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Strict limit on in-plane ordered magnetic dipole moment in URu2Si2
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Neutron diffraction is used to examine the polarization of weak static antiferromagnetism in high quality
single crystalline URu2Si2. As previously documented, elastic Bragg-like diffraction develops for temperature
T < THO = 17.5 K at q = (100) but not at wave vector transfer q = (001). The peak width indicates correlation
lengths ξc = 230(12) Å and ξa = 240(15) Å. The integrated intensity of the T -dependent peaks corresponds to a
sample averaged c-oriented staggered moment of μc = 0.022(1) μB at T = 1.7 K. The absence of T -dependent
diffraction at q = (001) places a limit μ⊥ < 0.0011 μB on an f - or d-orbital-based in-plane staggered magnetic
dipole moment, which is associated with multipolar orders proposed for URu2Si2.
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I. INTRODUCTION

Over two decades of concerted theoretical and experimental
effort has so far failed to reveal the true nature of the
so-called “hidden order” (HO) in the heavy-fermion material
URu2Si2 [1]. The enigmatic HO state is signaled by a sharp
specific heat anomaly at THO = 17.5 K [2,3], but the nature
of the underlying order parameter is unresolved. This state of
affairs has fueled an active subfield of research, with many cre-
ative theoretical proposals, and a full battery of experimental
techniques brought to bear on the problem [1]. The eventual
explanation for the HO in centered tetragonal URu2Si2 will
need to account for numerous intriguing experimental findings,
including strong Fermi-surface (FS) reconstruction below
THO [2,3], an antiferromagnetic phase that is reached from
the HO phase by applying pressure [4] but does not appear
to affect the FS [5,6], c-axis polarized spin fluctuations which
become gapped and coherent at THO [7], and most recently,
the identification of C4 rotational symmetry breaking of the
weak basal-plane spin susceptibility [8].

One of the first experimental signals which seemed to
correlate with THO was found using elastic neutron scattering.
The first neutron studies revealed the onset of the so-called
small moment antiferromagnetic (SMAF) phase below THO,
which was characterized by a (100) ordering wave vector, and a
very small ordered moment of approximately 0.03 μB [12–15].
The magnetic structure in the SMAF phase consists of dipole
moments oriented along the c axis, with ferromagnetically
ordered layers alternating antiferromagnetically along the c

axis [Fig. 1(a)]. The reported size of the ordered moment varies
from (0.011 to 0.03) μB/U in single crystal samples [12–16].
It is now clear that lattice strain can induce stronger sample av-
eraged staggered magnetization possibly through inclusions of
droplets of the pressure induced large moment phase [17–20],
and 29Si NMR places an upper limit of 0.0002 μB on a
homogeneous c-axis oriented staggered moment that is static
on the microsecond time scale [Fig. 1(a)] [21]. High quality

samples at ambient pressure are generally found to have a
≈(0.01 to 0.02) μB staggered magnetization, with a correlation
length in excess of 200 Å as in the present experiment.
Whether intrinsic or extrinsic in origin, the size of the ordered
moment in the SMAF phase is insufficient to explain the size
of the specific heat anomaly at 17.5 K within the conventional
framework for rare earth and actinide magnetism [22], and
thus the true nature of the order parameter remains elusive.

A recent study of the magnetic susceptibility of small
crystals of URu2Si2, using the highly sensitive torque mag-
netometry technique, has revealed C4 symmetry breaking
in the basal plane of the tetragonal unit cell [8]. This
symmetry breaking onsets at THO in small crystals, indicating
the formation of domains of the broken symmetry state.
Since this discovery, additional experiments have confirmed
the presence of C4 symmetry breaking through NMR line
width broadening [23] and an anisotropic cyclotron resonance
signal [24]. Theoretical proposals have been put forth to
explain the C4 symmetry breaking, including spin nematic
order [25], a spin-orbit density wave [26], a modulated spin
liquid phase [27], and a mixed singlet-triplet density wave [28].
These proposals show how spin rotation symmetry could be
broken while respecting time reversal symmetry, and hence
avoiding the formation of a magnetic dipole moment in the
basal plane. However, another possibility is also evident: small
in-plane ordered dipole moments which have so far escaped
detection.

