1	New Insights on the Prehydration of Cement and its Mitigation
2	
3	Julyan Stoian (ⁱ), Tandre Oey (ⁱⁱ), Jeffrey W. Bullard (ⁱⁱⁱ), Jian Huang (^{iv}), Aditya Kumar (^v),
4	Magdalena Balonis (^{vi, vii}), Judith Terrill (^{viii}), Narayanan Neithalath (^{ix}), Gaurav Sant (^{x, xi})
5	
6	Abstract
7	
8	Ordinary portland cement (OPC) prehydrates during storage or handling in moist environments,
9	forming hydration products on or near its particles' surfaces. Prehydration is known to reduce
10	OPC reactivity, but the extent of prehydration has not yet been quantitatively linked to reaction
11	rate and mechanical property changes. A series of experiments and simulations are performed
12	to develop a better understanding of prehydration, by intentionally exposing an OPC powder to
13	either water vapor or liquid water, to investigate the extent to which premature contact of OPC
14	with water and other potential reactants in the liquid and/or vapor state(s) can induce differing
15	surface modifications on the OPC grains. Original results obtained using isothermal calorimetry,
16	thermogravimetric analysis and strength measurements are correlated to a prehydration index,
17	which is defined for the first time. The addition of fine limestone to a mixture formed using
18	prehydrated cement is shown to mitigate the detrimental effects of prehydration.
19	
20	Keywords: physisorption, prehydration, nucleation, limestone
21	
22	
23	1. Introduction and Background
24	Ordinary portland cement (OPC) reacts on contact with water in the liquid or the vapor states.
25	Therefore, unintentional exposure to moisture or to other known reactants such as CO ₂ during
26	the storage and handling of the OPC powder can result in premature hydration ^{xii} or aging of its
27	constituent phases. Any such unintentional reaction of the cement reduces the thermodynamic

viii Group Leader, Information Technology Laboratory, Mathematical and Computational Sciences Division, National Institute of Standards and Technology,

Gaithersburg, Maryland, Email: judith.devaney@nist.gov ^{**} Associate Professor, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA, Email: narayanan.neithalath@asu.edu ^{*} Assistant Professor and Rice Endowed Chair in Materials Science (Corresponding Author), Laboratory for the Chemistry of Construction Materials(LC²), Department

¹ Research Assistant, Laboratory for the Chemistry of Construction Materials (LC²), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA, Email: jstoian@ucla.edu

ⁱⁱ Research Assistant, Laboratory for the Chemistry of Construction Materials(LC²), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA, Email: <u>tandreoey@gmail.com</u>

^{III} Materials Research Engineer, Engineering Laboratory, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, Email: <u>bullard@nist.gov</u>

^{IV} Research Scientist, Laboratory for the Chemistry of Construction Materials(LC²), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA, Email: <u>huangjian@ucla.edu</u>

^v Research Scientist, Laboratory for the Chemistry of Construction Materials(LC²), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA, Email: <u>adityaku@ucla.edu</u>

^{vi} Research Scientist, Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA, Email: <u>mbalonis@ucla.edu</u> vii Technology Analyst, Institute for Technology Advancement, University of California, Los Angeles, CA, USA

of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA, Email: <u>gsant@ucla.edu</u>

^{xi} Faculty Member, California Nanosystems Institute (CNSI), University of California, Los Angeles, CA, USA

xⁱⁱⁱ The term "hydration" is used in cement chemistry to generically indicate any and all net reactions of cementitious mineral phases with water, and we will use the term in this broad sense here despite the fact that the same term may have a more restricted meaning in other fields of chemistry.

driving force for its subsequent reactions with liquid water, and the resultant loss of reactivity 28 29 typically manifests as undesirable reductions in the rate of hardening and strength gain of concrete [1,2]. In this paper, we will use the term "prehydration" generically to refer to all the 30 processes that cause unintentional loss of reactivity prior to the usual mixing of cement with 31 water. To be specific, this includes physical adsorption of water on the cement particle surfaces, 32 33 as well as the chemical reactions between water and the anhydrous OPC minerals to form solid hydration products such as calcium silicate hydrate (C-S-H^{xiii}), Ca(OH)₂, gypsum, and ettringite. 34 In addition, CO₂ in air or dissolved in water can react with several cement components, forming 35 magnesite (MgCO₃) from periclase (MgO), and forming CaCO₃ from free lime (CaO) or Ca(OH)₂, 36 the latter being present primarily because of prior reaction with water [3,4,5,6]. All of these 37 changes initiate at the exposed surfaces of OPC grains but penetrate deeper into the grains 38 with prolonged exposure. 39

40

To better understand these aspects, Dubina and coworkers studied the effects of prehydration 41 on the constituent phases present in OPC and in commercial OPC formulations [7,8,9,10]. They 42 quantified the prehydration sensitivity of the different phases in OPC, especially due to water 43 vapor exposure by: (1) identifying the RH at which a given OPC phase may become susceptible 44 to water adsorption or phase transformations, and (2) characterizing the influence of both RH 45 and exposure time on reactions and property development. These studies showed that the 46 calcium silicates, calcium aluminates, and calcium sulfates in OPC all undergo interactions with 47 water vapor that influence the reaction response of the OPC to water during normal hydration. 48 49 In particular, prehydration was observed to upset the balance between the soluble aluminate 50 and sulfate minerals that is intentionally built into OPC to regulate the otherwise rapid reaction 51 of C_3A with water, likely by capillary condensation [7,8,9,11].

52

This work expands on previous studies by quantitatively correlating the changes in reactivity and strength evolution in OPC pastes to the duration (and magnitude) of exposure to either liquid water or water vapor. The addition of fine limestone powder to prehydrated cement is observed to partially restore some reactivity. Simulations performed using a phase boundary nucleation and growth (BNG) model and with a kinetic cellular automaton model (KCA) are used to gain insight into the factors controlling OPC prehydration and into the mechanisms by which fine limestone can offset the detrimental effects of prehydration.

60

61 **2. Materials and Experimental Methods**

An ASTM C150 compliant Type I/II ordinary portland cement (OPC) was used herein. X-ray fluorescence (XRF) was used to estimate the major oxide composition of the OPC on a mass

xiii C-S-H (ACaO•SiO₂•BH₂O): is a poorly crystalline calcium silicate hydrate, of variable composition. In the case of cement hydrated in sufficient liquid water, A and B take values of 1.7 and 4.0 respectively, such that the Ca/Si molar ratio = 1.7 [18].

