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Abstract
In this work we present a collisional–radiative model constructed for all ionization stages of
beryllium. Convergent close-coupling, K-matrix and Coulomb–Born-exchange methods were
applied to calculate the necessary atomic data. For the neutral beryllium atom a comparison of
all methods is given. Fractional ion abundances, radiative power losses and electron cooling
rates were calculated as functions of electron temperature. The comparison with other
available data shows a rather good agreement.
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1. Introduction

Beryllium is used in the ITER-like wall at JET and is
foreseen as a plasma-facing material in the main chamber of
ITER [1]. For interpretation of spectroscopic measurements
and for modelling of the beryllium impurity behaviour in
plasma, collisional atomic data (cross sections of elementary
processes) are required. The ‘effective’ rate coefficients
given in existing atomic databases (e.g. ADAS [2]) are
sometimes insufficient for applications. The formation of
beryllium hydrides (BeH, BeH2) and their ions in the edge
plasma, and the subsequent fragmentation directly populating
excited atomic states and affecting the measured light
emission can be mentioned as an example. Unfortunately
due to the high toxicity of beryllium the experimental
cross sections are practically unavailable in the literature.
The most accurate theoretical methods, such as convergent
close-coupling (CCC) [3] or the R-matrix with pseudostates
(RMPS) [4] demand very large computation time (especially
at intermediate energies when continuum coupling effects are
important) and the corresponding cross sections (first of all,
for transitions between excited states) are still fragmentary.
To overcome the lack of data relatively simple, fast and

sufficiently accurate methods such as the K-matrix [5] or Born
(Coulomb–Born for ions) with exchange and normalization
(BEN) can be applied.

In this paper, we present a collisional–radiative model
(CRM) constructed for all ionization stages of beryllium. For
neutral Be and selected transitions in Be+ the sophisticated
CCC method was used. The cross sections for ions Be2+,
Be3+ were computed by the ATOM code [6] using the
K-matrix (for excitation) and the normalized Born (for
ionization) methods. Also at the example of beryllium atom
we present a comparison between the K-matrix and CCC
results. Supplementary data associated with this paper (cross
sections σ , rate coefficients 〈υσ 〉 as well as the adjusted
parameters for fitting formulas) are partially presented on the
website [7] and are available in electronic form upon request.

In the following, we use atomic units with the Rydberg
unit for energy and temperature (Ry = 13.6 eV). Cross
sections are given in the units πa2

0 = 0.8797 × 10−16 cm2

where a0 is the Bohr radius. We also use the dimensionless
collision strength � = g0σ E (here g0 is the statistical weight
of the initial state) and the designation

[ j1 j2 j3 . . .] = (2 j1 + 1)1/2(2 j2 + 1)1/2(2 j3 + 1)1/2 . . . .
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2. Atomic data

2.1. K-matrix method

Here we confine ourselves to the consideration of transitions
only between terms. The calculation of excitation cross
sections based on the K-matrix method [5] was performed by
the ATOM-AKM code [6] and consists of three parts.

(1) A chosen list of atomic states (basis) is used as an input
information. Usually the basis a = γcScLcnlSL (where
γcScLc describe the atomic core and nl are the principal
and orbital quantum numbers of the optical electron)
includes the ground state, all one-electron excitations
with n from n0 up to nmax and maybe a few two-electron
excitations.

(2) For all pairs of states (ai, af: Ei < Ef) from the basis, for
a set of partial waves (λi, λf) of the outer electron and for
total angular momenta ST, LT the transition amplitudes
K B (matrix elements of interaction) are calculated in
B-approximation. Here and below we designate by the
index B the Born (for neutral atoms) or Coulomb–Born
(for ions) approximation with exchange between the
incident and target electrons that we take into account
using the orthogonalized wave-function method [8].
The mixing coefficients appearing in the configuration
interaction expansion can be obtained from other sources
(e.g. using the Cowan [9] code).

(3) From transition amplitudes the full matrix KB is
constructed. The final unitary scattering matrix S is
obtained according to the matrix equation [5]

S =
I + iKB

I − i KB
, (1)

where I is the diagonal identity matrix. The cross sections
are expressed in terms of the S-matrix [8]

σ(ai − af) =
1

2k2
i

∑
λiλf LT ST

[STLT]2

[SiL i]2
|S0i0f − δ0i0f |

2. (2)

Here 0 = asλSTLT is a full set of quantum numbers of
the total system (‘atom + incident electron’), ST and LT

are the full spin and angular momenta and k2
i is the energy

of the incident electron before the collision.

We call such an approach the K-matrix method. This
method allows us to correct some important shortcomings of
the B-approximations.