Though a small ordered in-plane dipole moment would
not by itself account for the change of entropy at the hidden
order transition any more than the c-oriented SMAF, its
presence or absence is critical to understanding C4 symmetry
breaking. A putative transverse staggered magnetization was
recently considered in three separate theoretical works. Rau
et al. [9] proposed a spin density wave (SDW) involving
5f crystal field doublets. The (undetermined) details of the
crystal field wave functions dictate the size of the in-plane
moment induced by such a SDW, which could be vanishingly
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FIG. 1. (Color online) Schematic of magnetic ordering for the
(a) known out-of-plane magnetic moments (μ‖) in the SMAF phase
below THO, and (b) proposed in-plane magnetic moments (μ⊥) from
Refs. [9–11].

small. Nevertheless, a small moment of unspecified magnitude
pointing along [110] is expected in this case [9]. A second
theoretical prediction of a small in-plane moment comes from
Chandra et al., who propose the order parameter characterizing
the HO phase is hybridization between conduction electrons
and local Ising-like 5f 2 wave functions, the combination of
which produces an object that breaks both single and double
time-reversal symmetry, a so-called “hastatic” order which
entails a small in-plane moment in the hidden order phase [11].
Chandra et al. place a theoretical upper limit of μ⊥ = 0.015
μB on the size of the in-plane ordered moment. A third paper
examines the complete set of multipole correlations allowed
in URu2Si2 [10]. Employing density functional theory to
establish a multiband Anderson Hamiltonian and augmented
RPA theory to account for interactions, a rank-5 multipole
(dotriacontapole) order with “nematic” E− symmetry was
found to be critical to a low temperature condensed phase.
While no estimate of magnitude is provided, a staggered
pseudospin moment along the [110] direction is concomitant
to this order. Although the dotriacontapole order was initially
supported by the interpretation of high magnetic field neutron
diffraction data [29], this conclusion has recently been dis-
counted based on a space group analysis [30]. Furthermore, a
recent photoemission study of the FS in URu2Si2 [31] did not
observe features associated with dotriacontapole ordering in
Ref. [10]. The photoemission experiment provided evidence
for itinerant 5f electrons so that theories relating to (localized)
crystal field wave functions such as Refs. [9] to [11] may be
called into question. Nevertheless, even in the absence of a
fully consistent theory, in light of the C4 symmetry breaking
magnetic susceptibility data, it is of utmost importance to
establish whether or not a small dipole moment is formed
in the basal plane of URu2Si2.

Two recently published works have indicated upper bounds
on such a moment based on neutron diffraction. Metoki
et al. [32] place an upper limit of 0.004 μB , while Das et al. [33]
report a limit of 0.001 μB . These limits are both based on
data from a relatively large wave vector [q = (003)], which
introduces a significant dependence of these limits on the
unknown magnetic form factor for the putative basal plane
moment. To tighten the experimental limits, we performed

an elastic neutron scattering experiment to search for a small
ordered in-plane dipole moment in a single crystal of URu2Si2.
Our measurement puts an upper limit on the possible size of
any such moment of μ⊥ < 0.0011 μB assuming a magnetic
form factor appropriate to the 5f 3 electron configuration of
U3+. Because the measurement was carried out as close as
possible [q = (001)] to the origin of reciprocal space, the limit
is relatively insensitive to the electronic orbital associated with
a putative staggered magnetization.

II. EXPERIMENTAL METHOD

A large single crystal of URu2Si2 was grown by the
Czochralski method using a Tri-Arc furnace at McMaster
University. The crystal was oriented in the (H0L) plane and
mounted in a helium flow cryostat on the SPINS triple-axis
spectrometer at the National Institute for Standards and Tech-
nology (NIST) Center for Neutron Research. The instrument
was configured for elastic scattering with Ei = Ef = 4.7 meV,
using a vertically focused PG(002) monochromator and a flat
PG(002) analyzer. The full width at half maximum (FHWM)
energy resolution for this configuration is 0.27 meV. Cooled
beryllium filters were used before and after the sample to
eliminate second order (λ/2) contamination. SPINS has a
nickel supermirror guide before the monochromator, giving
an energy-dependent incident beam divergence of 1◦ Å−1/ki ,
where ki is the incident wave number of the neutrons. Soller
collimators (80’before and after the sample) were in place to
control the in-plane beam divergence.