basis: 20.57 % SiO₂, 5.19 % Al₂O₃, 3.44 % Fe₂O₃, 65.99 % CaO, 1.37 % MgO, 2.63 % SO₃, 0.17 % 64 Na₂O, 0.31 % K₂O, 0.26 % TiO₂ and 0.08 % P₂O₅. Quantitative X-ray diffraction (QXRD), using 65 Rietveld refinement, was used to estimate the mineralogical composition of the OPC, on a mass 66 basis [12]: 56.5 % MIII-Ca₃SiO₅, 16.0 % β-Ca₂SiO₄, 6.3 % Ca₃Al₂O₆ (i.e., a mixture of the cubic and 67 orthorhombic forms [18]), 11.4 % Ca₄Al₂Fe₂O₁₀, 1.1 % CaSO₄·2H₂O, 0.5 % CaSO₄·0.5H₂O, 1.2 % 68 CaSO₄, 1.2% Ca(OH)₂, 0.5% CaO and 4.6 % CaCO₃. To fully examine the efficacy of fine limestone 69 70 powder additions to prehydrated OPC on restoring reactivity, a commercially available, nominally pure limestone powder (> 98 % CaCO₃) was used.^{xiv,xv} The particle size distributions 71 72 (PSDs) of OPC and limestone were measured by static light scattering (SLS) using isopropanol and ultrasonication for dispersing the powders to primary particles, and are shown in Fig. 1. The 73 74 largest variation in the light scattering measurements is about 6 % based on measurements performed on six replicates and assuming the density of the OPC and limestone to be 3150 75 kg/m^3 and 2700 kg/m^3 , respectively. Assuming that the particles are spherical, the measured 76 PSDs of OPC and limestone correspond to specific surface areas (SSAs) of 520 m²/kg and 1353 77 m^2/kg . Accounting for the irregular shape of OPC particles often results in SSA estimates that 78 are higher by a factor of 1.6-to-1.8 [13]. 79

81

Prehydration of the as-received OPC was simulated by exposing it to either liquid water or humid air. For water vapor exposure, the OPC powder was placed for either one month or three months in a room maintained at 55 % \pm 10 % RH and 25 °C \pm 3 °C, during which time the powders were mixed on a weekly basis to encourage uniform exposure to water vapor. These specific conditions were chosen to understand the impacts of prehydration in locations such as Southern California (Los Angeles), when the ambient RH is low and temperatures are modest.

^{xiv} OMYA A.G., Cincinnati, OH.

^{xv} Certain commercial materials and equipment are identified to adequately specify experimental procedures. In no case does such identification imply recommendation or endorsement by the University of California, Los Angeles, the National Institute of Standards and Technology, or Arizona State University, nor does it imply that the items identified are necessarily the best available for the purpose.

88

For exposure to (deionized, DI) liquid water, several hundred grams of the OPC powder were 89 spread in a thin layer and then misted in two equal cycles, separated by 30 minutes, with a 90 uniform mass of water corresponding to a moisture dosage of 2.5 % (Sprayed-1) or 5.0 % 91 (Sprayed-2) by mass of powder. The OPC powder was homogenized in a planetary mixer after 92 93 each cycle. After the second mixing, the powders were sealed in airtight containers to limit drying and maintained in an environmental chamber at 25 °C. After one week, the OPC 94 95 powders were homogenized once again and placed in airtight containers for another week to ensure consistent prehydration. 96

97

Paste mixtures of either the as-received or prehydrated OPC powder were prepared with a 98 (deionized) water-to-solids mass ratio of w/s = 0.45 as described in ASTM C 305 [14]. To explore 99 100 the influences of limestone on the reaction response of systems prehydrated with water vapor, small amounts of the as-received limestone powder were introduced either by adding to the 101 cement powder (increasing the total solid mass) or by partially replacing the cement powder at 102 constant total solid mass. By either means, the limestone dosages were 2.5 %, 5 % or 10 % by 103 104 mass of OPC. When the limestone was dosed by addition, the amount of water in the mixture was 0.45 g H_2O per gram of OPC. In contrast, when limestone was dosed by partial replacement 105 of OPC, the mixture had a constant water content of 0.45 g H_2O per gram of total solids. 106

107

108 **2.1.** Characterizing the extent of cement prehydration

109 As already described, the term "prehydration" is used to capture a range of premature reaction 110 phenomena that result from exposure not only to water (i.e., liquid or vapor) but also to other reactants that OPC is likely to encounter during storage. The primary substance, besides water, 111 112 that can react with cementitious minerals is CO₂, which is present in air and in liquid water at typical concentrations of about 390 ppm and 50 ppm, respectively. Therefore, our attempt to 113 114 quantify prehydration, as defined here, must be careful to account for the effects both of water and of CO₂, especially because no special efforts were made to exclude CO₂ either from the air 115 116 or from the liquid water used in the prehydration step. Most OPCs contain some CaCO₃ which is 117 added intentionally (to reduce the cement clinker content), but which is difficult to distinguish 118 from CaCO₃ that forms by the direct carbonation of the free lime (CaO) present in the OPC, or by the carbonation of Ca(OH)₂ formed by the hydration of CaO, or from reactions of the silicate 119 120 phases with liquid water during storage and/or handling. Separating these different potential sources of $CaCO_3$ is especially difficult because OPC often begins prehydrating (or carbonating) 121 122 immediately after it is manufactured, long before it is acquired for analysis or use. Therefore, it is reasonable to only characterize prehydration of a cement powder relative to its as-received 123 124 state, that is, as the *incremental prehydration* that is induced by the liquid or vapor treatments 125 described in the previous section.

126

With these considerations in mind, the most direct way to characterize prehydration is to 127 record the quantities of physisorbed water by desorption experiments and to measure the 128 changes in the amounts of solid hydrates and carbonates before and after a given prehydration 129 130 step using quantitative X-ray diffraction [7,8,9,11]. However, the total volume of each of the 131 solid hydrates and carbonates formed by prehydration is small, often below the detection limit, 132 ≈1 % by mass, of lab-scale X-ray diffraction (XRD) analyses. Further, numerous OPC hydrates are poorly ordered and thus difficult to quantify accurately by XRD. Because of these difficulties, we 133 134 choose to apply thermogravimetry to characterize prehydration by measuring the mass loss upon heating to 975 °C, a temperature above which no additional mass loss is observed even by 135 fully hydrated OPC. The mass lost by an anhydrous OPC when heated from room temperature 136 to 975 °C in N₂ comes from several sources. Between room temperature and \approx 110 °C, liquid 137 water condensed in the porosity evaporates, and the calcium alumino/sulfate hydrate phases 138 begin to dehydrate. The continued dehydration of the calcium alumino/sulfate phases, together 139 with volatilization of the grinding aids added during OPC manufacture and decomposition of 140 minor hydrated phases such as syngenite, continues between 110 °C and 400 °C. In the next 141 step, the decomposition of calcium hydroxide, magnesium carbonate, and calcium alumino-142 sulfate-hydrates occurs between 425 °C and 550 °C. Above 550 °C, the main contributions to 143 the mass loss are decomposition of calcium carbonate and the final dehydration of the calcium 144 145 silicate hydrate (C-S-H) phases.

146

The mass loss of the as-received OPC powder from 35 °C to 975 °C provides a baseline, from which the incremental prehydration of that powder can be *defined* as the additional mass loss in the same temperature range of that powder at a later time. Therefore, if we normalize the powder masses by the mass of the ignited OPC, we can define the dimensionless *incremental prehydration index* (PI, %) as:

152

$$PI = \left[\left(\frac{\Delta m}{m_i} \right) - \left(\frac{\Delta m}{m_i} \right)_0 \right] \times 100$$
⁽¹⁾

153

where Δm is the mass loss between 35 °C and 975 °C, m_i is the ignited mass—taken here to be the mass after heating to 975 °C—and the subscript "0" refers to the baseline measurement made on the as-received powder. As defined, this prehydration index accounts for all additional aging of the as-received powder, whether due to (pre)hydration or carbonation.