(1) Normalization. The total flux of scattered electrons
should not exceed the incident one. In any first-order
method this requirement may be broken since the exci-
tation amplitude K B

0i0f is proportional to the interaction
matrix element and not limited by any condition. The
S-matrix is unitary and the requirement of electron flux
conservation (‘normalization’) is automatically fulfilled.
Normalization can considerably decrease the cross
section of strong transitions, such as dipole transitions
or transitions between nearby levels nl0–nl1. Equation
(1) also includes the possibility of normalizing weak
transitions on account of the strong transitions from the
same initial level (normalization by another channel).

(2) Two-step transitions. A direct quadrupole (e.g. 2s–3d)
transition cross section may be comparable (or smaller)
than the two-step dipole one (2s–2p–3d). This possibility
is not included in KB but is provided by the
transformation (1).

(3) Other less straightforward consequences of the channel
interaction are also reflected by the K-matrix method.

Note that the dimensions of the matrix KB grow fast
with the number of included states and partial waves. The
sum over λ in equation (2) converges slowly. The numerical
calculations include λ6 λm (usually λm = 28 was used). The
contribution 1σ (ai − af) from λ > λm is calculated in the
Born approximation.

The radial functions Pnl of the atomic electron were
obtained by numerical solution of the radial Schrödinger
equation[

d2

dr2
−

l(l + 1)

r2
+ 2

ζc(r/ω)

r
+ ε(nlsL)

]
Pnl(r) = 0 (3)

with the scaled U (r) = −
1
r ζc(r/w) potential where the

effective atomic core charge ζc(r) is calculated with the Slater
functions. The energy parameter of the equation ε(nlSL) is
equal to the experimental value of the level energy (from the
ionization limit) and the scale parameter ω is obtained as an
equation eigenvalue. In most cases the NIST database [10]
was used for ε(nlSL).

2.2. Comparison of K-matrix and CCC cross sections

In order to investigate the accuracy of the K-matrix method
we compared the collision strengths and rate coefficients for
neutral Be with the results of more sophisticated CCC and
RMPS calculations [11] (for RMPS only rate coefficients
are published). The CCC cross sections are presented on
the website [12] for transitions from the states with n = 2
for collision energies E up to 1000 eV. Recently Igor Bray
made more accurate calculations for all transitions with
n 6 4, E 6 400 eV. The procedure was quite similar to the
one described in [3] but included more target-space states (and
pseudo-states): 293 in new and 108 in old calculations [3]. For
energies below 10 eV (relative to the ground state) 10 partial
waves were explicitly calculated, and 16 above. Extrapolation
to infinity was done using the Born approximation.

The input data for K-matrix calculations included the
following states:

2s2 1S, 2snl 1L , 3L , L = l, n = 2 − 5, all l,

2p2 1S, 3P, 1D, 2p3l, l = 0 − 2

and the matrix CV of configuration interaction vectors. The
states 2p3l were used only for configuration mixing. The real
transitions to these states were not considered. Corresponding
levels are above the ionization threshold and their contribution
to the channel interaction is negligible. The total number
of transitions (including the elastic scattering channels) was
equal to 393. The mixing coefficients of the matrix CV
were adjusted to obtain the best coincidence of the oscillator
strengths f with the results of multiconfiguration Hartree-Fock
calculations [13]. The mixing of up to four configurations was
included for every group of states with the same SL and parity.
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Figure 1. Collision strength � as a function of incident electron energy. ‘K5’ and ‘K’—the K-matrix method with levels up to n = 5 with
and without configuration interaction, ‘B’—Born approximation with account of exchange, ‘CCC’—convergent close-coupling method
(293 states) and ‘CCC0’—convergent close-coupling method [3] (106 states).

For discussion of the results it is important to distinguish
two energy ranges. At large energies the collisional part of
the problem is trivial: the cross section σ = σB where σB is
the Born cross section (without exchange if 1S = 0). The
difference between the K-matrix and CCC data is connected
with the difference of the atomic wave functions, i.e. with
the configuration mixing. At small and medium energies of
the scattered electron the difference in the approach to the
collisional part of the problem (i.e. the normalization and the
channel interaction) is important. From the present results
as well as our previous calculations we can conclude that
the K-matrix method tends to overestimate the effect of the
channel interaction. We divide (perhaps rather arbitrarily) the
cross sections into three groups according to the degree of
agreement with CCC.

(1) Good agreement was obtained, as illustrated in
figure 1(a), for dipole transitions, if the oscillator strength
is not very small. We note also the significant influence
of the configuration mixing. For intercombination
transitions (figure 1(b)) the difference is somewhat larger
because the exchange is normally more sensitive to
the used approximations. The too-fast decrease of the
CCC cross section can be connected with an insufficient
number of partial waves to ensure convergence and the
large peaks near the threshold (resonances due to the
virtual formation of the Be-ion)—with overestimation
of exchange due to the non-orthogonality of total wave
functions (‘residual Born–Oppenheimer’).