The magnetic neutron scattering cross section is sensitive to
the relative orientation of the scattering wave vector, q = ki −
kf , to the direction of the magnetic moment M. Specifically, the
cross section is maximal for q ⊥ M and exactly zero for q ‖ M.
Thus, for a magnetic structure with moments oriented along
the c axis [Fig. 1(a)] there is no magnetic contribution to Bragg
scattering at (00L)-type positions. In contrast, for an in-plane
ordered moment, such as that proposed in Refs. [9–11] and
shown in Fig. 1(b), the polarization factor is largest for (00L)-
type positions. With our experimental configuration, we can
access (H0L) reflections and differentiate between transverse
and in-plane ordered moments by focusing on (H00)- and
(00L)-type reflections, respectively.

The space group for URu2Si2 is centered tetragonal. The
conventional centered tetragonal unit cell, which contains
two formula units, has lattice parameters a = b = 4.129 and
c = 9.573 Å at T = 293 K and the general selection rule
for reflections with Miller indices (hkl) in the corresponding
tetragonal reciprocal lattice is h + k + l = 2n. The magnetic
structures proposed [in-plane moment, Fig. 1(b)] and mea-
sured [c-axis SMAF phase, Fig. 1(a)], however, break the
centering translational symmetry and produce peaks at the
nuclear-forbidden positions. This provides an ideal scenario to
search for small magnetic signals on a low background at (hkl)
where h + k + l = 2n + 1, while differentiating between in-
plane and transverse ordered moments through the polarization
factor.

A note on our choice of incident energy is appropriate.
The use of cold neutrons with low incident energy allows us
to analyze the elastically scattered neutrons with an energy
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FIG. 2. (Color online) Temperature dependence of the peak in-
tensity at several candidate magnetic Bragg peaks. The inset shows
the temperature dependence of the peaks which would correspond to
in-plane magnetic ordering, on a finer intensity scale. Dotted lines are
guides to the eye. The monitor count rate was 6100 counts/s. Error
bars represent one standard deviation.

resolution of 0.27 meV, thereby excluding inelastic processes
which could contribute to overall background and obscure a
small signal. We chose an incident energy of 4.7 meV to avoid
the effects of multiple scattering. Possibilities for multiple
scattering, i.e., where some proportion of the detected neutrons
have undergone more than one scattering process before being
detected, depend on the incident energy and details of the
Bragg reflection geometry. The effect can be strong for large
samples such as the one studied here to achieve sensitivity
to small moment magnetic ordering. Considering the lattice
parameters for URu2Si2 and our use of the (H0L) scattering
plane, we find there are no multiple Bragg scattering processes
for the (001) or (003) positions and neutron energies from (3.34
to 4.71) meV (Appendix C).

III. RESULTS AND DISCUSSION

First, we looked for the SMAF ordered moment polarized
along the c axis. Figure 2 shows the temperature dependence
of the (100) and (102) peak intensities. Both are allowed
magnetic Bragg peaks for this type of ordering [Fig. 1(a)].
The (100) and (102) reflections were collected at 3 minutes
and 10 minutes per point, respectively, and the intensity is
normalized to a monitor in the incident beam with a count
rate of 6100 counts/s. Both reflections show a temperature
dependence consistent with a transition near 17.5 K, the hidden
order transition temperature. In contrast, the intensities at (001)
and (003), which are sensitive to static in-plane order, show
no increase above background. For this temperature scan, the
intensity at the (001) position was measured for 2.8 hours
per point, while (003) was measured for 55 min per point.
Transverse scans at (001) and (100) are shown in Fig. 3, at two
temperatures, 1.6 K and 25 K. The (100) peak disappears above
the transition. The (001) position does not show a peak at either
temperature. To prove the trajectory probed actually passed
through the (001) location in reciprocal space we also show
data collected without the beryllium filters in the beam (black
filled symbols). Under those conditions there is a component
of λ/2 neutrons that diffracts from the (002) nuclear Bragg
peak. It appears exactly where a putative (001) magnetic peak
would occur for λ neutrons. There is no sign of a rod of
scattering parallel to c at (001) which would manifest as a
peak in the transverse scan at both temperatures. The lack of
rods is an indication of reduced stacking faults in this crystal,
which is consistent with the relatively small SMAF moment
(μ‖ � 0.02 μB) [12,14,16]. Figure 3(b) shows transverse
scans through the (100) position. From a flat background in
the PM phase (T = 25 K) a peak develops in the HO phase
(T = 1.6 K). This peak is not resolution limited [horizontal
bar and Figs. 5(a) and 5(b)]. A fit of perpendicular scans
through (100) to a Lorentzian convoluted by a Gaussian leads
to correlation lengths of ξc = 230(12) Å and ξa = 240(15) Å
along the c and a directions, respectively. Previously reported
correlation lengths for URu2Si2 range from 200 Å [14] to
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FIG. 3. (Color online) Transverse q scans at two positions, (a) (001) and (b) (100), which would correspond to in-plane and out-of-plane
magnetic ordering, respectively. Only the (100) position shows a magnetic Bragg peak upon cooling through THO = 17.5 K. A transverse scan
performed at the same position as (001) but without the higher-order filters in the beam [i.e., intentionally including λ/2 contamination from
the (002) nuclear Bragg peak] indicates the correct position of the scan in reciprocal space [black dashed line in (a)], scaled down by a factor
of 7200. The horizontal bar in (b) represents the calculated full width at half maximum of the instrumental resolution (see Fig. 5). The monitor
count rate was 6100 counts/s. Error bars represent one standard deviation.
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400 Å [12] for the a axis and 100 Å [15] to 450 Å [14] for the
c axis.

