which has the same connec- use of the CIELab space rather than the RGB space for rep-
tions between vertices in a higher dimensidph= 7). resenting colour is suggested by the fact that CIELab is a
perceptually uniform space, that is, uniform changes of coor-
dinates in the CIELab space correspond to uniform changes
in the colour perceived by the human eye. The use of the
CIE94 distance instead of a classical Euclidean distance is
also aimed at respecting perceptual uniformity.

We use a window-propagation based method to calculate
the geodesic distance between any two points on the surface
of a model, see Lfiul3] for details. Since this algorithm is
based on the unfolding of faces, the calculation of geodesic
remains mostly the same with colour information included

in a high dimension space. TSD encodes the distribution of colour distances, yet it
also takes into account the connectivity of the underlying
Construct and Compare Shape Distribution. The main model, as distances are computed by walking on the surface

procedure of our method is as follows: We sample points model. In this sense, TSD can be considered as an hybrid
on the surface of the model in the constructed 7-dimensional descriptor, taking into account both colorimetric and geo-
space. These sampling points are clustered using a modifiedMetric information. In the current implementation, a set of
ISODATA algorithm. Lastly, we calculate the feature his- 1024 points was sampled over each surface model follow-
togram of each model using these clustered sampling points, ing a farthest-point criterion. The colorimetric geodesic dis-
and we can get a shape distribution for each model. See moretances between pairs of samples were computed following

details in LZL*12. the Dijkstra algorithm . The distribution of these distances
) was discretized using a histogram of 64 bins. Histograms
Suppose that for a model there arelusters and5 is were compared using the norm.

the set of feature points in thth cluster withn; points. For
each pointj, € F and fjq € Fj , we compute the geodesic  Run Gi2. Since TSD does not take into account the length

distanced; j, = |[fip — figll, wherei # j, i,j =1,2,....c, of edges in the Euclidean space, it loses part of the geometric
p=12..n,dq=12...nj and store all the distances in  information. This information can be added through a joint
an arrayD. Then we convert the normalized arrByinto a distribution of colorimetric geodesic distances and classical
histogram and a shape distribution for each model is con- geodesic distances computed on the surface embedded in the
structed. Euclidean space. In this run, a ¥6L6 bi-dimensional, joint

histogram (JH) was computed for each 3D model. The

norm was used for comparison. The distance matrix is the
sum of the distance matrix obtained using the TSD descrip-
tor and the distance matrix obtained using the JH descriptor.

There are some ways mentioned iI®@HCDO] to mea-
sure the difference between shape distributions. In our ex-
periment, we choose the Minkowsky norm of the proba-
bility density functions to measure the shape distributions,

: 7 e .
e.D(f,g) = v/J|f —g|% which is obviously a metric. Run Gi3. AS TSD can be seen as an hybrid descriptor, it

Since the probability density function is represented by makes sense to combine it with a purely geometric descrip-
the shape distribution generated above (combined with an- tor and a purely colorimetric descriptor, in line with what
other parameter to create different levels of approaching, proposed inBCGS13. Hence Run Gi3 combines TSD with
see details in QFCDO01), the function is piecewise linear,  the popular Spherical Harmonic (SH) descript€FR03],
which leads to a direct calculation of a second (or first) de- and the persistence-based purely colorimetric descriptor of
gree polynomial and is easy to implement. the PHOG signature irBCGS13, which computes persis-

tence spaces based on the coordinates in the CIELab colour

space. The distance matrix corresponding to this run is the

3.8. Textured shape distribution, joint histograms and sum of the three distance matrices obtained using the TSD
persistence(D. Giorgi) descriptor, the SH descriptor, and the persistence-based de-

Run Gil. The Textured Shape Distribution (TSD) de- Scriptor of PHOG, respectively.
scriptor is a variant on classical Shape Distributions (SD)

[OFCDO1]. TSD consists of the distribution of colour-aware 4. Evaluation measures and results
geodesic distances computed between points sampled ove
the surface mesh representing the 3D model.

rRetrieval performance measures.The retrieval perfor-
mance of each submitted run has been evaluated according
First, the surface mesh is embedded in the three- to the following relevance scale: If a retrieved object shares
dimensional CIELab colour space, so that the coordinates both shape and texture with the query, then it is highly rele-
of the vertices arel(a,b), where L specifies luminosity vant; if it shares only shape, it is considered marginally rel-
and a, b specify colour. The length of an edge is the dis- evant; otherwise, it is not relevant. The evaluation process
tance between its endpoints, namely, the CIE94 distance has been based on the following evaluation measures: Av-
defined for CIELab coordinate$#i05. Then, the colour- erage precision-recall curves, Nearest Neighbor (NN), First
aware geodesic distances are computed in the embeddingTier (FT), Second Tier (ST), Normalized Discounted Cumu-
space with the metric induced by the CIE94 distance. The lated Gain (NDCG) and Average Dynamic Recall (ADR).