158

The prehydration index could have been defined in alternative ways that attempt to neglect the contribution of carbonation by omitting the portion of the mass loss that is associated with the decomposition of CaCO₃. However, we choose to include all mass loss in our definition because

- 162 carbonation can be both a direct effect of aging and a secondary effect of reaction with water.
- 163 It should be noted that $CaCO_3$ formed very early during carbonation, as may be the case during
- prehydration, may start to decompose at lower temperatures (< 600° C) compared to bulk CaCO₃
- 165 $[^{15}]$. As such, adjustments were made in determinations of CaCO₃ decarbonation (i.e., via the
- 166 DTG patterns) to incorporate mass losses occurring at both lower (< 600 °C) and typical values of
- 167 CaCO₃ decarbonation temperatures.
- 168

A simultaneous thermal analyzer^{xvi} was used to measure the thermogravimetric (TG) and the 169 170 differential thermogravimetric (DTG) signals of the cementitious samples, as raw powders, and after 1 d, 3 d, 7 d, and 28 d of hydration in liquid water. The temperature and mass sensitivity 171 of the analyzer were 0.25 °C and 0.1 µg, respectively. Hydration was arrested at desired times 172 by crushing the paste mass to granules (i.e., < 5 mm diameter) and then submerging them in 173 isopropanol (IPA) for 6 d, with IPA being replaced every 2 d [16]. Following solvent exchange, 174 which was applied only to OPC samples hydrated in sufficient water, i.e., not the prehydrated 175 OPC powders, the cementitious samples were placed under vacuum in a desiccator for 3 d and 176 then crushed to a very fine powder. The powders were all heated under a (99.999 % purity) N_2 177 purge at a flow rate of 20 mL/min and a heating rate of 10 °C/min in pure aluminum oxide 178 crucibles from 35 °C to 975 °C. 179

180

The TG data were used to calculate the prehydration index (PI), and to approximate both the evaporable and non-evaporable water contents, the amount of Ca(OH)₂ and CaCO₃ present in the system—inferred from the mass loss between 425 °C and 550 °C and between about 550 °C and 800 °C, respectively. The degree of OPC reaction, α , for normal hydration in sufficient liquid water can then be estimated by assuming that the mass of non-evaporable water, $m_n(t)$ varies linearly from zero to a terminal value of $m_{n,\infty}$ at complete reaction,

187

$$\alpha = \frac{m_n(t)}{m_{n,\infty}} \tag{2}$$

188

189 While the non-evaporable water mass can be estimated from TG data, volatilization of CO₂ also 190 contributes to the mass loss and therefore can make the non-evaporable water mass difficult to 191 isolate. However, errors made in incorrectly assigning different portions of the TG data to non-192 evaporable water will largely cancel in Eq. (2) if the same procedure is used to calculate both 193 $m_n(t)$ and $m_{n,\infty}$. Therefore, we arbitrarily choose a formulation that also has been applied in 194 some previous studies [17,18]:

195

$$m_n(t) = m(t, 145) - m(t, 975) - [m(t, \approx 550) - m(t, 800)]$$
(3)

^{xvi} STA 6000, Perkin Elmer, Waltham, MA.

196

- where m(t, 145), for example, is the mass of a specimen after t days of reaction when heated to 145 °C, and is the mass after loss of evaporable water [17,18]. The term in square brackets in Eq. (3) is intended to account for the mass loss due to CaCO₃ decomposition; in this study we use the DTG signal to determine the onset temperature accurately for each paste specimen. The terminal value of the non-evaporable water mass at complete reaction can be determined
- 202 experimentally by a long-term bottle hydration experiment to ensure complete reaction. We
- estimate this for this specific OPC, based on its mineral composition and using a procedure described previously [18], that $m_{n,\infty} \approx 0.23$ g per gram of ignited, as-received OPC.
- 205

206 **2.2.** Characterizing mixture reactivity and its impacts on mechanical properties

An isothermal calorimeter^{xvii} was used to measure the heat evolved during normal hydration of as-received and prehydrated OPC pastes at constant temperature (25 °C \pm 0.1 °C). The thermal power and the energy measured were used to assess the influence of prehydration and of limestone dosage on reaction kinetics and total heat release of the cementitious samples.

211

The progress of reactions, and their impacts on mixture properties were characterized by measuring the compressive strength of OPC paste specimens (50 mm cubes) cured at 25 °C ± 1 °C for 1 d, 3d, 7 d, and 28 d, as described in ASTM C109 [14]. Each strength measurement was repeated on three replicates to obtain an average value at each time (i.e., age), with a highest variation of 7 % being noted for samples formed from the same mixing batch.

217

218 3. Results and Discussion

219

220 3.1. Plain OPC pastes

The loss on ignition (LoI) upon heating the as-received OPC powder to 975 °C was 2.99 %, using the unignited powder as the reference. Based on the DTG data shown in Fig. 2, if we assume that all the mass loss in the range 600 °C-to-800 °C is CO_2 gas released by $CaCO_3$ decomposition, then the LoI can be partitioned with \approx 2.04 % due to CO_2 from $CaCO_3$ and 0.95 % due to other sources. This indicates an intrinsic $CaCO_3$ content of \approx 4.64 % (by mass) in the as-received OPC.

226

Fig. 2 shows DTG measurements for the as-received cement and for the cement prehydrated due to water vapor or liquid water exposure. Even the as-received OPC has some evaporable water and Ca(OH)₂, mainly due to hydration of CaO, which reacts even at very low RHs (relative humidities). Therefore, this OPC has experienced some prehydration prior to being used in this study, as is common among many OPCs. Increasing water dosages (*i.e.*, 55 % RH or by spraying) increase the prehydration index, as shown in Fig. 2. A similar effect is noted with increasing times of exposure, from one month to three months, at 55 % RH. Unsurprisingly, the extent of

234 CaCO₃ detected increases with the exposure time.

235

236

The increases in the CaCO₃ content are caused by the carbonation of CaO or Ca(OH)₂ present in 237 the OPC, or formed over the course of the prehydration treatment [8]. The DTG data in Figs. 2-3 238 239 indicates that incremental carbonation leads to ≤ 0.25 % increase in the CaCO₃ content of the 240 OPC for all prehydration treatments except for the 3-month exposure to water vapor. The 3month exposure, however, caused an increase in the CaCO₃ content of \approx 2.65 % by initial mass 241 of OPC powder. These increases in the CaCO₃ content correspond to contributions to the PI of 242 \approx 1.2 % for the 3-month exposure but only around \approx 0.1 % for all other prehydration treatments. 243 Carbonation of Ca(OH)₂ is known to occur more slowly in water, with about 50 ppm CO₂, than in 244 humid air with about 390 ppm CO₂ [19]. Therefore, the enhanced CaCO₃ content in the OPC 245 sample exposed to moist air for 3 months is likely due to both the duration and the type of 246 exposure [20,21,22]. Therefore, the effects of OPC prehydration can be primarily ascribed to 247 moisture exposure at shorter times, with the relative contribution of CO_2 exposure increasing 248 with: (i) increasing duration, (ii) the (increasing) concentration of CO₂, or (iii) under ambient 249 conditions which favor direct carbonation processes [20,21,22]. 250