To determine the size of the out-of-plane magnetic moment
μ‖ and place limits on the in-plane moment μ⊥, we normalize
to the (101) nuclear reflection, which has the weakest structure
factor of any reflection from the URu2Si2 crystal structure,
and therefore is least affected by extinction. Details of the
normalization are given in Appendix A.

Entering into the magnetic cross section is the magnetic
form factor fM (q), which is the Fourier transform of the
unpaired spin density and depends on the spatial distribution of
spin density. In the “hastatic order” scenario, μ⊥ contains both
conduction electron and 5f 3 components, and presumably
has a more extended spin density. Figure 4 shows the
magnetic form factor for various spin density distributions.
Two possibilities for a localized U moment are shown,
namely the 5f 2 and 5f 3 electronic configuration along with
some other possibilities that relate to moments forming from
bands derived from Ru or Si orbitals. We also reproduce
the measured magnetic form factor squared from itinerant
magnetic excitations associated with Ru in Sr2RuO4 [34].
For Si, we show the square of the normalized x-ray atomic
scattering factor, tabulated in Ref. [35], which measures the
Fourier transform of the total local electron density. These
latter approximations are only intended to show plausible
variations in magnetic form factor around the (001) and (003)
positions, and not to represent realistic calculations for spin
density in URu2Si2. We note that because we are basing the size
of the upper limit for μ⊥ solely on a measurement at the (001)
position, which has a very small wave vector (|q| = 0.65 Å−1),
sensitivity to the choice of form factor is small, approximately
1%. Upper limits that are based on the (003) position with
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FIG. 4. (Color online) Square of the magnetic form factors for
several types of spin densities as a function of scattering wave vector
|q|. The first three curves correspond to localized ionic states of
uranium [U4+ (5f 2) and U3+ (5f 3)] and ruthenium (Ru4+), and are
described by Eq. (B1). We also roughly approximate the possible spin
density that could be associated with Ru- or Si-derived conduction
bands, for example as might be appropriate for conduction electrons
in the hastatic order theory [11]. The data for Si are those of the
x-ray atomic scattering factor squared, which measures the Fourier
transform of the total electron density (Ref. [35]).

TABLE I. Summary of measured and calculated results for
various magnetic and nuclear Bragg peaks. The moment size listed
for the (001) reflection is an upper bound on any in-plane magnetic
moment.

Reflection T (K) F 2
meas (barns) F 2

calc (barns) μ (μB )

(101) 26 0.29(6) 0.29
(100) 1.6 10.0(8)×10−5 0.0215(8)
(102) 1.6 6.7(5)×10−5 0.0201(9)
(001) 1.6 <3.0(2)×10−7 <0.0011

|q| = 1.95 Å−1 are affected much more severely. Thus, though
our limit is consistent with that quoted by Das et al. [33],
and is stricter than that quoted by Metoki et al. [32], those
experiments are essentially only sensitive to local 5f electron
magnetism, since they are based in part [33] or entirely [32]
on data from (003).