submitted taEurographics Workshop on 3D Object Retrieval (2p14
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Note that, because of the multi-level relevance assessment Relevant Highly Relevant
. Run NN FT ST NN FT ST ADR
of each query, most of the evaluation measures have been i T 073 T o905 o T o005 T o236 5350 M 0308
split up as well. “Highly relevant” evaluation measures re- [agr> | 0735 | 0408 | 0521 || 0..23 | 0228 | 0351 || 0.207
late to the highly relevant items only, while “relevant” eval- GG1 || 0711 | 0.240 [ 0.324 [[ 0.696 | 0.404 | 0530 |[ 0.349
uation measures are based on all the relevant items (highly| ©%2 || 0740 | 0265 | 0365 ]| 0722 | 0432 | 0557 || 0368
. . . h GG3 0.822 0.344 0.469 0.665 0.384 0.504 0.336
relevant items + marginally relevant items). We provide a8 —pgar o721 0271 0382 1 0224 | 0265 | 0350 [ 0249
brief explanation of each evaluation measure, together with [ Ha2 0.736 | 0.282 | 0.387 || 0.468 | 0.278 | 0.362 || 0.260
the associated evaluation results. The runs of all the track’s | _HAS 0737 | 0.277 | 0386 || 0462 | 0272 | 0.358 || 0.257
. i . LBG2 0.841 0.402 0.553 0.676 0.412 0.565 0.353
participants are labeled as specified in Sec#ion N3 T osoa T o372 T o5 T o5 0308 T 008 M 0280
Average precision-recall curveBrecision is the fraction e R Il L
of retrieved items that are relevant to the query. Recall is the g1 0902 | 0402 | 0512 1| 0.735 | 0396 | 0540 || 0342
fraction of the items relevant to the query that are success-| Ve2 || 0918 | 0.398 | 0.499 [[ 0593 | 0.338 | 0.469 || 0.300
fully retrieved. BeingA the set of all the relevant objects and ves || 0909 | 0372 | 0469 || 0336 | 0.275 | 0.369 || 0.248
. . XL 0.348 0.175 0.272 0.108 0.149 0.192 0.159
B the set of all the retrieved object, Gil 0.895 | 0.259 | 0.374 || 0.890 | 0.324 | 0.401 || 0.313
Gi2 0.906 0.280 0.388 0.894 0.366 0.448 0.340
Precision= |A‘E|B‘, Recall= |A|2|B‘ Gi3 0.958 | 0.383 | 0.504 || 0.814 | 0.455 | 0.590 || 0.383

Plotting the two quantities in the reference frame recall vs.
precision, we get a curve: The larger the area below such a
curve, the better the performance under examination. In par-
ticular, the precision-recall curve of an ideal retrieval system
would result in a constant curve equal to 1. For each query,
we thus have a precision-recall curve. By taking the aver-
age on all the queries, we get the average precision-recall
curve. Figures shows the performances of the best run for
each participant with respect to the average precision-recall
curve, both “relevant” and “highly relevant”.

Nearest Neighbor, First tier and Second ti€hese eval-
uation measures aim at checking the fraction of models in
the query’s class also appearing within the topetrievals.
Specifically, for a class witfC| membersk = 1 for the near-
est neighbor (NN)k = |C| — 1 for the first tier (FT), and
k = 2(|C| — 1) for the second tier (ST). The final score, al-
ways ranging in0, 1], is an average over all the models in the
database. Tabl& reports the performances for all the runs
according to these measures, with respect to the “relevant”
and “highly relevant” classifications.

Average dynamic recall’he idea is to measure how many
of the items that should have appeared before or at a given
position in the result list actually have appeared. The average
dynamic recall (ADR) at a given position averages this mea-
sure up to that position. Precisely, for a given quenAéie
the set of highly relevant classified items, and3dte the set
of relevant items. Obvioush C B. The ADR is computed
as:

L B
ADR = —
B2

wherer; is defined as

Fi
i’

i <A
ifi> A

i
|{relevant items in the firstretrieved item3|

[{highly relevant items in the firstretrieved item$|
r| =
i

For all participants, the last column of Talklereports the
ADR measure averaged on all queries.

Table 1: Retrieval performances on the whole dataset. For
each evaluation measure, best results are in bold text.