251

Fig. 2 shows that all prehydration treatments lead to increases in the mass loss between 350 °C 252 and 450 °C, which we attribute to increases in Ca(OH)₂. The increase in Ca(OH)₂ is far greater for 253 254 systems prehydrated with liquid water than water vapor. Such elevated Ca(OH)₂ contents are produced by the reactions of the silicate phases, principally alite (Ca₃SiO₅) and to a lesser extent 255 belite (Ca_2SiO_4), and by the hydration of CaO. Judging from the CaO content measured by QXRD 256 in the anhydrous OPC, Ca(OH)₂ formation in the vapor prehydrated systems is broadly due to 257 CaO hydration, which suggests that for 55% RH exposure, very slight silicate phase prehydration 258 (but not surface reconstruction, see below) occurs. This is in support of RH thresholds defined 259 by Dubina [8]. Furthermore, the sprayed systems also contain more water in the evaporable 260 range (i.e., ≤ 145 °C [17,18]) than do the water vapor hydrated systems. These differences are 261 related to differences in the prehydration route, for example by the adsorption of water vapor 262 and induced surface modifications or by means of dissolution-precipitation reactions mediated 263 through liquid water. 264

265

It should be noted that the vapor-phase RH used in this study is lower than the threshold noted by Dubina et al. [⁸], especially for alite and belite. This may suggest negligible reaction, between water vapor, and the silicate phases, in the vapor prehydration case. In the absence of reaction, however, water can still sorb on silicate surfaces and induce surface relaxation/reconstruction, although no attempt is made to distinguish such surface phenomena from the generic term "prehydration". Such physisorption could lead to the formation of C-S-H, though likely not of the form that is observed during hydration with liquid water. Such C-S-H formation, or surface

reconstruction could dramatically alter the reactivity of the silicate phases, and OPC in liquid 273 water. Evidence for such an effect is provided by Dubina et al. who note that C₃S hydration is 274 275 retarded, by enhancing the exposure duration of C_3S ; even for a subcritical RH (for C_3S) of 60% [23]. The DTG traces show that quantities of evaporable water, and $Ca(OH)_2$ present, increase 276 with exposure time (see Figure 2) – in spite of the latter having a higher potential to carbonate, 277 278 and form CaCO₃. This indicates such surface-specific phenomena (e.g., surface reconstruction of the silicate phases) and that, in addition to the C₃A, the C₃S and C₂S may also undergo some 279 prehydration type process. It should be noted that the variability in imposed environmental 280 conditions (55 ± 10% RH) leaves open the possibility that at times the RH was high enough for 281 water vapor to condense onto the surface of cement particles (i.e., in proximity to each other 282 where a captive meniscus could form between the necks of particles) causing prehydration of 283 both the silicate, and aluminate phases. 284

Figure 4: The influence of prehydration on the rates of reactions as measured using isothermal calorimetry for: (a) heat flow and (b) cumulative heat release and (c) cumulative heat released at 1 d, 3 d, 7 d, and 28 d for all cement paste mixtures normalized by the heat released by the as-received paste mixture. The largest variation in the measured heat flow of any mixture is ± 2 % based on the heat flow measured on six replicate paste specimens.

286

287 Fig. 4(a) shows the effects of prehydration on the rates of OPC reaction during subsequent 288 hydration in sufficient liquid water as measured using isothermal calorimetry. This figure confirms that prehydration reduces the intensity of reactions. In particular, the extents of OPC 289 290 reaction decrease with increasing (water) exposure time and water availability: as-received > 1month > 3 months > Sprayed-1 > Sprayed-2. Interestingly, the two different methods of water 291 292 delivery have gualitatively very different effects on the reaction curve. Prehydration by water vapor causes a fixed delay in the onset of the main silicate reaction peak by about two hours, 293 regardless of the exposure time, and reduces the height of the main silicate reaction peak 294 295 relative to the secondary aluminate reaction peak that occurs at a later time. In contrast, 296 prehydration by sprayed liquid water causes no delay in, or even very slightly accelerates the

297 onset of the main silicate peak and also diminishes the relative strength of the subsequent 298 aluminate peak. The differences produced in the aluminate reaction peak allude to alteration of 299 the aluminate phases to form aluminate hydrates (e.g., AFt, AFm, C_xAH_y) following prehydration - a response also noted via DTG patterns which show significant mass loss at temperatures 300 301 lower than 145°C [24]. As shown in Figs. 4(b) and 4(c), the prehydrated systems are unable to 302 reach the same extent of reaction as the as-received system. Furthermore, Fig. 4(c) indicates 303 that the severity of the depression in the total amount of OPC reactions, as measured by 304 cumulative heat released, is a linear function of the incremental PI, across all ages, independent of the prehydration exposure type or duration (see also Figure 7a). 305

306

One might suppose that this decrease in heat evolution is similar to the heat released over the 307 course of prehydration. However, in the absence of direct heat evolution measurements during 308 the prehydration exposure, the validity of that supposition cannot be evaluated without making 309 310 an assumption about how heat release is related to degree of reaction, α , during prehydration. For normal hydration in liquid water, the non-evaporable water at complete reaction, $m_{n,\infty}$, is 311 known to be about 0.23 g per gram of OPC reacted [17,18]. Therefore, $m_{n,\infty}$ is a linear function 312 of α with a slope of 0.23 (Eq. 2). However, the reaction products formed during prehydration 313 314 may have different non-evaporable water contents because the water activity is far different 315 than during normal hydration. Furthermore, it is expected that during prehydration, C₃A and 316 $C_{3}S$ phases would be affected differently (e.g., [8]), and as such the linear relationship between non-evaporable water and degree of hydration would either not be valid or would have a slope 317 different from 0.23. Even if it were to be assumed that a linear relationship between $m_{n \infty}$ and 318 α still prevails during prehydration, our uncertainty about its slope make it difficult to infer the 319 degree of reaction during prehydration from TGA data. If it is to be assumed, $m_{n,\infty} = 0.23$ g/g_{OPC} 320 for hydrates formed during prehydration, the calculated heat release, Q, during prehydration 321 would be α · Δ H, where Δ H is the enthalpy of complete OPC hydration; Δ H \approx 458 J/g for this OPC. 322 323 Equating all the heat reduction observed at 168 h of hydration in Fig. 4(b) to the heat released 324 during prehydration would therefore require a high degree of reaction, ≈ 0.21 , for the Sprayed-2 325 case; which is unlikely over the course of prehydration.