Table I summarizes the measured intensities of the relevant
magnetic and nuclear peaks, as well as the derived magnetic
moments. We use form factors based on the U 5f 2 and 5f 3

electronic configurations to determine μ‖ and μ⊥, respectively
(5f 3 was chosen for μ⊥ since it produces a more relaxed
limit).

IV. CONCLUSIONS

Our search for an in-plane ordered dipole moment in a
high quality single crystal of URu2Si2 places an upper limit
of μ⊥ � 0.0011 μB on the size of any such moment with a
correlation length in excess of 200 Å. Our measurement cannot
rule out ordered in-plane moments smaller than this or with a
substantially shorter correlation length. We note that it is still
within the bounds placed on the dipole moment produced in
an ordered dotriacontapole model [10]. The assumption of a
localized 5f 3 character of the magnetic form factor may not
be suitable for theories such as the hastatic order, where the
in-plane moment arises in part from conduction electrons with
a more extended spin density distribution. In that case, the size
of the magnetic moment consistent with our measurements
(and others obtained from neutron scattering [32,33]) could be
larger than the value quoted here. With a specific form factor
it would be possible to calculate a new limit based on the
magnetic scattering structure factor listed in Table I.

Our experiment thus places strict and well-defined con-
straints on theories with in-plane magnetic dipole moments,
such as the theories of hastatic order [11] and rank-5 superspin
density wave [9]. This may shift the focus to theories where
C4 rotational symmetry is broken while retaining time-reversal
symmetry.
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APPENDIX A: NORMALIZED NEUTRON DIFFRACTION

The elastic magnetic neutron scattering cross section at a
reciprocal lattice vector τ associated with a periodic magnetic
structure is [36]

(
dσ

d�

)
M

(q) = (γ r0)2 N (2π )3

v0

∑
τ

δ(q − τ )|q̂ × FM × q̂|2,

(A1)

where γ = 1.193 is the magnetic dipole moment of the neutron
in units of the nuclear Bohr magneton, r0 = 2.818 × 10−12 cm
is the classical electron radius, and FM is the magnetic structure
factor, which, for collinear moments, is given by

FM (τ ) = 1

2
gL〈J〉fM (τ )

∑
d

σd exp (iτ · d) exp(−Wd), (A2)

where gL is the Landé g factor, 〈J〉 is the expectation value
of the angular momentum operator, fM (τ ) is the magnetic
form factor [Eq. (B1)], exp(−Wd) is the Debye-Waller factor,
which accounts for atomic thermal motion and which is
indistinguishable from unity at temperatures and wave vectors
of interest, σd = ±1, and the sum is over the d atom basis.
In the case of the conventional centered tetragonal cell
appropriate to URu2Si2, the basis consists of two ions at
d1 = (0,0,0) and d2 = (1/2,1/2,1/2). The magnetic structure
factor reduces to

FM (hkl) = μ · fM (hkl), for h + k + l = odd

FM (hkl) = 0, for h + k + l = even .

For the SMAF structure μ ‖ c, producing nonzero intensity at
(100), (300), etc. For the proposed in-plane moments, μ ⊥ c,
and intensity should arise at (001), (003), etc. Details of the
magnetic form factors fM are given in Appendix B.
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FIG. 5. (Color online) (a) and (b) Calculated and measured FWHM of Bragg peaks as a function of scattering wave number q, for
transverse and longitudinal scans. The blue circles (λ/2) and black squares (λ) show the measured FWHM for nuclear peaks, and the red
triangle shows the measured FWHM for the (100) magnetic peak (error bars represent half of the 95% confidence interval resulting from fits to
a Gaussian line shape). The calculated FWHM (fres) are based on resolution function calculations for the following instrumental configuration:
incident beam divergence of 60’/ki , PG(002) vertically focused monochromator, 80’collimators before and after the sample, PG(002) flat
analyzer, and 33’sample mosaic. For Q < 2 Å−1 the FWHM are measured and calculated (green dashed line) for incident neutrons with
ki = 2π/λPG(002) = 1.8733 Å−1. For Q > 2 Å−1, the FWHM are shown (pink dot-dashed line) for ki = 2π/(λPG(002)/2) = 3.7465 Å−1. (c)
Calculated areas of the resolution function (Ares) for transverse scans as a function of Q, for the instrumental configuration above (green dashed
line is for λPG(002), pink dot-dashed line is for λPG(002)/2). (d) Peak height of the normalized two-dimensional resolution function [Eq. (A10)].
The black crosses show the values used for determining the measured cross sections at the specified zone centers.
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The coherent elastic nuclear scattering cross section is given
by (

dσ

d�

)
N

(q) = N (2π )3

v0

∑
τ

δ(q − τ )|FN (q)|2, (A3)

where FN is the nuclear structure factor, given by

FN (q) =
∑

d

bd exp (iq · d) exp(−Wd), (A4)

where bd is the coherent scattering length for the atom which
is located at the basis vector d, and exp(−Wd) is the Debye-
Waller factor.