(2) Poor agreement was found in cases of very strong
configuration interaction when the description of the
atomic structure used in ATOM can be inadequate and
for transitions with extremely small values of oscillator
strengths for which the cancellation effects are important
(figure 1(c)).

(3) Some problematic cases for which we cannot give a
definite explanation. One example is shown in figure 1(d).
For this transition (2s2 1S → 2p2 1D) two mechanisms
are possible: the ‘step’ 2s2 1S → 2s2p1P → 2p2 1D (with
asymptotic � ∼ 1/E) and the quadrupole transition
(2s2 1S → 2p2 1D) due to configuration interaction
2s2 1S + 2p2 1S (the asymptotic for transitions with
1L = 2 is � → const). The collision strength of CCC,
opposite to what we expect, increases. The reason for
this difference is unclear. It may be that the collision
strength approaches a constant at higher energies.

In most cases the agreement between rate coefficients
is usually much better than for cross sections (even when
there are substantial discrepancies for them). And of course
the K-matrix results demonstrate an essential improvement
compared to the Born data.

2.3. Electron impact ionization cross sections

For the ionization of an electron from the state ai =

γcScLcnliSiL i of the atom (ion) X z

X z(ai) + e(Eλi) → X z+1(γcScLc) + e(Eflf) + e(E ′λf),

E = E ′ + Ef + 1E
(4)
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Figure 2. Electron impact ionization cross section for the Be
ground state: Born (B), Born with normalization (BN), BEN and
CCC calculations.

(here 1E = Ez is the ionization threshold) the ionization
cross section in the B-approximation is equal:

σi z(nli) =

∑
lf Sf L f

∫ Em/2

0
2σ(ai, af) dEf, (5)

where Em = E − 1E and af = γcScLc EflfSfL f. In this case
the final state of the atom belongs to the continuum, and
therefore the continuum radial function Pf(r) must be used.

Due to the additional sum over the momenta lf, Sf, L f

and the integral over the energy Ef of the ejected electron, the
inclusion of the ionization channel in the K-matrix scheme
becomes unreasonable (and practically impossible, which
is why we did not include the ionization channels in the
K-matrix for excitation). At the same time, due to these
summations, the ionization cross section σiz is not sensitive to
the channel’s interaction. However the normalization effects
must be included in the calculation of σiz .

The ATOM code [6] calculates ionization cross sections
in the B-approximation with additional normalization for
its own (ionization channel) and some strong excitation
channels (usually these are transitions to nearby levels which
are dipole connected with the initial state). The method
of normalization is also based on the K-matrix, but with
some simplifications appropriate for normalization purposes,
namely, the approximate (reduced) K-matrix contained only
those matrix elements which include the initial state 0i.
It means that the normalization of each LTST channel is
performed independently.

The ion X z+1 can be produced either by direct ionization
(DI) or through inner shell excitation of X z followed by
autoionization (EA). In our calculations both DI and EA
processes were included. As a rule, DI dominates the total
impact ionization cross section but the contribution of EA
increases at energies above the corresponding threshold.

A comparison of the ionization cross section from the
ground state of Be I obtained by B and CCC methods is shown
in figure 2. The account for exchange by the orthogonalized
function method [8] sometimes leads to the appearance of
a noticeable (non-physical) peak in the cross section at

near-threshold energies. For this reason we usually use B-data
calculated with normalization but without exchange.

3. Collisional–radiative model

CRM constructed for all charge stages of beryllium contains
80 LS-terms:

Be I : 2s2 1S; 2snl 1L , 3L , L = l, n = 2 − 4,

all l; 2p2 1D, 3P (19 terms),
Be II : 1s2nl 2L , L = l, n = 2 − 6, all l (20 terms),

Be III : 1s2 1S; 1snl 1L , 3L , L = l, n = 2 − 4,

all l (19 terms),

Be IV : nl 2L , L = l, n = 1 − 6, all l (21 terms),

Be V (bare nucleus) : (1 state),

and includes the following processes: spontaneous radiative
decays, electron impact excitation and ionization, as well
as radiative, dielectronic and three-body recombination. The
plasma is supposed to be optically thin. The energies of
the levels and (if available) the oscillator strengths were
taken from the NIST database. A new improved set of CCC
excitation and ionization cross sections for neutral beryllium
as well as CCC data [14] for Be+ were used. For selected
transitions in Be, Be+ and for ions Be2+, Be3+ the cross
sections were computed by the ATOM code [6] (the K-matrix
for excitation and the normalized Coulomb–Born-exchange
for ionization). Note that the method used in ATOM
corresponds to perturbation theory with a small parameter
1/Z, where Z is the spectroscopic symbol. Therefore, the
method’s accuracy is expected to be better for ions. The
partial photorecombination rate coefficients for all ion stages
were also calculated by the ATOM code. Three-body
recombination rates were obtained from the principle of
detailed balance. For dielectronic recombination (DR) rates
the formula suggested in [15] was used. We also assumed
that DR occurs from the ground state of the target ion into
the highest state of the recombined ion. This assumption
is reasonable for Be with rather small resonance transition
energy.