326

327 It seems unusual that systems prehydrated by liquid water are less retarded during hydration at early times than systems prehydrated by water vapor at similar or greater values of the PI. This 328 329 indicates that the nature of the products of prehydration are important, rather than just the absolute level of prehydration. For example, at 55% RH, prehydration is expected to result in 330 331 some reaction of Ca₃Al₂O₆ to form a calcium aluminohydrate [18], some reaction of CaO to form $Ca(OH)_2$, and the partial hydration of $CaSO_4$ to form bassanite and/or gypsum [11]. Under the 332 333 same conditions, the silicate reactions are likely limited to a hydroxylation or similar change in a 334 thin surface layer [26]. Such formations of surface layers on the silicate phases, however, have

been previously hypothesized to reduce dissolution rates of these minerals [25], and may even be capable of altering their apparent solubility [26]. On the other hand, prehydration in liquid water likely results in the formation of C-S-H nuclei on silicate surfaces [26], in addition to the

- 338 aluminate and sulfate reactions.
- 339

340 Therefore, the differences observed between prehydration in liquid water and water vapor are likely related to the degree and type of reactions at silicate surfaces. C-S-H exhibits enhanced 341 342 growth rates in the presence of silicate hydrate seeds that offer preferred nucleation sites and thus accelerate reactions in Ca₃SiO₅ systems [27,28,29,30]. A similar mechanism may operate in 343 the liquid-phase prehydrated systems, wherein silicate surface reactions result in the formation 344 of a type of C-S-H that provides sites for preferential nucleation of typical C-S-H during normal 345 hydration. This would also explain why liquid-phase prehydrated systems reach their maximum 346 hydration rate at times that are similar to those of the as-received OPC, despite having a higher 347 prehydration index than systems exposed to water vapor. However, the degree of reaction at 348 later times is lowest in systems prehydrated with liquid water, which is contrary to a seeding 349 effect [27,29]. The lower extent of reaction at later times may be related to the enhanced initial 350 surface coverage of OPC grains by C-S-H, which can have the following effects: 351

• Reduce the exposed surface area of the anhydrous phases available for dissolution, and,

• Then cause an earlier transition to a diffusion-controlled mechanism when a continuous C-S-H layer on the OPC grains has grown thick enough to limit the transport of dissolved ions

355 to-and-from the bulk solution.

In contrast, silicate phase surface modifications caused by OPC prehydration in water vapor are gradually etched away upon normal hydration in liquid water, because their hydration rates approach that of the as-received system after about 12 h (see Fig. 4a). The plausibility of these hypotheses of silicate surface modifications is examined in more detail in Section 4.

360

361 **3.2. Influence of fine limestone**

Recently, additions of fine limestone have been demonstrated as a novel means of enhancing 362 and/or controlling OPC reaction rates [31,32,36]. In light of these observations and especially 363 364 that limestone is amongst the best *catalysts* for OPC hydration, several mixtures were prepared with different dosages of limestone, as described in Section 2, to determine if it can mitigate 365 the effects of prehydration^{xviii}. Fig. 5 shows that fine limestone can indeed partially or even fully 366 offset prehydration effects, and that its efficacy increases with limestone dosage. Therefore, 367 368 while complete restoration of normal hydration is easily achieved at low levels of prehydration 369 (e.g., at one month), only partial mitigation is possible when prehydration is more severe (e.g., 370 after three months). This is because the extent to which limestone restores normal hydration,

will External dosage of fine limestone should be distinguished from limestone formation (carbonation) during prehydration. The "external" limestone provides additional surface area for reactions and hastens them [21,36]. On the other hand, carbonation during prehydration likely results in the formation of a mass transport barrier which would impede the dissolution of the cement grains.

falls short of the retardation caused by aggressive prehydration. As vapor phase prehydration causes relatively minor retardation effects, the provision of limestone is able to successfully restore normal hydration. For the dosages considered herein, both limestone replacement and addition are similarly effective. Limestone's ability to restore the hydraulic reactivity of OPC is linked to at least three effects. First, the large surface area provided by fine limestone catalyzes the silicate hydration reactions by providing increased surface area and a lower energy barrier for nucleation of hydration products; i.e., by serving as a heterogeneous catalyst.

378

Figure 5: Representative graphs showing the influence of limestone on mitigating the influences of vapor-phase prehydration for: (a) as received cement, (b) 1 month of vapor phase prehydration (c) 3 months of vapor phase prehydration. In each case, limestone dosages are noted as percent replacement by mass of OPC. The effects are noted to be similar even when limestone is dosed by addition. The term "as received" in (b) and (c) refers to an OPC that has not been exposed to any (intentional) prehydration action and contains no limestone. The largest variation in the measured heat flow of any mixture is ± 2 % based on the heat flow measured on six replicate paste specimens.

379

Second, the dissolution of CaCO₃ in water provides carbonate anions to the solution, some of 380 which could be incorporated within the C-S-H through an ion-exchange reaction that releases 381 OH⁻ ions from the C-S-H to preserve charge neutrality. We have no direct evidence to support 382 this assumption about carbonate uptake by C-S-H, but an analogous ion exchange reaction for 383 sulfate uptake by C-S-H explains the observed increase of pH in Ca₃SiO₅ systems when soluble 384 calcium sulfate is available during OPC hydration [33,34]. When limited $CO_3^{2^2}$ incorporation is 385 allowed by this kind of reaction, the accelerating effect of limestone is virtually unchanged at 386 the beginning because it still offers the same preferential nucleation sites for C-S-H. However, 387 progressively more ion exchange occurs as more C-S-H is formed by ongoing hydration. This is 388 significant because OH⁻ released by ion-exchange increases the driving force for C-S-H growth 389 [35,36] relative to the driving force without CO_3^{2-} ion-sorption. The result is a higher degree of 390 reaction at later times [36]. Finally, the availability of CO_3^{2-} stabilizes a carboaluminate phase 391

 (CO_3-AFm) at the expense of the sulfoaluminate hydrate that would form otherwise [37,38]. Of course, the CaCO₃ formed during prehydration could trigger either of the last two effects, but that source is quite small for all prehydration treatments other than the 3-month duration.

395

396 The trends in the reaction rates are more clearly revealed in Fig. 6 by plotting the parameters 397 extracted from the calorimetric measurements as a function of the prehydration index, such as the slope during the acceleration period (Fig. 6a), the heat flow value at main heat peak (Fig. 398 6b), and the inverse of the time of the main heat peak (Fig. 6c). These calorimetric parameters 399 all decrease with increasing prehydration, but the rate of decrease in the OPC's reactivity with 400 prehydration is less severe for liquid exposure ($PI \ge 2\%$) than water vapor exposure ($PI \le 2\%$). 401 This indicates that the effects of liquid, and vapor phase prehydration are very distinct. It is also 402 noted that limestone is able to effectively mitigate the effects of prehydration, by enhancing 403 the calorimetric parameters; increasing values of which indicate higher reaction rates. It should 404 be noted, however, that while, in limestone is able to mitigate the effects of prehydration even 405 at higher levels of prehydration - at low levels of prehydration, it is far easier to recreate the 406 reaction rate of a pristine OPC (i.e., eliminate the effects of prehydration) by simply adding or 407 replacing limestone to the OPC; an effect which cannot be achieved at higher prehydration 408 levels. This highlights the ability of *externally provisioned* limestone to offset any prehydration 409 effects, with increasing success at lower PI. 410

Figure 6: Calorimetric parameters and best fits (dotted lines) as a function of the prehydration index for: (a) slope during the acceleration period, (b) heat flow value at the main heat peak and (c) inverse time required to achieve the main heat peak. The lower and upper dashed lines show linear fits to the data points associated with the plain OPC pastes (i.e., not including any limestone) prehydrated with water vapor or liquid, respectively.