Denote a three-dimensional resolution function for elastic
diffraction as R(3)

Q (q − Q) with the same normalization con-
dition as the Dirac δ-function:∫

d3qR(3)
Q (q) = 1. (A5)

The monitor-normalized intensity near a nuclear Bragg peak
τ takes the following form:

IN (q) = CN (2π )3

vN

|FN (τ )|2R(3)
τ (q − τ ). (A6)

Here C is a suitably dimensioned pre-factor, which absorbs all
sensitivity related factors characterizing a given instrumental
configuration.

Containing the identical prefactor, the corresponding ex-
pression for magnetic scattering under the same experimental
conditions reads

IM (q) = C(γ r0)2 N (2π )3

v0
|FM⊥(τ )|2R(3)

τ (q − τ ). (A7)

Here we have defined the transverse projection of the magnetic
vector structure factor:

FM⊥(τ ) = τ̂ × FM (τ ) × τ̂ (A8)

If, as for URu2Si2, the chemical structure and therefore the nu-
clear scattering cross section is well known, the dimensionless
squared magnetic structure factor can be determined through
ratios of peak intensities as follows:

|FM⊥(τM )|2 = |FN (τN )|2
(γ r0)2

IM (τM )

IN (τN )

R(2)
τN

(0)

R(2)
τM (0)

. (A9)

Note that by using the fact that the resolution perpendicular to
the scattering plane is independent of the scattering angle, we
have split off that part of the resolution function so as to focus
on the two-dimensional in-plane elastic resolution function
with the following normalization condition:∫

d2qR(2)
Q (q) = 1. (A10)

The magnetic structure factor can also be obtained from a ratio
of integrated intensities

|FM⊥(τM )|2 = |FN (τN )|2
(γ r0)2

∫
τM

dq′IM (q′)∫
τN

dq′IN (q′)

×
∫
τN

dq′R(2)
τN

(q′ − τN )∫
τM

dq′R(2)
τM

(q′ − τM )
. (A11)

Here it is understood that the path of integration is matched
for the measured integrated intensity and the corresponding
integral over the resolution function. In Eqs. (A9) and (A11)
the measured intensity ratio is balanced by the corresponding
ratio for the resolution function. If τN ≈ τM the latter ratio
will not deviate significantly from one.

The resolution function can readily be calculated based
on the instrumental configuration [37]. Figure 5 shows the
wave vector dependence of various aspects of the resolution
function. By comparing the experimentally measured width
of nuclear Bragg peaks with the calculated widths, Figs. 5(a)
and 5(b) indicate that the calculation based on the known beam
divergences and the instrument geometry accurately reflects
the instrumentation configuration. Fig. 5(c) shows the wave
vector dependence of the transverse (rocking) integral through
the resolution function for use in Eq. (A11), and Fig. 5(d)
depicts the q dependence of the peak value of the normalized
two-dimensional elastic resolution function for use in Eq. (A9).

Table II shows the values for the c-oriented staggered
magnetization calculated from the (100) and (102) magnetic
peak intensities using Eq. (A11). To determine the upper bound
on μ⊥, we fit the intensity vs. temperature data at (001) to the
following functional form,

I (T ) = I0(Tc − T )2β, T < Tc

I (T ) = 0, T > Tc

This form represents an order parameter curve, as could be
expected for a second order phase transition. We fix β = 0.5

TABLE II. Data obtained from magnetic reflections and the (101) nuclear reflection, leading to the determination of μ⊥max and μ‖.