The steady-state solution of the system of balance
equations for ionization equilibrium and level populations was
obtained using the collisional–radiative code NOMAD [16].
As an illustration, figure 3 shows the ionization balance and
radiative power loss coefficient L z = Prad/Ne Na as a function
of the electron temperature, for an assumed electron density
Ne = 1013 cm−3. Here Na = 6 N Z is the total beryllium
density, Prad is the radiated power (W cm−3) including line
(due to the cascade transitions), recombination (radiative and
dielectronic) and bremsstrahlung radiation

Pl =

∑
Zi j

1.6 × 10−19 N Z
i AZ

i j1E Z
i j , (6)

Prec =

∑
Zi j

1.6 × 10−19

(
αrr

ji

(
I Z
i j +

3

2
Te

)
+ αdr

ji 1Ē Z+1
j

)
× Ne N Z+1

j , (7)

Pbr = 1.54 × 10−32ḡNe

√
Te

∑
Z

N Z Z2. (8)
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Figure 3. Radiative power loss per unit volume due to line
emission, recombination radiation and bremsstrahlung as a function
of electron temperature. The total power loss coefficient is shown in
red. Dashed lines represent the relative concentrations of Be ions.

The summation in (6) and (7) is made over all
the transitions and all ions Z. In formula (8), the
frequency-averaged free–free Gaunt factor g has been taken
as equal to 1.2, and Te is expressed in eV.

The two peaks in L z—one at low and another one at
high temperatures—correspond to Be/Be+ and Be2+/Be3+

(i.e. L- and K-shell) radiation, respectively. The minimum
at ≈10 eV occurs due to the fact that the most abundant
He-like ions Be2+ cannot be excited at that temperature. Below
100 eV, L z is dominated by bound–bound transitions. At
higher temperatures beryllium becomes completely ionized
and no longer produces the line radiation. The increase of
density leads to a shift of the ionization equilibrium and, more
importantly, to the competition of collisional deexcitation
with radiative decays. As a result, the total power-loss
coefficient at a given temperature decreases.

In an ionizing regime, which is of special interest for
the modelling of light impurity transport, the electron cooling
rate 3 = Pe/Ne Na (where Pe is the electron cooling power in
W cm−3) is dominated by excitation and ionization

Pex =

∑
Zi j

1.6 × 10−19 Ne(〈υσi j 〉ex N Z
i − 〈υσ j i 〉dex N Z

j )1E Z
i j ,

(9)

Pi z =

∑
Zi j

1.6 × 10−19 Ne(〈υσi j 〉i z N Z
i − Ne α3bR

ji N Z+1
j )

×

(
I Z
i j +

3

2
Te

)
. (10)

Figure 4 demonstrates 3(Te) calculated for Be ions. The
comparison with other available data (the ADAS database)
shows a rather good agreement.

We also performed calculations of effective ionization
and recombination rates and studied their dependence
on plasma parameters. The obtained coefficients will be
implemented in the three-dimensional Monte-Carlo neutral
transport code EIRENE [17]. The rates were derived from
the total rate matrix under quasi-steady-state assumption:
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Figure 4. Electron cooling rate for different ionization stages of Be
as a function of electron temperature.
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Figure 5. Effective ionization and recombination rates as a function
of electron temperature for the ground (2s2 1S) and metastable
(2s2p 3P) states of Be I.

dNi/dt = 0 for all excited states except for ground and
metastable levels. An example for Be I is shown in figure 5.
The essential contribution of the excited states to the
effective rates is clearly seen: the effective ionization rate
increases monotonically and becomes saturated at high Ne.
The recombination rate behaves non-monotonically due to
competition between the recombination to and the collisional
ionization from excited states.

4. Conclusion

In this work, a comparison between two independent
methods (K-matrix/Coulomb–Born-exchange and the
sophisticated convergent close-coupling) is made for Be I
and demonstrates reasonable agreement. Although the CCC
method generally provides an excellent accuracy, the use of
the K-matrix/BEN greatly reduces the computational efforts.
Similar K-matrix/BEN calculations (possibly including
transitions between fine structure components) can easily
be done for other light (or more precisely, small-electron)
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elements (e.g. for alkali or alkaline earth atoms and their
isoelectronic ions).

The CRM constructed for Be ions includes a new,
improved set of CCC excitation and ionization cross sections.
The steady-state ionization balance, electron cooling rates
and radiative power losses were calculated as functions of
electron temperature by the NOMAD code. The influence of
the excited states on effective ionization and recombination
rate coefficients is demonstrated.
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