412

Confirming the mechanisms hypothesized in these two sections, regarding both the influence of duration and type of water exposure and the influence of fine limestone in restoring hydration rates, is not possible based solely on these experimental data. The extraordinary complexity of

the phase chemistries, possible surface reactions or rearrangement, and other microstructural

417 variables are not directly observable with the methods at hand. However, simulations that account statistically for microstructure evolution, based on boundary nucleation and growth 418 419 (BNG) methods [39,40,41,42,43,44,45,46,47,48], or that explicitly account for 3D microstructure and chemistry (e.g., HydratiCA) [49,50,51,52], could be used to test the 420 421 plausibility that these mechanisms can control hydration kinetics of prehydrated powders in the 422 ways discussed here. Even to do this, however, a large number of simplifying assumptions must 423 be made about the phase distributions, their relative stability, dissolution and growth 424 mechanisms, and the corresponding dependence on solution composition. A detailed 425 description of these assumptions is outside the scope of this paper, but here we simply mention 426 that both BNG models and HydratiCA have been used as a check on the plausibility of the 427 mechanisms already proposed. Taken together, the simulations suggest (i) that retardation of anhydrous cement phase dissolution by overgrowth of prehydrated layers, the compositions 428 429 and stabilities of which may depend on the type of exposure, is a mechanism that can be made qualitatively consistent with the observed hydration kinetics; and (ii) nucleation and 430 subsequent growth of C-S-H gel on the surface of fine limestone particles can explain the partial 431 restoration of hydraulic activity of prehydrated cements. 432

433

434 **3.3. Effects on compressive strength**

Fig. 7(a) and Fig. 7(b) show the degree of hydration and the evolution of compressive strength 435 in cement pastes made from as-received and prehydrated OPC's respectively. It is noted that 436 while the degree of reaction-PI curves show consistency (i.e., similar slopes) for ages greater 437 438 than 3 days, the 1 day relationship is different. It is (reasonably) anticipated that this is because 439 prehydration most significantly influences the progress of reactions of phases that react within 440 the first day (e.g., C₃S, C₃A). After one day, as the rate of reaction has decreased, and these 441 phases substantially reacted, prehydration has lesser impact on the evolution of reactions. This is likely the cause of different slopes, from 1 day to later ages. 442

443

444 It is noted that the compressive strength decreases linearly with prehydration index, as shown 445 in Fig. 7(c). Expectedly, the strength is also linearly correlated with the degree of reaction of the OPC and with the cumulative heat release when normalized by the quantity of water in the 446 system, as indicated by the strength-heat master curves (SHMC) shown in Figs. 8(a-b) for both 447 448 as-received and prehydrated materials [31,32,53]. For the latter, the normalization is based on the water mass in the mixture because this indicates the space that needs to be filled by the 449 450 hydration products to achieve higher strengths [54]. These results are significant because they indicate that predicting the decrease in strength due to prehydration is straightforward if the 451 PI, degree of hydration or heat release behavior of an OPC is known. This ability to forecast 452 strength is especially important for binders containing substantial levels of OPC replacement by 453

454 other materials because these binders have both reduced ultimate strength and slower rates of

455 strength gain at early ages [31,32].

456

Figure 7: (a) The degree of reaction of the OPC pastes quantified by thermogravimetric (TGA) analysis as a function of the prehydration index, (b) Compressive strength development of plain OPC pastes as a function of specimen age and (c) The normalized compressive strength of plain OPC pastes as a function of the prehydration index. The compressive strength is normalized by the strength of the as received OPC paste at a given age, expressed as a percentage. The largest variation in the degree of OPC reaction and strength is ± 2 % and ± 7 %, respectively.

457

Compressive strengths of the prehydrated systems remain inferior to those of pastes made 458 from the as-received powder even at 28 d, as shown in Fig. 7(b). This suggests that the effects 459 460 of prehydration are evident not only at early times, but also longer times where they continue to prevent an equivalence in properties. It is not yet clear if these depressive effects are only a 461 462 function of reaction progress or if aspects of the microstructure of prehydrated systems (e.g., changes in pore size distributions, or phase compositions as caused by elevated temperature 463 464 curing [55]) may be different. However, it is clear that externally provisioned limestone offsets the detrimental effects of prehydration on strength evolution especially at early times (see Fig. 465 466 8c) in spite of the fact that limestone replacement for OPC increases the ratio of the water filled pore volume to cementing material (since limestone contributes very slightly to binding product 467 468 formation); this is a dilution effect which normally would decrease strength. In summary, when limestone is dosed by OPC replacement, two competing effects are noted: (a) dilution, which 469 470 would result in a decrease in strength and (b) an increase in the rate of reaction, which would improve early age strengths. In light of these effects, it may be expected that an increase in the 471 472 limestone replacement level would not necessarily result in strength improvement as compared to the pristine OPC. However, at lower levels of limestone replacement (e.g., 2.5 %) while gains 473 474 in strength are admittedly small, the acceleration of OPC reactions is sufficient to ensure that in 475 spite of water vapor exposure, cements can be dosed with limestone to compensate for the 476 deleterious effects of prehydration, especially so for low values of the PI.

Figure 8: (a) Compressive strength as a function of the degree of hydration for the plain cement pastes; (b) strength-heat master curve (SHMC) for the as received and prehydrated systems after 1 d, 3 d, 7 d, and 28 d of hydration, where the dashed lines denote a ±15% bound; (c) compressive strength development at 1 d of hydration for varying levels of prehydration and various replacement levels of OPC by fine limestone. R denotes OPC replacement and A denotes external limestone additions to OPC. The dashed line represents the 1 d strength of as received OPC. The largest variation in the strength, degree of hydration and cumulative heat is ± 7 %, ± 2 %, and ± 2 %, respectively.

478

479 A significant point to be noted from the strength data (Figure 7b, 7c and 8c) is that is appears as though the OPC when exposed to water vapor for one-month seems to show slightly superior 480 481 strength development as compared to the as-received OPC. While this difference is not large enough to unequivocally state a benefit (i.e., due to the measurement uncertainty in strength 482 483 measurements) it is likely that rather than a monotonic reduction in properties with increasing prehydration, small extents of prehydration are indeed beneficial. While the reasons for this are 484 485 not fully clear, it is speculated that it has to do with the available CaO content of the OPC, which diminishes with increasing prehydration; optimum values of which will favor faster reaction of 486 487 the C₃S, especially at early reaction times (e.g., see Figure 5b). As such, it appears reasonable to conclude that at modest levels, prehydration does not alter reaction/property behavior, until 488 489 some threshold – beyond which a monotonic reduction in properties and reaction evolution is 490 noted. While it is indeed likely that the prehydration levels noted herein may take very long durations to occur in OPCs stored in sealed containers, water vapor transfer through paper bag 491 products (e.g., as used in the U.S.), or water vapor contact with cement stored in silos may be 492 more substantial, due to issues of air-leakage and -exchange. 493