μ (μB ) c

Refl. |Q| (Å−1) I (Q) (10−7 counts/monitor) |fM |2
5f 2 |fM |2

5f 3 moment direction

(100) 1.5217 2.8(1)a 0.0215(8) 0.0222(9) ‖ c

(102) 2.0097 2.0(1)a 0.0201(9) 0.0210(9) ‖ c

(001) 0.6563 0.0085b <0.00105(3) <0.00106(3) ⊥ c

(101) 1.6572 8200(500)a

aI (Q) is determined using the integrated area of a transverse q scan across the peak of interest (Ameas), via I (Q) = Ameas/Ares where
Ares = ∫

τ
dq′R(2)

τ (q′ − τ ) is the area of a transverse scan through the two-dimensional resolution function [normalization defined in Eq. (A10),
plotted in Fig. 5(c)] as a function of |Q|.
bI (Q) is determined from the maximum peak height Pmax via I (Q) = Pmax/R(2)

Q (0).
cMoments are listed for two choices for the magnetic form factor, as shown in Fig. 4.
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FIG. 6. (Color online) Blue circles: the temperature dependence
of intensity at (001), subtracting the mean value, with a fit to an order
parameter curve with fixed β = 0.5, Tc = 17.5 K (blue solid line).
The range corresponding to one standard deviation in I0 is shown as
a gray shaded region. The maximum possible I0max = 2.50 × 10−6

counts/monitor (red circle), is used to determine the upper limit on
μ⊥. Error bars represent one standard deviation on the measured
intensity.

(in the absence of further information about the universality
class of the transition) and Tc = 17.5 K and allow I0 to
vary. The fitted value is I0 ≡ (0.1 ± 2.5) × 10−6, and we take
the maximum possible value of I0 consistent with this fit to
determine the upper limit on the in plane moment, μ⊥ (Fig. 6),
through Eq. (A9). The corresponding limits based on different
possible form factors are listed in Table II.

APPENDIX B: FORM FACTOR

The electronic configuration associated with magnetism
in URu2Si2 is not known. Two possibilities are U4+ (5f 2)
or U3+ (5f 3) [38]. The magnetic form factor, fM (|q|),
which enters into Eq. (A1), is slightly different for the two
configurations. The form factor, which accounts for the spatial
distribution of unpaired spin density in the atomic orbitals,
can be approximated by the first two terms in a harmonic
expansion [35],

fM (|q|) = 〈j0(|q|)〉 +
(

1 − 2

gL

)
〈j2(|q|)〉 (B1)
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FIG. 7. (Color online) The number of reflections accessible by
multiple scattering when the scattering geometry is set to measure
(001) (blue dashed line), (003) (red dot-dashed line), and (101) (green
line with symbols) for different incident energies(Ei), with ki and kf

spanning the (H0L) scattering plane. At Ei = 4.7 meV (black solid
line), no multiple scattering is possible for these configurations within
a resolution tolerance of 0.05 Å−1.

where gL is the Landé g-factor and,

〈jl(k)〉 =
∫ ∞

0
U 2(r)jl(kr)4πr2dr. (B2)

Here U (r) is the radial wave function for the unpaired spins
and jl is the lth spherical Bessel function.

The form factors were calculated at the relevant wave
vectors using data from Ref. [35] and are tabulated in Table II
for both 5f 2 and 5f 3 configurations. We choose the 5f 2

configuration for determining μ‖, consistent with Ref. [15].
For the upper limit on μ⊥, we choose the form factor for
the 5f 3 configuration since it produces a more relaxed upper
limit.

APPENDIX C: MULTIPLE SCATTERING

Multiple elastic scattering can occur when a sphere of radius
|ki | centered at ki passes through reciprocal lattice points other
than the origin and the desired reflection. Figure 7 shows how
many such reflections (with distances within 0.05 Å−1) exist
for URu2Si2 arranged in the (H0L) scattering plane, as a
function of incident energy. Our chosen incident energy of
4.7 meV is free of multiple scattering (shown by the black
line).

[1] J. A. Mydosh and P. M. Oppeneer, Rev. Mod. Phys. 83, 1301
(2011).

[2] T. T. M. Palstra, A. A. Menovsky, J. Van den Berg, A. J.
Dirkmaat, P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh,
Phys. Rev. Lett. 55, 2727 (1985).

[3] M. B. Maple, J. W. Chen, Y. Dalichaouch, T. Kohara, C. Rossel,
M. S. Torikachvili, M. W. McElfresh, and J. D. Thompson, Phys.
Rev. Lett. 56, 185 (1986).