Normalized discounted cumulated galnis first conve-
nient to introduce theiscounted cumulated gain (DCGjs
definition is based on two assumptions. First, highly relevant
items are more useful if appearing earlier in a search engine
result list (have higher ranks); Second, highly relevant items
are more useful than marginally relevant items, which are in
turn more useful than irrelevant items. Precisely, the DCG at
a positionp is defined as:

rel;
logy(i)’

with rel; the graded relevance of the result at posiiio@b-
viously, the DCG is query-dependent. Therefore, we nor-
malize the DCG to get theormalized discounted cumulated
gain (NDCG) This is done by sorting elements of a retrieval
list by relevance, producing the maximum possible DCG till
position p, also calleddeal DCG (IDCG)till that position.
For a query, the NDCG is computed as

DCGp
IDCGp’

In the present evaluation, the NDCG values for all queries
are then averaged to obtain a measure of the average perfor-
mance for each submitted run. Note that for an ideal run, we
would have DCG@ = IDCGp and hence NDCG-= 1.

P
DCGp =rel; + 22
i=

NDCGp =

Figure 7 shows the performance evaluation for all runs
according to the NDCG measure as a function of the m@ank

Classification performance measuresln the classifica-
tion task, the participants were asked to submit a classi-
fication matrixC, both for geometry and texture: the ele-
mentC(i, j) is the probability that model belongs to the
classj. As a performance measure, we consider ¢laes-
sification rate(CR), i.e. the percentage of models correctly

submitted taEurographics Workshop on 3D Object Retrieval (2014
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Precision recall graphs (Relevant)
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Precision recall graphs (Highly relevant)
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Figure 6: Performances of the best run for each participant w.r.t to the avepageision-recall curve, both relevant and highly

relevant.

Normalized discounted cumulated gain (NDCG)
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Figure 7: Performances of all the runs w.r.t. the NDCG mea-
sure (runLBG2 is almost totally covered by ru@i3).

classified, either for geometry or texture. A score theans
that every item is correctly classified. For a percentage ma-
trix C, each row is normalized so that m&xi, j) = 1. In
caseC is obtained with the 1-NN classifie€(i, j) is 1 if
modeli is classified as belonging to the clagsand 0 oth-
erwise. Then, we consider as classification rate the num-
berR= £ N, C(i,groundi)), with N the number of ele-
ments in the dataset, ar@@{i,ground(i)) the “probability”
that modeli is recognized as belonging to its correct class.
Table2 reports the performances of those methods involved
in the classification task.

GCR 0.710 0.740 0822

Run - g GGl —5gar | ©%2 [oema | ©°° [o7ma

0.524 _ 0.895 _ 0.906 _ 0.968

HAC ez (| % [osoos || 2 [ooews | ©° [Tosas

0.733 0.736 0.792 0.015

ABFL 5128 ]| AFF2 oaas || ' [oesa || “ [Toom

Table 2: For each involved method, the geometric classifica-
tion rate (GCR) and the texture classification rate (TCR) are
displayed. Best results are in bold text.
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5. Discussion and conclusions

In this paper, the SHREC'14 track &etrieval and Classifi-
cation on Textured 3D Models introduced, whose aim was

to evaluate retrieval algorithms dealing with an emerging
type of content, namely textured 3D objects, which we be-
lieve deserve attention from the research community. Indeed,
the abundance of textured models in Computer Graphics, the
advance in 3D shape acquisition technology which makes it
possible to obtain textured 3D shapes of even moving ob-
jects, the importance of colour features in 3D Shape Anal-
ysis applications, together call for shape descriptors which
take into consideration colorimetric information. This track
extends the SHREC'13 traclCBA*13] in terms of num-

ber of models considered, of type of deformations (both in
geometry and texture) and performance evaluation (retrieval
and classification).

We believe that the success of this track on textured 3D
model retrieval, which saw the participation of eight research
groups, demonstrated that this field of research is drawing in-
creasing attention. Also, the experimental results offer sev-
eral hints for discussion.

NDCG and ADR provide anverall evaluation of the pro-
posed methods in interpreting the 2-level classification of
the dataset. On the one hand, the NDCG results in Figure
show encouraging results from almost all the runs submitted
to the track. On the other hand, the ADR results in Tdble
emphasize that the dataset was challenging: even if we ar-
gue that this is in part due to the intrinsic dataset structure,
characterized by highly populated classes, such result also
reveals that there is still a long road ahead in the challeng-
ing field of textured shape analysis. An interesting insight is
offered by the “highly relevant” analysis shown in Tables
and 2, and Figures: indeed, very good results were achieved
by those methods dealing with texture information in the
CIELab rather than in the RGB colour space, allowing for
a representation of colour that is more robust to the texture
deformations proposed in this track.
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Finally, we hope this new benchmark may help other re-

searchers improve their techniques, as well as promote fur-

ther investigation on the benchmarking of algorithms dealing
with textured shapes.
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