494 495

496 **4. Summary and Conclusions**

497 Experiments and simulations have been described that fully investigate the nature of cement 498 prehydration. Exposure to either water vapor or liquid water causes a loss in the subsequent 499 hydraulic reactivity. The extent of prehydration relative to an as-received OPC powder can be 500 quantified, using thermogravimetric measurements, by a prehydration index (PI) that is defined 501 here for the first time. Carbonation during prehydration is minimal in all cases except extended exposure to water vapor for three months. Therefore, we attribute the loss of reactivity after 502 prehydration to the formation of a layer of hydrated (i.e., water inclusive) solids on the cement 503 504 particles. The hypothesized prehydration layer acts as a mass transport barrier that impedes 505 the progress of chemical reactions when the cement is subsequently introduced into the mixing water. The severity of suppression of the OPC reaction scales with the duration of exposure to 506 507 either water vapor or liquid water. In both cases, the activity (RH) of water is sufficient to cause reactions with the aluminate components in the OPC to form alumino-sulfate hydrates. 508

509

510 The reduced availability and chemical activity of water during vapor phase OPC prehydration 511 probably inhibits the formation of the *typical C-S-H* phase formed during normal hydration, although a precursor silicate hydrate does form on the surface of the anhydrous silicate phases. 512 In contrast, liquid water prehydration likely enables formation of a product that is somewhat 513 similar to typical C-S-H formed during normal OPC hydration, and that is certainly less effective 514 at inhibiting the dissolution of the cement grains – as compared to the phase that forms on 515 516 particle surfaces during water vapor contact. Consequently the hydration progress of a liquid prehydrated OPC is similar to an as-received OPC. These broad inferences are supported by 517 experiments and simulations designed to test the influences of the two types of barrier layers 518 thought to be formed during prehydration by water vapor or liquid water. The results shed light 519 520 on the nature and mechanisms of prehydration as well as its influences on the OPC hydration 521 kinetics, and other materials that are sensitive to moisture exposure.

522

523 The effects of prehydration are evident not only in early stages of normal hydration, but also propagate to much later times by reducing the overall amount of reaction and the compressive 524 525 strength relative to materials made from the as-received powders. The magnitude of these 526 effects is highly correlated with the prehydration index. Dosages of fine limestone powder are 527 able to mitigate the effects of OPC prehydration. Such mitigation actions are probably both 528 catalytic and chemical in nature: availability of preferable surfaces for nucleation catalyzes the 529 precipitation of C-S-H, and increases in pH resulting from sorption of dissolved carbonate ions by the C-S-H enhance the driving force for C-S-H growth. When the extent of prehydration is 530 531 modest, fine limestone can restore reaction rates and properties in prehydrated OPCs to nearly the same levels as for the as-received OPC powder(s). This has important implications on the 532 533 addition of fine limestone to OPC, not only to reduce cement (i.e., clinker) contents, but also to build in a *safety-valve* which can help overcome the detrimental effects of OPC prehydration, 534 535 which are often experienced in field applications.

536

537 Acknowledgments

- 538 The authors gratefully acknowledge financial support for this research provided by the National
- 539 Science Foundation (CMMI: 1066583) and the University of California, Los Angeles (UCLA). The
- authors would like to acknowledge the provision of materials by Lehigh-Hanson and OMYA A.G.
- 541 The authors would also like to acknowledge Dale P. Bentz (NIST), Kenneth Snyder (NIST) and
- Joseph Biernacki (TTU) for their rigorous review of this paper. The contents of this paper reflect
- the views of the authors, who are responsible for the accuracy of data presented. This research
- was conducted in the Laboratory for the Chemistry of Construction Materials (LC²) and the core
- 545 Molecular Instrumentation Center (MIC) at UCLA and Engineering Laboratory at the National
- Institute of Standards and Technology (NIST). As such, the authors acknowledge the support of
- 547 these laboratories in making this research possible.
- 548

549 **References**

(2) Starinieri, V.; Hughes, D.; Gosselin, C.; Wilk, D.; Bayer, K., Pre-hydration as a technique for the retardation of Roman cement mortars. *Cem. Concr. Res.* **2013**, *46*, 1-13.

(3) Flatt, R. J.; Scherer, G. W.; Bullard, J. W., Why alite stops hydrating below 80% relative humidity. *Cem. Concr. Res.* **2011**, *41* (9), 987-992.

(4) Jensen, O. M.; Hansen, P. F.; Lachowski, E. E.; Glasser, F. P., Clinker mineral hydration at reduced relative humidities. *Cem. Concr. Res.* **1999**, *29* (9), 1505-1512.

(5) Ruiz-Agudo, E.; Kudłacz, K.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C., Dissolution and Carbonation of Portlandite [Ca(OH)2] Single Crystals. *Env. Sci. Technol.* **2013**, *47* (19), 11342-11349.

(6) MacIntire, W. H., The carbonation of burnt lime in soils. *Soil Science* **1919**, 7 (5), 325-453.

(7) Dubina, E.; Black, L.; Sieber, R.; Plank, J., Interaction of water vapour with anhydrous cement minerals. *Adv. App. Ceram.* **2010**, *109* (5), 260-268.

(8) Dubina, E.; Wadsö, L.; Plank, J., A sorption balance study of water vapour sorption on anhydrous cement minerals and cement constituents. *Cem. Concr. Res.* **2011**, *41* (11), 1196-1204.

(9) Whittaker, M.; Dubina, E.; Al-Mutawa, F.; Arkless, L.; Plank, J.; Black, L., The effect of prehydration on the engineering properties of CEM I Portland cement. *Adv. Cem. Res.* **2013**, *25* (1), 12-20.

(10) Dubina, E.; Plank, J., Influence of moisture-and CO2-induced ageing in cement on the performance of admixtures used in construction chemisti. *ZKG international* **2012**, (10), 60-68.

(11) Dubina, E.; Plank, J.; Black, L.; & Wadsö, L. Impact of environmental moisture on C3A polymorphs in the absence and presence of CaSO4· 0· 5 H2O. *Adv. Cem. Res.* **2014**, *26*(1), 29-40. (12) Le Saoût, G.; Kocaba, V.; Scrivener, K., Application of the Rietveld method to the analysis of anhydrous cement. *Cem. Concr. Res.* **2011**, *41* (2), 133-148.

(13) Garboczi, E.; Bullard, J., Shape analysis of a reference cement. *Cem. Concr. Res.* **2004**, *34* (10), 1933-1937.

⁽¹⁾ Theisen K.; Johansen V., Prehydration and strength development of portland cement, *Am. Ceram. Soc. Bull.* **1975**, *54*,787-791.

(14) ASTM International: Annual Book of Standards. www.astm.org. 2012.

(15) Thiery, M., Villain, G., Dangla, P., Platret, G., Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cem. Concr. Res. **2007**, *37* (7): 1047-1058.

(16) Zhang, J.; Scherer, G. W., Comparison of methods for arresting hydration of cement. *Cem. Concr. Res.* **2011**, *41* (10), 1024-1036.

(17) Mounanga, P.; Khelidj, A.; Loukili, A.; Baroghel-Bouny, V., Predicting Ca (OH) 2 content and chemical shrinkage of hydrating cement pastes using analytical approach. *Cem. Concr. Res.* **2004**, *34* (2), 255-265.

(18) Taylor, H. F. W. Cement Chemistry, 2 ed.; Thomas Telford Publishing: London, 1997.