[4] H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K. Kuwahara,
T. Sakakibara, H. Morimoto, S. Kawarazaki, Y. Miyako, and
J. A. Mydosh, Phys. Rev. Lett. 83, 5114 (1999).

[5] M. Nakashima, H. Ohkuni, Y. Inada, R. Settai, Y. Haga,
E. Yamamoto, and Y. Onuki, J. Phys. Condens. Matter 15, S2011
(2003).

[6] E. Hassinger, G. Knebel, T. D. Matsuda, D. Aoki, V. Taufour,
and J. Flouquet, Phys. Rev. Lett. 105, 216409 (2010).

155122-7

http://dx.doi.org/10.1103/RevModPhys.83.1301
http://dx.doi.org/10.1103/RevModPhys.83.1301
http://dx.doi.org/10.1103/RevModPhys.83.1301
http://dx.doi.org/10.1103/RevModPhys.83.1301
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.56.185
http://dx.doi.org/10.1103/PhysRevLett.56.185
http://dx.doi.org/10.1103/PhysRevLett.56.185
http://dx.doi.org/10.1103/PhysRevLett.56.185
http://dx.doi.org/10.1103/PhysRevLett.83.5114
http://dx.doi.org/10.1103/PhysRevLett.83.5114
http://dx.doi.org/10.1103/PhysRevLett.83.5114
http://dx.doi.org/10.1103/PhysRevLett.83.5114
http://dx.doi.org/10.1088/0953-8984/15/28/316
http://dx.doi.org/10.1088/0953-8984/15/28/316
http://dx.doi.org/10.1088/0953-8984/15/28/316
http://dx.doi.org/10.1088/0953-8984/15/28/316
http://dx.doi.org/10.1103/PhysRevLett.105.216409
http://dx.doi.org/10.1103/PhysRevLett.105.216409
http://dx.doi.org/10.1103/PhysRevLett.105.216409
http://dx.doi.org/10.1103/PhysRevLett.105.216409


K. A. ROSS et al. PHYSICAL REVIEW B 89, 155122 (2014)

[7] C. R. Wiebe, J. A. Janik, G. J. MacDougall, G. M. Luke, J. D.
Garrett, H. D. Zhou, Y.-J. Jo, L. Balicas, Y. Qiu, J. R. D. Copley,
Z. Yamani, and W. J. L. Buyers, Nat. Phys. 3, 96 (2007).

[8] R. Okazaki, T. Shibauchi, H. J. Shi, Y. Haga, T. D. Matsuda,
E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda, Science
331, 439 (2011).

[9] J. G. Rau and H.-Y. Kee, Phys. Rev. B 85, 245112 (2012).
[10] H. Ikeda, M.-T. Suzuki, R. Arita, T. Takimoto, T. Shibauchi, and

Y. Matsuda, Nat. Phys. 8, 528 (2012).
[11] P. Chandra, P. Coleman, and R. Flint, Nature (London) 493, 621

(2013).
[12] C. Broholm, J. K. Kjems, W. J. L. Buyers, P. Matthews,

T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh, Phys.
Rev. Lett. 58, 1467 (1987).

[13] T. E. Mason, B. D. Gaulin, J. D. Garrett, Z. Tun, W. J. L. Buyers,
and E. D. Isaacs, Phys. Rev. Lett. 65, 3189 (1990).

[14] E. D. Isaacs, D. B. McWhan, R. N. Kleiman, D. J. Bishop,
G. E. Ice, P. Zschack, B. D. Gaulin, T. E. Mason, J. D. Garrett,
and W. J. L. Buyers, Phys. Rev. Lett. 65, 3185 (1990).

[15] C. Broholm, H. Lin, P. T. Matthews, T. E. Mason, W. J. L.
Buyers, M. F. Collins, A. A. Menovsky, J. A. Mydosh, and J. K.
Kjems, Phys. Rev. B 43, 12809 (1991).

[16] H. Amitsuka, K. Matsuda, I. Kawasaki, K. Tenya, M. Yokoyama,
C. Sekine, N. Tateiwa, T. C. Kobayashi, S. Kawarazaki, and
H. Yoshizawa, J. Magn. Magn. Mater. 310, 214 (2007).

[17] G. M. Luke, A. Keren, L. P. Le, Y. J. Uemura, W. D. Wu, D. Bonn,
L. Taillefer, J. D. Garrett, and Y. Ōnuki, Hyperfine Interact. 85,
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