(19) Beruto, D. T.; Barberis, F.; Botter, R., Calcium carbonate binding mechanisms in the setting of calcium and calcium–magnesium putty-limes. *J. cultural heritage* **2005**, *6* (3), 253-260.

(20) Lee, D. K., An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. *Chem. Eng. J.* **2004**, *100* (1), 71-77.

(21) Mess, D.; Sarofim, A. F.; Longwell, J. P., Product layer diffusion during the reaction of calcium oxide with carbon dioxide. *Energy & Fuels* **1999**, *13* (5), 999-1005.

(22) Dubina, E.; Korat, L.; Black, L.; Strupi-Šuput, J.; Plank, J., Influence of water vapour and carbon dioxide on free lime during storage at 80° C, studied by Raman spectroscopy. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2013**, *111*, 299-303.

(23) Dubina, E.; Sieber, R.; Plank, J.; Black, Le.; Effects of pre-hydration on hydraulic properties on Portland cement and synthetic clinker phases. Fentiman, C.H. and Mangabhai, R.J., (Editors) 28th Cement and Concrete Science Proceedings. **15-16 September 2008**, 5. Manchester, England. ISBN 13 978-0-9553296-3-0.

(24) Minard, H.; Garrault, S.; Regnaud, L.; Nonat, A., Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. *Cem. Concr. Res.* **2007**, *37* (10), 1418-1426.

(25) Barret, P.; Ménétrier, D., Filter dissolution of C3S as a function of the lime concentration in a limited amount of lime water. *Cem. Concr. Res.* **1980**, *10* (4), 521-534.

(26) Jennings, H. M., Aqueous solubility relationships for two types of calcium silicate hydrate. *J. Am. Ceram. Soc.* **1986**, *69* (8), 614-618.

(27) Thomas, J. J.; Jennings, H. M.; Chen, J. J., Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. *J. Phys. Chem. C* **2009**, *113* (11), 4327-4334.

(28) Nicoleau, L.; Nonat, A.; Perrey, D., The di-and tricalcium silicate dissolutions. *Cem. Concr. Res.* **2013**, *47*, 14-30.

(29) Alizadeh, R.; Raki, L.; Makar, J. M.; Beaudoin, J. J.; Moudrakovski, I., Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate. *J. Mater. Chem.* **2009**, *19* (42), 7937-7946.

(30) Scheetz, B.; Tikalsky, P.; Badger, S. In *Control of the microstructure of concrete: a case for nanometer-sized seeding*, Proceedings of the 11th International Congress on the Chemsitry of Cement, ed. G. Grieveand G. Owens, Durban, South Africa, **2003**; pp 1692-1699.

(31) Bentz, D. P.; Barrett, T.; De la Varga, I.; Weiss, W. J., Relating compressive strength to heat release in mortars. *Adv. Civ. Eng. Mater.* **2012**, *1* (1), 14.

(32) Kumar, A.; Oey, T.; Kim, S.; Thomas, D.; Badran, S.; Li, J.; Fernandes, F.; Neithalath, N.; Sant, G., Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. *Cem. Concr. Comp.* **2013**, *42*, 20-29.

(33) Skapa, R., *Optimum sulfate content of portland cement.* PhD Dissertation, University of Aberdeen, Scotland, **2009**.

(34) Kumar, A. *Modelling Hydration Kinetics of Cementitious Systems*. PhD Dissertation, École Polytechnique Fédérale de Lausanne, Switzerland, **2012**.

(35) Sato, T.; Diallo, F., Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. *Trans. Res. Rec.* **2010**, *2141* (1), 61-67.

(36) Oey, T.; Kumar, A.; Bullard, J. W.; Neithalath, N.; Sant, G., The filler effect: the influence of filler content and surface area on cementitious reaction rates. *J. Am. Ceram. Soc.* **2013**, *96* (6), 1978-1990.

(37) Matschei, T.; Lothenbach, B.; Glasser, F., The AFm phase in Portland cement. *Cem. Concr. Res.* **2007**, *37* (2), 118-130.

(38) Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K., Influence of limestone on the hydration of Portland cements. *Cem. Concr. Res.* **2008**, *38* (6), 848-860.

(39) Thomas, J. J., A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration. *J. Am. Ceram. Soc.* **2007**, *90* (10), 3282-3288.

(40) Garrault, S.; Nonat, A., Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. *Langmuir* **2001**, *17* (26), 8131-8138.

(41) Peterson, V. K.; Juenger, M. C. G., Hydration of tricalcium silicate: effects of CaCl2 and sucrose on reaction kinetics and product formation. *Chem. Mater.* **2006**, *18* (24), 5798-5804.

(42) Tenoutasse, N.; de Donder, A., The kinetics and mechanism of hydration of tricalcium silicate, *Silicates Ind.* **1970**, 35, 301–307.

(43) Cahn, J. W., The kinetics of grain boundary nucleated reactions. *Acta metallur.* **1956**, *4* (5), 449-459.

(44) Christian, J. W. *The Theory of Transformations in Metals and Alloys*, Part 1, 3rd Edition, Pergamon Press, Oxford, UK, **2002**.

(45) Thomas, J. J.; Jennings, H. M., Effects of D2O and mixing on the early hydration kinetics of tricalcium silicate. *Chem. Mater.* **1999**, *11* (7), 1907-1914.

(46) Kumar, A.; Bishnoi, S.; Scrivener, K. L., Modelling early age hydration kinetics of alite. *Cem. Concr. Res.* **2012**, *42* (7), 903-918.

(47) Scherer, G. W.; Zhang, J.; Thomas, J. J., Nucleation and growth models for hydration of cement. *Cem. Concr. Res.* **2012**, *42* (7), 982-993.

(48) Scherer, G. W., Models of confined growth. Cem. Concr. Res. 2012, 42 (9), 1252-1260.

(49) Bullard, J. W., Approximate rate constants for nonideal diffusion and their application in a stochastic model. Jour. Phys. Chem. A. **2007**, *111* (11), 2084-2092.

(50) Hummel, W.; Berner, U.; Curti, E.; Pearson, F. J.; Thoenen, T., *Nagra/PSI Chemical Thermodynamic Database 01/01.* Universal Publishers, Parkland, FL. 2002

(51) Kashchiev, D.; Van Rosmalen, G., Review: nucleation in solutions revisited. *Cryst. Res. Tech.* **2003**, *38* (7-8), 555-574.

(52) Bullard, J. W.; Enjolras, E.; George, W. L.; Satterfield, S. G.; Terrill, J. E., A parallel reactiontransport model applied to cement hydration and microstructure development. *Model. Simul. Mater. Sci. Eng.* **2010**, *18* (2), 025007.

(53) Kumar, A.; Oey, T.; Falla, G. P.; Henkensiefken, R.; Neithalath, N.; Sant, G., A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. *Const. Build. Mate.* **2013**, *43*, 428-435.

(54) Lyse, I., *Tests on consistency and strength of concrete having constant water content*.
Proceedings of the American Society for Testing and Materials, 32 (Paper: 60), **1932**, 629-636.
(55) Gallucci, E.; Zhang, X.; Scrivener, K., Effect of temperature on the microstructure of calcium silicate hydrate (CSH). *Cem. Concr. Res.* **2013**, *53*, 185-195.